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Abstract - Résumé

Abstract:

This thesis deals with the efficiency of distributed resource sharing algorithms and of

online path discovery algorithms. In the first part of the thesis, we analyze a game

in which users pay for using a shared resource. The allocated resource to a user is

directly proportional to its payment. Each user wants to minimize its payment while

ensuring a certain quality of service. This problem is modelled as a non-cooperative

resource-sharing game. Due to lack of analytical expressions for the underlying queuing

discipline, we are able to give the solution of the game only under some assumptions.

For the general case, we develop an approximation based on a heavy-traffic result and

we validate the accuracy of the approximation numerically.

In the second part, we study the efficiency of load balancing games, i.e., we com-

pare the loss in performance of noncooperative decentralized routing with a centralized

routing. We show that the PoA is very pessimistic measure since it is achieved in only

pathological cases. In most scenarios, distributed implementations of load-balancing

perform nearly as well as the optimal centralized implementation.

In the last part of the thesis, we analyze the optimal path discovery problem in

complete graphs. In this problem, the values of the edges are unknown but can be

queried. For a given function that is applied to paths, the goal is to find a best value

path from a source to a given destination querying the least number of edges. We

propose the query ratio as efficiency measure of algorithms that solve this problem. We

prove a lower-bound for any algorithm that solves this problem and we proposed an

algorithm with query ratio strictly less than 2.

Résumé:

Cette thèse porte sur l’efficacité des algorithmes distribués de partage des ressources et

des algorithmes de découvert de chemin en ligne. Dans la première partie de la thèse,

nous analysons un jeu dans lequel les utilisateurs paient pour utiliser une ressource

partagée. La ressource allouée à un utilisateur est directement proportionnel à son

paiement. Chaque utilisateur veut minimiser son paiement en assurant une certaine

qualité de service. Ce problème est modélisé comme un jeu non-coopératif de partage

des ressources. A cause du manque des expressions analytiques de la discipline de file
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d’attente sous-jacente, nous pouvons résoudre le jeu que sous certaines hypothèses. Pour

le cas général, nous développons une approximation basée sur un résultat fort trafic et

nous validons la précision de l’approximation numériquement.

Dans la deuxième partie, nous étudions l’efficacité des jeux de balance de charge,

c’est à dire, nous comparons la perte de performance de routage non coopératif décentralisé

avec un routage centralisé. Nous montrons que le PoA est une mesure très pessimiste

car il est atteint que dans des cas pathologiques. Dans la plupart des scénarios, les

implémentations distribués de balance de charge effectuent presque aussi bien que la

mise en œuvre centralisée optimale.

Dans la dernière partie de la thèse, nous analysons problème de découverte chemin

optimal dans les graphes complets. En ce problème, les valeurs des arêtes sont inconnues,

mais peuvent être interrogés. Pour une fonction donnée qui est appliquée à des chemins,

l’objectif est de trouver un meilleur chemin de valeur à partir d’une source vers une

destination donnée interrogation le plus petit nombre de bords. Nous vous proposons

le rapport de requête en tant que mesure de l’efficacité des algorithmes qui permettent

de résoudre ce problème. Nous prouvons une limite inférieure pour ne importe quel

algorithme qui résout ce problème et nous avons proposé un algorithme avec un rapport

de requête strictement inférieure à 2.
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Résumé Étendu 129

List of Publications 143

About the Author 145



x CONTENTS



List of Figures

2.1 Scheduling in a server without priorities. PS queue case. . . . . . . . . . 8

2.2 Scheduling in a server with priorities. DPS queue case. . . . . . . . . . . 8

2.3 Pigou’s example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The problem of the seven bridges of Königsberg. . . . . . . . . . . . . . 15

2.5 Simple complete undirected graph of 7 nodes. . . . . . . . . . . . . . . . 16

3.1 Comparison of equilibrium weights (above) and the corresponding per-

centage relative error (below) as a function of the total system load.

R = 2 and exponential service time distribution. . . . . . . . . . . . . . 43

3.2 Comparision of equilibrium weights (above) and the corresponding per-

centage relative error (below) as a function of the total load, and the

deadlines of the two classes are scaled by (1− ρ)−1. R = 2 and exponen-

tial service time distribution. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Comparison of equilibrium weights (above), the percentage relative error

of the weights (middle) and the percentage relative error of the time

(bellow) as a function of the total system load. R = 4 and exponential

service time distribution. c = [10, 15, 25, 45], µ = [1, 2, 4, 9]. . . . . . . . 44

3.4 Comparison of equilibrium weights (above), the percentage relative error

of the weights (middle) and the percentage relative error of the time

(bellow) as a function of the total system load. R = 4 and exponential

service time distribution. c = [5/3, 5/4, 10, 100], µ = [1, 2, 8, 12]. . . . . . 44

3.5 Comparison of equilibrium weights (above) and the corresponding per-

centage relative error (below) as a function of the total system load.

R = 2 and hyper-exponential service time requirements. . . . . . . . . . 45

3.6 The evolution of the weights (up) and the mean response times (down)

with the Best Response Algorithm for three different starting points: g =

(1, 1, 1) (left column), g = (3, 4, 5) (middle column) and g = (1, 15, 15)

(right column). X-axis in logarithmic scale. . . . . . . . . . . . . . . . . 46

4.1 centralized system for a server farm. . . . . . . . . . . . . . . . . . . . . 56

4.2 Decentralized system for a server farm. . . . . . . . . . . . . . . . . . . . 57

4.3 Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5 as the

load in the system ranges from 0% to 100%. . . . . . . . . . . . . . . . . 63



xii LIST OF FIGURES

4.4 Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) when K = 5 and S = 13 as

the load in the system ranges from 0% to 90% for a server farm with

different values of the capacities. . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5 as the

load in the system ranges from 0% to 100%. . . . . . . . . . . . . . . . . 66

4.6 The evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5

with respect to ρ in a server farm with 3 server classes. . . . . . . . . . . 70

4.7 Evolution of the inefficiency as a function of α and β for K = 2 dispatch-

ers and S = 1000 servers. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Evolution of the inefficiency as a function of α and β for K = 5 dispatch-

ers and S = 1000 servers. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 The Price of Anarchy as a function of the number of servers for different

values of the number of dispatcher. . . . . . . . . . . . . . . . . . . . . . 73

4.10 Evolution of the inefficiency as a function of α and β for K = 106 and

S = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Location of the 19 nodes selected in the NLNog ring. . . . . . . . . . . . 90

5.2 An alternative path is selected when the direct path fails. . . . . . . . . 91

5.3 Initially unknown graph with 5 nodes. . . . . . . . . . . . . . . . . . . . 93

5.4 Algorithm queries the directed path from s to t in the first step. . . . . 93

5.5 Algorithm stopped after 6 queries. . . . . . . . . . . . . . . . . . . . . . 94

5.6 The minimum number of queries required is 4. . . . . . . . . . . . . . . 94

5.7 Initially unknown complete graph with 6 nodes. . . . . . . . . . . . . . . 104

5.8 Set of edges queried by Algorithm 2 in the first step . . . . . . . . . . . 105

5.9 Set of edges queried by Algorithm 2 in the second step . . . . . . . . . . 105

5.10 Set of queried edges by Algorithm 2. Value of dashed lines (resp. contin-

uous lines) is one (resp. ten). . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Minimum set of edges to be queried to find the shortest path from s to t. 106

5.12 Approximation factor evolution comparison. Uniformly distributed edges

and 50 nodes. Y axis in logarithmic scale. . . . . . . . . . . . . . . . . . 109

R.1 Architecture centralisée . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

R.2 Architecture decentralisée . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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1
Introduction

In modern telecommunication networks, resources need to be shared among users. A

resource in these networks can be, for example, the processing capacity of a computer

system, the power of wireless transmitters or the bandwidth of communication paths.

The way that users share the resource defines the performance of the system. The users

can share the resources in a way that the performance of the communication system is

optimum, whereas as inappropriate resource sharing can lead to significant performance

degradations.

In this thesis, we analyze the efficiency of telecommunication networks. In particular,

the question we aim to answer is how the resources of each component of the network

are allocated and how close to optimal is the performance that is derived from this

resource sharing. This is considered an important problem in networking and many

researchers have been working in this area for years. The most important tools that are

applied to investigate the efficiency of telecommunication networks are queueing theory,

game theory and graph theory.

Arrivals and service requirements of users in telecommunication systems are random.

Hence, queueing theory, the set of probabilistic techniques that study waiting lines or

queues, is a fundamental tool to analyze these systems. Queueing models are used to

study the processing times, waiting times and number of jobs in the queues, under some

assumptions regarding the jobs arrivals and service requirements.

Game theory studies the strategic decision making of users that behave rationally.

If we consider that agents of queueing systems are rational and can take autonomous

decisions, the techniques of game theory can be applied to those queueing systems.
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These games are known in the literature as queueing games. The books [50] and [68] as

well as the survey [10] present many interesting queueing games. We focus on distributed

queueing games, where each player is selfish and performs individual optimisation for

its own jobs. These types of games are also known in the literature as non-cooperative

queueing games or decentralized queueing-games.

A classical tool to study the properties of networks is graph theory. A graph consists

of a set of nodes that are connected with edges. Two computers that communicate using

Internet can be modelled as two nodes connected by an edge. Thus, communication

networks can be modelled as a graph. The analysis of telecommunication networks

using graphs has a long history. There is a lot of research in graph optimisation and

many algorithms have been proposed in the literature as a solution for efficient search

problems.

Our work is at the intersection of the three above mentioned scientific disciplines.

Furthermore, the obtained results can be classified into two different categories. For

the first category, queueing theory and game theory are needed to analyze distributed

queueing games. First, we analyze the users’ competition for the capacity of a single

server (see Chapter 3). Then, we study the efficiency of non-cooperative load balancing

when several users compete for the capacity of several servers (see Chapter 4). The

research of this part has been funded by the SOP project of the ANR [5]. On the other

hand, we use graph theory to address the problem of optimising a network where the

values of the edges are initially unknown (see Chapter 5). This work has been done in

the framework of a European project called PANACEA [4].

We first describe briefly the problems we analyze. Then, we present the structure

that follows this thesis.

1.1 Efficiency in Telecommunication Networks

1.1.1 Competition in a Single Server

We analyze the strategic decision making of users that compete for the capacity of a

server. When a server gives equal priority to the users, all of them are served at the

same rate. Since the server has a fixed capacity, if the number of users that want to get

service in this server increases, they all get a slow service. However, a user may pay for

a higher priority in the queue and thus obtain a faster service. In the model we study,

each user is able to pay to increase its priority in order to get a faster service. The

goal of each user is to minimize its payment while ensuring a certain Quality of Service

(QoS). Hence, there is a competition among the users for the capacity of the server that

can be analyzed under the framework of non-cooperative game theory.

The QoS constraint of this model is very complicated to analyze in a general set-

ting. Thus, the derived game can be solved in closed-form only for particular cases.

Nevertheless, we can approximate the original game by a more tractable game under



1.1 EFFICIENCY IN TELECOMMUNICATION NETWORKS 3

the assumption that the load of the system is close to one. We solve the latter game in

the general case and we present how this result allows us to give an approximation of

the original game.

1.1.2 Non-Cooperative Load Balancing

In the second work, we compare the performance of different load balancing architectures

in server farms. First, we consider a centralized architecture where the incoming traffic

arrives to a single dispatcher, that aims to minimize the mean response time of the jobs

in the system. On the other hand, we study a system where there are more than one

dispatcher and each of them receives a portion of the total incoming jobs. We assume

that these dispatchers are selfish and seek to minimize the mean response time of their

own jobs. This system is known as non-cooperative load balancing, selfish routing or

decentralized architecture. For the decentralized architecture, a non-cooperative game

can be formulated where each dispatchers is a player that balances the load so as to

minimize the mean response time of its own jobs.

The objective is to quantify the loss in performance of the non-cooperative load

balancing with respect to the centralized architecture. This comparison has been previ-

ously carried out using the so-called Price of Anarchy, an oft-used worst-case measure

of the inefficiency of non-cooperative decentralized architectures [62]. For the game

under consideration, we show that the Price of Anarchy is an overly pessimistic mea-

sure of performance and propose a new measure, called the inefficiency. Using this new

measure, we show that non-cooperative load balancing is efficient in most cases, and

becomes inefficient only in pathological cases.

1.1.3 Path Discovery Algorithms

In the third part, we analyze algorithms that search for the optimal path between two

given nodes. We assume that the values of the edges of the graph are initially unknown,

but can be discovered by querying an oracle. We present the Optimal Path Discovery

problem. An algorithm that solves this problem seeks to minimize the number of queried

edges for discovering an optimal path between two given nodes.

In the literature, the number of queries is the common measure of the performance

of algorithms that solve this type of problems. We propose as a new measure the query

ratio, that is the ratio between the number of queried edges and the smallest number of

edges required to solve the problem. We thus analyze the query ratio of algorithms that

solve this problem in complete graphs, and propose an algorithm with a query ratio

upper bounded by 2.
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1.2 Structure of the Thesis

The problems we analyze are divided in two parts. In Chapter 3 and Chapter 4, we

investigate the properties of non-cooperative games that arise from the selfish behaviour

of agents in communication networks. In Chapter 5, we study algorithms that optimize

the performance of a network where the value of the edges are initially unknown.

Let us explain more in detail the content of each chapter.

• In Chapter 2, we introduce the main concepts we will use in the problems we

analyze. First, we present the basic notions of queueing theory. We describe the

single server model and then we explain the multi-server models, where there are

more than one server. We also show how non-cooperative games can be defined

in queueing networks and we present the main definitions of distributed queueing

games. Finally, we give a summary of the graph theory concepts we require to

analyze the problem addressed in Chapter 5.

• In Chapter 3, we analyze a non-cooperative game where a set of users compete

for the capacity of a server, as described in Section 1.1.1.

• In Chapter 4, we investigate the performance of the non-cooperative load-balancing,

as described in Section 1.1.2.

• In Chapter 5, we study algorithms that optimize the performance of a given source-

destination pair when the value of the edges is initially unknown, as described in

Section 1.1.3.

• In Chapter 6, we summarize the most relevant results of the models we analyze

in this thesis. Besides, we give interesting issues that can be studied as future

research.

The results of Chapter 3 have been published in [33]. The work presented in Chap-

ter 4 was published in [32] and [31]. The work of Chapter 5 is described in [21], that

has been submitted for publication.



2
Methodology

The objective of this chapter is to present the required methodologies in this thesis so as

to make this manuscript is a self-contained document. As mentioned in the introduction,

our work is at this intersection of three scientific disciplines: queueing theory, game

theory and graph theory. We first introduce some basic results from queueing theory

in Section 2.1. Section 2.2 is devoted to non-cooperative game theory. Finally, graph

theoretic definitions required for our work on the Optimal Path Discovery problem are

presented in Section 2.3.

2.1 Queueing Theory

2.1.1 Single Server Model

The single server model is widely studied in queueing theory [25, 46]. A single server

system can be modelled as a queue, where the jobs arrive and wait in the queue until

they are served. Once a job is served, it leaves the system. The performance of a single

server is commonly measured by the sojourn time of jobs and the number of customers.

The sojourn time of jobs is defined as the time between a job arrival to the system until

its departure. The number of customers refers to the number of jobs in the system,

either in the queue or getting service.

Since we refer to it several times, we first introduce a special type of random vari-

ables, the exponentially distributed one. We say that a random variable X has an

exponential distribution of parameter β, if it verifies that P(X ≤ x) = 1 − exp(−βx)

for x ≥ 0, and P(X ≤ x) = 0 for x < 0. An important property of the exponentially
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distributed random variables is that the value of their mean and second moment are

known. If X is an exponential random variable of parameter β, we have that

E(X) =
1

β
, E(X2) =

1

β2
.

There are four elements that characterize the behaviour of a queue: the incoming

jobs process, the distribution of the service times, the buffer size and the scheduling

policy.

In our work, we usually assume that the incoming jobs follow a Poisson process of

rate λ. This means that the inter-arrival times of the jobs to the queue are independent

and are exponentially distributed with parameter λ. In queueing theory, Poisson pro-

cesses are widely used since they verify the memoryless property, which means that the

number of job arrivals in a given time interval is independent of the number of arrived

jobs in any other past non-overlapping interval. Thus, if we consider that arrival of jobs

follows a Poisson process, the number of incoming jobs to the system from a given time

onwards does not depend on the number of jobs arrived before this moment.

The service requirement of a job is defined as the time that it requires to be served.

We sometimes say that the service requirements are exponentially distributed with

parameter µ, which means that the time that jobs require to be served has an exponential

distribution. A more general case will assume that the jobs are served according to

distributions that are independent and identically distributed (i.i.d.) with mean 1/µ.

We also refer to this case as generally distributed service time requirements.

The buffer size is defined as the maximum number of jobs that can be waiting in the

queue. Hence, if the buffer size is K at most K + 1 jobs can be present in the system.

Besides, we say that the buffer size is infinite when there is no limitation on the number

of jobs that can wait in the queue.

According to Kendall’s notation, if the incoming traffic is Poisson and the buffer

size is infinite, we say that a server is a M/M/1/∞ queue when the service times are

exponential, and a M/G/1/∞ queue when the service time is general.

The scheduling policy characterizes how the jobs that are in the queue are served.

Depending on the scheduling policy that is applied, the performance of the queue

changes. Hence, it is very important for the performance of telecommunication net-

works to implement the right scheduling policies in the queues.

We say a scheduling policy is pre-emptive if the scheduler allows a process to be

interrupted in the middle of its execution to serve other jobs. On the contrary, non

pre-emptive scheduling ensures that the execution of jobs that are getting service is

never stopped.

Many scheduling policies have been studied in the literature of the single server

model. We mention some of them below and we refer to [91] for a recent survey of

scheduling in single server queues.
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• First Come First Served: is a non pre-emptive scheduling policy that serves

jobs in order of arrival.

• Least Come First Served: is a non pre-emptive scheduling policy that serves

jobs arrived the most recently.

• Shortest-Remaining-Processing-Time: is a pre-emptive discipline that as-

signs the whole capacity of the server to the customer with smallest remaining

service time.

• Random Order of Service: is a non pre-emptively scheduling policy that serves

a job chosen uniformly at random from the queue.

• Discriminatory Random Order of Service: is a multiclass generalization of

the Random Order of Service discipline, where customers belonging to different

classes have different selection probabilities [53, 57].

• Processor Sharing is a scheduling policy that serves all customers simultane-

ously at the same rate.

• Generalized Processor Sharing: is a multi-class generalization of the Proces-

sor Sharing model, that guarantees a minimum service rate to each class. When

there are no jobs in one of the classes, its share of the capacity is distributed

among the active classes [71].

• Discriminatory Processor Sharing: is a multi-class generalization of the Pro-

cessor Sharing model, where all jobs present in the system are served simultane-

ously at rates that depend on the priorities of the classes gi and the number of

customers of each class.

Scheduling policies of a particular interest in this thesis are the Processor Sharing

(PS) and Discriminatory Processor Sharing (DPS) disciplines. We remark that the

main difference between them is that the PS queue shares the capacity equally among

all the jobs, while in the DPS queue we can prioritize the service of some jobs. It is

also important to note that the PS model is a particular case of the DPS queue that is

achieved when all the weights are equal.

We present the performance obtained for the scheduling policy of PS and DPS in

Figure 2.1 and Figure 2.2, respectively. In both cases, the input flow consists on four

green jobs, two purple jobs and two red jobs. All the jobs have the same size. One job

arrives to the queue when there is no job of the same color in the queue. Thus, at most,

one job of each type is getting service. We observe that, in both figures, the input flow

is the same and that the output flow is different. In Figure 2.1, all the jobs that are

getting service share equally the capacity of the queue. Moreover, when the service of

all purple and red jobs is finished, all the capacity of the server is for the green jobs. On
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Figure 2.1: Scheduling in a server without priorities. PS queue case.

Figure 2.2: Scheduling in a server with priorities. DPS queue case.

the other hand, for the DPS queue, the green jobs have a bigger priority in the queue

which means that they are served faster. Besides, red and purple jobs have the same

priority and they are served at the same speed. As a consequence of the different speed

of services, all the jobs finish at the same time.

We now turn to the expression of the mean response time for these scheduling

policies. We denote by Ti the random variable representing the response times of jobs

of class i in a PS queue. The expression of the mean response times in a PS queue, i.e.,

E(Ti), is well-known in the literature [48] and is given by

E(Ti) =
1/µ

1− ρ
, (2.1)



2.1 QUEUEING THEORY 9

where ρ is the total load in the system and µ is the service rate of the server.

We also present response time results of the DPS queue. We denote by Ti(g; ρ) the

random variable corresponding to the response time of a class-i job in a DPS queue

for the vector of weights g = (g1, . . . , gR) when the load in the system is ρ < 1. The

mean response time is denoted by T i(g; ρ) = E(Ti(g; ρ)). The authors in [34] prove that

for exponential service time distributions, the mean response time is the solution of a

system of equations.

Proposition 2.1.1 ([34]). In the case of exponentially distributed required service times,

the unconditional average response times satisfy the following linear system of equations:

T k(g; ρ)



1−
R∑

j=1

λjgj
µjgj + µkgk



−
R∑

j=1

λjgjT j(g; ρ)

µjgj + µkgk
=

1

µk
, with k = 1, . . . , R (2.2)

A solution to this system of equations is only known for the case R = 2. In this case

the solution is:

T 1(g; ρ) =
1

µ1(1− ρ)

(

1 +
µ1ρ2(g2 − g1)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

, (2.3)

T 2(g; ρ) =
1

µ2(1− ρ)

(

1 +
µ2ρ1(g1 − g2)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

. (2.4)

The response time of jobs in a DPS queue when the load is close to one has been also

studied in the literature. Indeed, simple expressions are obtained for this case. In fact,

in [93], the authors use this heavy-traffic result to approximate Ti(g; ρ). The mentioned

result reads:

Proposition 2.1.2 ([44]). When scaled with 1−ρ, the response time of class-i jobs has

a proper distribution as ρ → 1.

(1− ρ) Ti(g; ρ)
d→ Ti(g; 1) = X · E(Bi)

gi
, i ∈ C, (2.5)

where
d→ denotes convergence in distribution and X is an exponentially distributed ran-

dom variable with mean

E(X) =

∑

k λkE
(
B2

k

)

∑

k λkE
(
B2

k

)
1
gk

. (2.6)

Proposition 2.1.2 implies that for sufficiently high load, the response time distri-

bution in a DPS queue can be approximated by an exponential random variable, that

is,

Ti(g; ρ) ≅
Ti(g; 1)

1− ρ

d
=

E(Bi)

gi(1− ρ)
X, (2.7)
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and for the mean response time we obtain that

T i(g; ρ) ≈
E(Bi)

gi(1− ρ)

∑

k λkE
(
B2

k

)

∑

k λkE
(
B2

k

)
1
gk

. (2.8)

In the above derivation, we have ignored a technical subtlety. Indeed, in order for

(2.8) to be valid, one needs to establish that the heavy-traffic limit and expectation

can be interchanged, namely, limρ→1 T i(g; ρ) = E(limρ→1 Ti(g; ρ)). In [88] the authors

performed numerical experiments to validate the validity of this interchange. In Chap-

ter 3 we will assume that the interchange is valid. In particular, for PS, it holds that

T i(g; ρ) = E(Bi)/(1 − ρ). Thus, from (2.5) and (2.6) we get T i(g; 1) = E(Bi), and it

follows that the approximation T i(g; ρ) =
T i(g;1)
1−ρ is exact.

2.1.2 The Multi-Server Model

Multi-server architectures have been extensively studied in the literature since they

model a wide range of systems such as server-farms. In the multi-server model, a set

of servers are in charge of giving service. Each server is modelled as a queue, using

the notions presented in Section 2.1.1. An important role in the multi-server models

is that of the routing agent or dispatcher, which controls the incoming jobs are sent to

the servers. The objective of this agent is to optimize a certain metric of the system

performance, for example the response times of incoming jobs.

The M/G/c/K queue is a multi-server architecture with c servers, where the incom-

ing jobs are Poisson, the buffer size is K and the service time requirements are general.

In this model, at most K + c jobs can be present in the system. If there are less than

c jobs, some of the servers are idle. However, if the number of jobs is more than c, the

jobs wait in a queue. The scheduling policy is the same for all the servers.

We can distinguish two broad categories of routing problems in multi-server systems.

When the number of customers in all the queues is known, the dispatcher is faced with

a routing problem in observable queues. In contrast, we say that the dispatcher solves a

routing problem in non-observable queues when the number of customers in the servers

is unknown for the routing agent.

In the observable case, there are different models that have been studied in the

literature. We present the most important ones here:

• Join the Shortest Queue: the routing agent sends the flow to the queue with

less number of customers.

• Power of Two: for all incoming jobs, the routing agent chooses d ≥ 2 servers

independently and uniformly at random and applies the Join the Shortest Queue

policy to the chosen servers.
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Routing in non-observable queues has been also widely analyzed. The Bernoulli

routing is a routing policy that assigns a certain probability to each server (pk) and

sends the traffic to server k with probability pk. This policy is simple to implement in

multi-server systems. The Round-Robin scheduling sends the jobs to servers following

a given order. This policy only requires the total number of servers and the last server

where the last jobs has sent. Another option is that, instead of following a fixed order,

the routing agent takes decisions on where to send incoming jobs,taking into account the

previous routing action. The gain of performance caused by remembering the previous

action is defined as Price of Forgetting [12].

Some scheduling policies for multi-server farms are specially designed for the case

where the demand of incoming jobs is known. In [47, 27] the authors propose and

analyze the Size Interval Task Assignment policy. In this model, each server gives

service to jobs whose service demand is in a designated range.

In the multi-server architectures that we study, we consider that the load balancing

is done using the Bernoulli splitting policy and the servers are PS queues.

2.2 Non-Cooperative Game Theory

In this section, we focus on the main concepts of non-cooperative games for the models

we analyze. We first present a classical example for games that apply in telecommuni-

cation networks. Using this example, we revisit the main definitions of non-cooperative

games. Finally, we describe best-response dynamics, which captures the evolution of

player strategies when they behave in a selfish manner.

2.2.1 Pigou’s Example

Alice has a message of size one and she wants to send it to Bob using Internet. The

message is divided in packets of infinitesimal size. The Internet provider puts available

only two routes. In the first route, the delay of each packet is equal to the traffic that

traverses this route. The other route is slower and causes a delay of one second to each

packet that traverses it. For example, if 30% of the packets use the fast route, then

each of them will have a delay of 0.3 seconds and the delay of the rest of the packets is

one second. Hence, the delay of the message is, in this case, 0.3x0.3+0.7x1.

We assume that each packet can choose to be transmitted by the fast or the slow

route and aims to arrive to the destination with minimum delay. Each packet also

knows the number of packets that use each route, which means that it can compute the

delay obtained for both decisions. We can say that the packets are selfish and can take

self-interested decisions. Hence, this situation that can be studied in the framework of

non-cooperative games.

In Figure 2.3, we illustrate this problem which is known in the literature as Pigou’s
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Figure 2.3: Pigou’s example.

example. Node A represents the transmitter of the message, i.e., Alice and node B

represents the receiver, i.e., Bob. The edge above in the fast route where the delay

depends on the number of packets it traverses and the edge below represents the slow

route.

2.2.2 Non-cooperative Games

A non-cooperative game is characterized by the following elements:

• a set of players (or agents),

• a set of actions (or strategies) that players can choose,

• a cost incurred by each player which depends on its current action and the actions

of the other players.

An important assumption in non-cooperative game theory is that the players are

selfish. The goal of each player is to minimize its own cost, which depends on the actions

of all the players. If there is only one player the resulted situation is an optimization

problem.

An interesting class of games is that of potential games. A game is said to be a

potential game if the optimization problem that selfish users satisfy can be expressed

as a global optimization problem. The objective function of this global optimization

problem is called a potential function. An important result for this type of games is

that there always exists a Nash equilibrium. However, it is not always easy to find the

potential function.

We also define a symmetric game as a game where every player is identical with

respect to the game. This means that the identity of the player does not change the

costs obtained by the players.
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The Equilibrium

We now present the notion of equilibrium, which is a very important concept in non-

cooperative games. A set of strategies is said to be an equilibrium if no player can

decrease its cost by changing its strategy unilaterally.

We observe that an equilibrium in the Pigou’s example is transmitting all the packets

by the fast route. This situation is an equilibrium since if one packet changes its strategy

and starts using the slow route, its delay will never decrease (the delay of the slow route

is 1 second). We observe that in the equilibrium the delay of the message is 1x1 seconds.

The Price of Anarchy

It may happen that a central agent is able to set decisions so that the total cost in the

system is minimized. This situation is said to be a social optimum (or social welfare).

For the Pigou’s example, the social optimum is the distribution of packets so that the

complete packet is sent with minimum delay. It follows that the social welfare for

Pigou’s case is to send half of the message on each route. This result is the solution

of an optimization problem which is simple to solve. The delay of the message in the

social optimum is thus 0.5x0.5+0.5x1 seconds, i.e., 0.75 seconds.

Pigou’s example shows an important property: the outcome of selfish behaviours

need not optimize social welfare. In fact, the Price of Anarchy (PoA) [62] is the standard

measure of the inefficiency of non-cooperative algorithms. The PoA is defined as the

ratio of the cost function in the worst equilibrium over the cost in the social welfare. If

the value of the PoA is close to one we say that the obtained equilibrium is efficient.

On the other hand, if the value of the PoA is high we say that the equilibrium is not

efficient. In the Pigou’s example, the Price of Anarchy is the ratio between 1x1 and

0.5x0.5+0.5x1, which is 4/3.

Routing Games

Throughout this thesis, we will be interested in games where the players route traffic.

This type of games are known in the literature as routing games. Routing games can be

classified as atomic and non-atomic games depending on the amount of traffic the users

control. In the atomic case each user controls a non-infinitesimal amount of traffic, see

[79, 26] for some interesting atomic games. An equilibrium that arises in the atomic case

is called a Nash equilibrium. If the users can send a portion of the traffic to different

routes, we say it is an atomic splittable game. In contrast, if the players cannot split the

flow, we have an atomic non splittable game. On the other hand, if each user controls a

negligible amount of the incoming traffic and can take its own decision, then we have a

non-atomic game. The corresponding equilibrium is known as the Wardrop equilibrium

[90], where response times are minimal and equal on all routes. The non-atomic case is
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sometimes studied as a particular case of the atomic case, where the number of players

grows to infinity.

Pigou’s example is a non-atomic routing game. Hence, the equilibrium we obtain in

this game is a Wardrop equilibrium.

2.2.3 Best-Response Dynamics

In non-cooperative game theory, it is assumed that the users behave rationally, i.e., each

player seeks to minimize its cost. An important question is that of the dynamics that

lead rational users to converge to an equilibrium.

The best-response of a user is the action it takes in order to minimize its cost when

the actions of the other players are fixed. The best-response can be seen as the rational

strategy that a selfish player chooses, when the action of the others cannot vary. The

equilibrium can be also seen as a fixed point for the best-response, since all the users

doing best-response do not modify their strategy at this point.

We refer to sequential best-response dynamics as the set of rational actions that the

players take, when they do best-response in a round-robin way. We are also interested

in the convergence of the best-response dynamics, which means that a fixed point is

reached when users do best-response a finite number of times.

2.3 Graph Theory

Graph theory studies the properties of graphs. Many situations can be modelled by

graphs. We only explain a few of them here. A first example is the social networks,

where users and their friendships can be characterized using nodes and edges. In the

transportation theory, the cities and the routes that connect them can be also modelled

by a graph. Graphs are also used to model telecommunication networks such as Internet.

In fact, telecommunication networks can be modelled as a graph where the nodes are

the devices that transmit or forward data.

We use graph theory to find the optimal path in a telecommunication network. Many

researchers have been interested in studying the properties of graphs and in optimizing

the performance of telecommunication systems using graphs. In the following sections,

we describe the main definitions of graph theory as well as well-known techniques for

the shortest path problem in graphs, such as Dijkstra’s algorithm and A∗ algorithm.

Prior to that, we present the problem of the seven bridges of Königsberg.

2.3.1 Seven Bridges of Königsberg

The problem of the seven bridges of Königsberg is a very famous problem. The city of

Königsberg was located in Prussia and in this city there was a river that divided the
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city into four separate landmasses, where one of them was an island. These regions

were connected by seven bridges as shown in the left part of Figure 2.4. Residents of

the city wondered if it were possible to leave home, cross each of the seven bridges only

once, and return home. Leonard Euler solved this problem using a methodology that is

considered as the birth of graph theory.

Figure 2.4: The problem of the seven bridges of Königsberg.

The solution is based on representing each of the land masses as a vertex and repre-

senting each bridge as an edge connecting the vertices corresponding to the land masses.

The new situation is depicted in the right part of Figure 2.4, which is a graph of four

nodes and seven links. The problem is thus reduced to find a path that starts and

finishes in the same node such that it traverses each edge only once. Euler showed that

there is no such path.

2.3.2 Fundamental Definitions of Graph Theory

A graph is defined by a pair G = (V,E), where V is the set of nodes and E is the set

of edges. The number of nodes in the graph or size of the graph is defined as |V | and
we say that there are n nodes in the graph when |V | = n. Two graphs G = (V,E) and

H = (V ′, E′) are said to be equal if V = V ′ and E = E′. A graph is null if n = 0 and a

graph is trivial if n = 1. A graph is finite if |V | and |E| are finite. A complete graph is

a graph in which every pair of nodes is connected by an edge.

There are two important concepts of graphs that we present in the following lines:

connectivity and directivity. A graph is connected if there is always a path between

any two nodes. The connectivity of the graph ensures us that no node is isolated and

thus, for any pair of nodes there is a path that connects them. Otherwise, the graph

is called disconnected. Graphs can be classified as directed or undirected graphs. In

undirected graphs the edges have no orientation. Hence, for undirected graphs, an edge

from u to v is the equivalent to an edge from v to v, i.e., the edges are not ordered

pairs, but sets {u, v} of vertices. If the edges have a direction, the graphs are defined as

directed graphs. In this case, the edges are also known as arrows. If an edge e = (u, v)

is oriented from u to v, then v is called the head and u is called the tail of the edge.

We define the degree of a node by the number of edges incident to it. In a directed
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graph, we distinguish the in-degree and out-degree of a node, depending on the number

of edges that come into and out of that node, respectively.

For a given edge, the nodes that it connects are called endpoints of the edge. If the

two endpoints of an edge are the same node, the edge is called a loop. We say that a

graph has parallel edges if at least two edges have the same endpoints. A graph is simple

if there are no loop or multiple edge. In simple graphs, each edge is characterized by its

endpoints. The graphs we consider in this thesis are simple, complete and undirected,

as represented in Figure 2.5.

Figure 2.5: Simple complete undirected graph of 7 nodes.

For a given graph G = (V,E), we say that the graph H = (V ′, E′) is a subgraph of

G if V ′ ⊆ V and for all e ∈ E′ ⊆ E, the endpoints of e belong to V ′. Besides, the graph
G is also called supergraph of H, if H is a subgraph of G.

A path in G as a finite ordered set of nodes in which all nodes are distinct. A path

that connects nodes u and v is a path whose first node is u and last node is v. An edge

belongs to a path if and only if the edge is formed by two consecutive nodes in the path.

A cut is a partition of the set V of nodes into two disjoint subsets. The cut-set of a cut

is the set of edges whose end points are in different subsets of the partition.

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges that verifies that for 1 ≤
i ≤ k, the edge ei has endpoints vi−1 and vi. We also define a trail as a walk with no

repeated edges. When the first and last vertex of a walk or trail are the same, we say

that it is a closed trail or a circuit.

We also present some notation. A path that connects two nodes u and v is denoted,

in general, by P(u,v) and we say that an edge e ∈ E belongs to a path if e ∈ P(u,v). The

set of all possible paths from u to v is denoted by P(u,v). We denote by f(e) the value

of the edge e ∈ E.

For any set of edgesH ⊆ E, we define the value ofH as F (H), where F : 2E → [0,∞)

is a function that depends on the values of the edges of H, i.e., F (H) := F ((f(e))e∈H).

An optimal path between nodes u and v is a path P ∗
(u,v) in P(u,v) that optimizes its

performance, i.e., maximize or minimize the value F (P ∗
(u,v)). If the optimization goal

is to minimize an additive function of the form F (H) =
∑

e∈H f(e), we say that the
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optimal path is the shortest path, i.e., the path with least cost.

Another interesting case is the widest-path problem. In this case, given two nodes,

the goal is to find the path between those nodes that maximizes the value of the

minimum-value edge in the path. Using the previous notation, we can also charac-

terize the widest path problem as follows: the optimization goal is to maximize and the

function F we consider is the minimum, i.e., F (H) = mine∈H f(e). This problem is also

known in the literature as bottleneck shortest path problem or the maximum capacity

path problem [89].

2.3.3 Shortest Path Algorithms

Algorithms that search for the shortest path is a widely studied issue in graph theory.

In this section, we describe two algorithms that are mentioned several times: Dijkstra’s

algorithm [30] and A∗ [49]. The objective of both techniques is to find a shortest path.

In our explanations, the graphs under consideration are undirected.

Dijkstra’s Algorithm

For a given source node, Dijkstra’s algorithm finds the path with shortest cost between

that node and every other nodes. Here, we explain a particular case of this algorithm

that finds the shortest paths from a single node to a single destination node. This is

achieved stopping the algorithm once the shortest path to the destination vertex has

been determined.

A description in pseudo-code of Dijkstra’s algorithm is represented in Algorithm 1.

We observe that Dijkstra’s algorithm works iteratively. In the first step, the closest

node from the starting point is selected. Then, in each round, it examines the not-

yet-examined nodes from the node that has been selected in the previous step, and

selects the closest one among those that has not been previously selected. This process

continues until it reaches the destination node.

Dijkstra’s algorithm finds a shortest path from the starting point to the destination,

as long as none of the edges have a negative cost.

Algorithm 1 Dijkstra’s algorithm from a single node to a single destination.

1: INPUT G, source, target
2: INITIALIZE selected[source]=1 and selected[i]=0, for all i except for source;

s node=source;
3: while selected[target] is zero do

4: COMPUTE cl node = closest not selected neighbour from s node .
5: UPDATE s node = cl node.
6: UPDATE selected[s node]=1.
7: end while
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The output of the presented algorithm is the distance of a shortest path from two

nodes. If we also need to compute a shortest path, small modifications in the code

can be done in order to store the predecessor of each node. Then, when the algorithm

finishes, it obtains the predecessor of the destination node and, so on, until some node’s

predecessor is the start node.

We now briefly explain some interesting properties of the shortest path found by

Dijkstra’s algorithm. First, we observe that the subpath of any shortest path is itself

a shortest path. Second, we observe that the obtained solution satisfies the triangle

inequality, which means that the shortest path between u and v is less than the distances

of the shortest paths between u and x and of the shortest path between x and v. Finally,

we remark that the running time of Dijkstra’s algorithm is of order of |V |+ |E|.

The A∗ Algorithm.

A very popular method for finding a shortest path between two given nodes is the

A∗ algorithm. This algorithm uses estimations of the distance of the nodes to the

destinations. Hence, for a node n, we define the cost of this node as the following sum

f(n) = g(h) + h(n),

where g(n) is the cost to get to the node from the source and h(n) is the estimation

of the cost from the node to the destination. The second term of the latter sum is the

heuristic that the A∗ algorithm uses.

The heuristic that the algorithm uses has a very important role in the algorithm. In

fact, a bad estimation of the costs leads to a big augmentation of the processing time

required to achieve the shortest path. A common assumption for the A∗ algorithm is

that the heuristics are monotonic or consistent. In fact, if this condition does not hold

it can occur that the algorithm visits nodes that have been previously visited.

We now explain how the A∗ algorithm works. It starts from the source node, com-

putes the f value of its neighbours and it orders these nodes according to their f value.

Hence, in each step, the node with minimum f value is chosen and the algorithm cal-

culates the f value of its neighbours, updating the order of the nodes, if required. The

algorithm finishes when the destination node is the node with the lowest f value or

when all the nodes have been visited.

As in the Dijkstra’s algorithm, the presented algorithm only gives us the distance

of the shortest path. However, as in the case of Dijkstra’s algorithm, we can also

modify the algorithm to obtain the shortest path. To do that, we need to register the

predecessor of all the selected edges.

We also observe that Dijkstra’s algorithm and the A∗ are not unrelated. If the values
of the h function is zero for all the nodes, A∗ algorithm coincides with Dijkstra’s one.
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2.4 Conclusion

In this chapter, we have introduced the methodologies that will be used in the other

chapters. The concept and definitions from graph theory will be in Chapter 5 used

when addressing the optimal path discovery problem, while queueing and game theory

are used in the two next chapter to address games where a number of users compete for

sharing a resource. In the next chapter, we consider the case of a single server shared

by non-cooperative users with relative priorities.
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3
Single Server with Relative Priorities

We investigate a game in which users pay for using a shared resource. The share of the

resource allocated to a user is directly proportional to the payment it makes. Each user

wants to minimize its payment while ensuring a certain Quality of Service (QoS). This

problem is modelled as a non-cooperative resource-sharing game.

This chapter is organized as follows. In Section 3.1 we introduce the problem and

the main contributions of this work. In Section 3.2 we put our work in the context

of the existing literature. In Section 3.3 we describe the model and we formulate the

resource-sharing game. In Section 3.4 we focus on the solution of the game and we

analyze its efficiency. For the cases in which this game cannot be solved in closed-form,

we define in Section 3.5 a game for the heavy-traffic regime, i.e., when the load in the

system approaches one. Then, we show that the obtained result in the heavy-traffic case

can be used to get an approximation of the original game. In Section 3.6, we present

numerical experiments to assess the accuracy of the presented approximation. Finally,

we present the main conclusions of this work in Section 3.7. The proofs of the most

relevant results of this work are given in Appendix 3.A.

3.1 Resource Competition in a Single Server

In this part of thesis, we aim to analyze a queueing game in a single server. As we said

in Section 2.1.1, an interesting case is given when all the jobs in the system are served

simultaneously and get a portion of the capacity. Thus, in the latter case, there is no

job waiting in the queue. These models are known in the literature as resource-sharing,
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processor-sharing or capacity-sharing systems. The model we analyze is of this type.

In file hosting services, there is a provider whose available bandwidth is shared

among all the users that want to get service in the same time. This situation can be

modelled as a resource-sharing system since all the users use a fraction of the available

bandwidth. In this model, the users are the agents that compete for the capacity of the

provider, i.e., they are the players of the resource-sharing game. The players are also

called selfish agents.

In these systems, users can subscribe a premium service so as to increase the up-

load/download speed. In our work we assume that users can choose their payments,

that is directly proportional to their allocated bandwidth (or priority in the queue).

This payment is lower-bounded by the minimum price to get access to service. Hence,

each user aims to choose its priority level so as to minimize its own payment, while

guaranteeing that the mean response time of its jobs does not exceed its deadline (QoS

condition).

Bandwidth models have been widely studied in the literature, see [6] and [76] for

surveys on this topic. A common model to analyze bandwidth sharing systems is the

Processor Sharing (PS) queue. In this discipline, all the users are served simultaneously

and at the same rate, i.e., there is no service differentiation among users. In our study,

the users pay to get a faster service and, as a consequence, we need to investigate a

model that differentiates the speed of service of different users. Hence, in this work we

assume that the capacity is shared according to the Discriminatory Processor Sharing

(DPS) discipline [58]. As we explained in Section 2.1, the DPS model is a multiclass

generalization of the PS model. The main characteristic of the DPS discipline is that it

gives service to all the users simultaneously, but the speed of service of each user depends

its relative priorities. Thus, since the payment of a user is directly proportional to its

priority, if we change the payments of the users, we can control the service rates of

different users.

We now give an example of the game that we aim to analyze in this chapter. Consider

there are three users (A, B and C) that compete for the resource of a server. Users A,

B and C have deadlines equal to 4 seconds, 10 seconds and 20 seconds, respectively.

We consider that the service requirements of all the users is exponentially distributed

with equal parameter µ = 1/2. Besides, the load of each user is ρA = 0.1, ρB = 0.2

and ρC = 0.3. If all the users pay the minimum price, then all the users have the same

priority. Thus, we can use the expression (2.1) to derive that the mean response time

of the jobs of all the users is the same and equal to 5 seconds. We observe that this

case is not an equilibrium since the QoS condition of user A is not satisfied. User A has

therefore incentive to deviate by increasing its payment so as to meet its deadline.

In this model, a user doing best-response consists on the following: (i) if the mean

response time of its jobs is less than its deadline, it diminishes its payment until its

payment is the minimum price or the mean response time of its jobs equals its deadline;
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(ii) if the mean response time of its jobs exceeds its deadline, the user increases its

payment until the mean response time of its jobs equals its deadline. Hence, if user

B or C do best-response, they do not change their payment since they are paying the

minimum price and their QoS condition is satisfied. However, if user A does best

response, it increases its payment until the mean response time of its jobs equals its

deadline. Thus, after the best-response of user A, the mean response times of jobs of

users A, B and C can be obtained as a solution of the system of equations given in (2.2)

and are 4, 5.2 and 5.2 seconds, respectively. Besides, the payment of user A is 1.875

times the minimum price. We observe that in this case the QoS condition of all the

users is satisfied. We therefore claim that this is an equilibrium since users B and C

are paying the minimum price and, if user A decreases its payment, its QoS condition

is not satisfied.

The total benefit of the system, or simply total benefit, is defined as the sum of

the payments of the users. The provider can set the payments of all the users so that

the total benefit of the system is minimized and all users satisfy their own response

time constraint. A set of payments that satisfies this condition is called social optimum

or social welfare of the system. We observe that, by definition, the total benefit in an

equilibrium cannot be less than the total benefit in the social welfare. In this context, the

Price of Anarchy (PoA) is defined as the ratio of the total benefit in the equilibrium to

the social welfare. We say that the set of payments of selfish agents (or the competition)

is efficient if the total benefit in the equilibrium and in the social welfare coincide, i.e.

when the PoA is one.

The main goal of this work is to study the properties of the non-cooperative resource-

sharing game that arises from the interaction of the various users that compete for the

capacity of a resource. We are interested, for example, in the required conditions that a

game must verify to ensure the existence of the equilibrium. Another important aspect

we address is the uniqueness of the equilibrium. We also look at the dynamics of the

best-response algorithm in this resource-sharing game.

The main contributions of this chapter are summarized in Table 3.1. We give the

necessary and sufficient conditions for the existence of the equilibrium of the game for

exponential service times and arbitrary number of users. For general service times and

two players, we show that the equilibrium is unique and that the Price of Anarchy is one.

When the number of players is two and the service times are exponentially distributed,

we characterize the unique equilibrium of the game. We prove that the dynamics of

best-response converge in two settings: (i) for two users, exponential service times and

any initial point and (ii) arbitrary number of users, general service times and feasible

initial point. For the rest of the cases, given the difficulty of this model, we use heavy-

traffic results for DPS from [44] and [74] to obtain tractable expressions for the mean

response time in the system. Even though of approximate nature, we believe that

the heavy-traffic approach allows to derive interesting insights into the performance of

the system. Using the heavy-traffic approximation, we characterize the sufficient and
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Contributions Original Game Heavy-Traffic Game

N. Players Serv. Times N. Players Serv. Times

Feasibility Arbitrary Exponential Arbitrary General
Existence of NE Arbitrary General Arbitrary General
Uniqueness of NE 2 General Arbitrary General

NE Characterization 2 Exponential Arbitrary General
Price of Anarchy 2 General Arbitrary General

BR Convergence (feasible point) Arbitrary General Arbitrary General
BR Convergence (any point) 2 Exponential 2 General

Table 3.1: Summary of the main contributions of this chapter.

necessary conditions for the game to have a Nash equilibrium, and then show that

this equilibrium is unique and fully characterize it. Interestingly, we show that players

can be ordered in a decreasing order with respect to the ratio between the mean size

requirement and their constraints on the response time and that in equilibrium, the

prices that users pay decrease as this ratio decreases. Furthermore, we prove that the

Price of Anarchy of the heavy-traffic game is always one. We then explain how the

heavy-traffic solution can be used to obtain an approximate solution to the original

problem. The numerical experiments illustrate that when the various users have a

similar ratio between the mean size and response time constraint, then the heavy-

traffic approximation predicts satisfactorily the outcome (both in terms of equilibrium

prices and performance) of the original game. However, when the disparity of the users

increases the error in predicting the equilibrium prices can be very significant, but

in spite of this, the heavy-traffic approximation remains quite accurate regarding the

performance. The numerical results show that the dynamics of the best-response also

converge outside the two settings described above.

3.2 Related Work

The single server queue is a classical model in queueing theory and many results can

be remarked regarding the policy that gives an optimal performance of the system. We

know that this policy in a single server queue changes depending on the available infor-

mation of the scheduler to give service. For example, if the scheduler knows the service

time of the incoming jobs, the optimal policy is the Shortest-Remaining-Processing-

Time discipline [83] and [84]. On the other hand, if the scheduler does not know the

remaining service time of jobs but the distribution of the service times is known, then

the Gittins index policy is optimal [42, 43].

We are interested in the scheduling policies in a single server where the capacity

of a server is shared among a certain number of users. The PS policy is the basic

model and, given its wide range of applications, it has attracted significant attention

from networking researchers, see for example [17, 95, 94]. In this work, we consider
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that the incoming jobs are served according to the DPS discipline, which is multiclass

generalization of the PS discipline. The DPS model has been studied for many years,

see [56, 24], and it is shown to be a good discipline to model flow level performance

and bandwidth-sharing applications, see [8] for an extensive overview of the literature

on DPS. Some basic results on PS and DPS queues have been given in Section 2.1.

In a seminal paper, Fayolle et al. proved that for exponential service time distribu-

tions, the mean response time of the DPS queue is the solution of a system of equations

[34]. The mean response times is given in closed-form only for the case of two classes.

For general service time distributions the results are scarce. In [34] the authors showed

that the derivative of the mean conditional (on the service requirement) response time

of the various classes satisfies a system of integro-differential equations. To the best of

our knowledge, there are no known tractable results on the distribution of the response

time. However, we here mention some interesting approaches that have been proposed

in the literature. The authors in [20] give closed-form expressions for the mean response

time in the DPS queue when there is admission control. In [18] the authors analyze

response time asymptotics in the DPS queue. The DPS queue in heavy-traffic was

considered in [44] (see also [74] and [88]). The authors prove that, when scaled with

1−ρ, the response time has a proper distribution as ρ → 1 (see Section 2.1). Using this

heavy-traffic result, the authors in [55] obtain a polynomial approximation of the mean

response time in the DPS queue.

The resource-sharing game under consideration is complicated to analyze in a general

setting since, as we said before, the underlying queueing model has no closed-form

expression for the mean processing times of the jobs. That is why results on strategic

behaviour of users in systems with relative priorities are so scarce. Some exceptions are

given now. In [54] the authors consider two types of applications in a DPS queue that

compete to be served and they analyze how optimal prices can be found. In [51] the

authors consider a DPS model with two classes, entry fees and waiting costs and the

server is allowed to set the priorities vector so as to maximize the profit. A more recent

work is [93] and [92], where the authors define a game for the DPS queue where each

user seeks to minimize the sum of the expected processing cost and payment. Given the

difficulty in analysing the model, the authors propose a heavy-traffic approximation, i.e.

when the system is critically loaded, of the problem.Even though we also assume the

DPS model for the sharing of the capacity, the problem we consider is different from the

rest since, in our formulation, each user aims at minimizing its payment while ensuring

its jobs to be served before a certain deadline.

The main application of this model is when the resources of a single server are

shared among users. As another possible application of this model we have the study

of the behaviour of non-cooperative users in the Information Centric Networking (ICN)

model since the ICN has been recently modelled by the DPS queue [82]. In the ICN

model, some parts of the contents that users wants to access from a server are stored

in intermediate buffers of the network. The objective of the ICN is to reduce the load
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in the server and provide a better service to the users.

3.3 Model Description

3.3.1 Notations

Consider a game in which a single server of unit capacity is shared among R classes (or

users). Let C = {1, 2, . . . , R} be the set of classes. We assume that the arrival process of

jobs of class i is Poisson with rate λi and that the service requirements of jobs are i.i.d.

and have an arbitrary distribution with mean E(Bi) and second moment E
(
B2

i

)
. For

the case of exponential service time distributions, we will use the notation E(Bi) = µ−1
i

and E
(
B2

i

)
= 2/µ2

i . We define the total incoming traffic of the system by λ =
∑R

i=1 λi.

Let ρi = λiE(Bi) be the load of class i and the total load of the system be ρ =
∑R

i=1 ρi.

The processing capacity of the server is shared amongst jobs according to the DPS

discipline, that is, all jobs present in the system are served simultaneously at rates

controlled by a vector of priorities (or weights). If there are Ni jobs of class i present

in the system, then class-i jobs are served at rate

ri(N1, . . . , NR) =
gi

∑R
j=1 gjNj

. (3.1)

We observe that the rate allocated to each class depends on the relative priorities of

the classes (or weights). Hence, by changing the weights, one can effectively control the

instantaneous service rates of different job classes. For example, by setting the weight

of a class close to infinity, one can give preemptive priority to this class. The possibility

of providing different service rates to users of various classes makes DPS an appropriate

model to study the performance of heterogeneous time-sharing systems.

We describe our game in the following section.

3.3.2 Game Formulation

We assume that the service provider (or the server) proposes to each class i ∈ C the

choice of its weight gi in exchange of a payment per-unit-of-work proportional to the

chosen weight. Let Ti(g; ρ) be the random variable corresponding to the response time

of a class-i job in a DPS queue for the vector of weights g = (g1, . . . , gR) when the load

in the system is ρ < 1. The quality-of-service metric of class i is the probability of its

jobs missing a given deadline di. Class i then wants to ensure that this probability is

below a certain threshold αi ∈ (0, 1) while paying as little as possible for this service.

Formally, class-i solves the problem
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min
gi≥ǫ

ρigi (OPT-P)

subject to P (Ti(g; ρ) > di) ≤ αi.

The quantity ǫ is the minimum price a class has to pay in order to get access to the

service. It follows from (3.1) that the service rate every class gets for a vector θ g is

independent of the common factor θ > 0 and as a direct consequence of this, we have

that at least one user pays ǫ in the Nash equilibrium (if it exists).

We emphasize that the constraint in (OPT-P) is a soft constraint on the deadlines.

In other words, even if some jobs miss their deadlines, these jobs stay in the system

until completion, but in the long term at most a fraction αi of class-i jobs will miss

their deadline.

As explained in Section 2.1, the probability of jobs missing a deadline in a DPS

queue has no easy-to-compute closed-form expression. One could then consider a game

in which the constraints are based on the mean response time of tasks T i(g; ρ) =

E(Ti(g; ρ)). The optimization problem (OPT-M) then gets modified as follows:

min
gi≥ǫ

ρigi (OPT-M)

subject to T i(g; ρ) ≤ ci.

The modified game (OPT-M) is not completely unrelated to the original game

(OPT-P) as we shall argue next. As we saw in Section 2.1, when the load is high

enough, the response time in the DPS model converges to an exponentially distributed

random variable and thus

P (Ti(g; ρ) > di) = P (Ti(g; 1) > (1− ρ)di) = e
− (1−ρ)di

Ti(g;1) ,

which implies that

P (Ti(g; ρ) > di) ≤ αi ⇐⇒ −(1− ρ) di

T i(g; 1)
≤ logαi.

Since αi ∈ (0, 1), we have logαi < 0 and, hence, we obtain the following equivalent

constraint T i(g; 1) ≤ c̃i = − (1−ρ)di
logαi

.

Let T i(g; 1) be the mean response time of class-i jobs in heavy-traffic. We propose

to use the heavy-traffic result presented in Section 2.1 as an approximation to (OPT-P)

and (OPT-M).
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min
gi≥ǫ

ρigi (OPT-HT)

subject to T i(g; 1) ≤ c̃i.

In the case c̃i = − (1−ρ)di
logαi

we will be approximating (OPT-P), and if c̃i = (1 − ρ)ci
we will approximate (OPT-M).

We know that the response time in a DPS queue has no tractable form in a general

setting. Hence, we are able to analyze (OPT-M) under certain assumptions, see Sec-

tion 3.4. For the general case, we develop in Section 3.5 an approximation based on the

game (OPT-HT). Our hope is that the solution of the game (OPT-HT) will give useful

insights into the equilibrium properties of (OPT-P) and (OPT-M). We emphasize that

the benefit of the heavy-traffic approximation is that the mean response time formulae

have a nice closed-form expressions for general service time distributions and arbitrary

number of classes whereas (OPT-M) has a simple structure only in case of exponentially

distributed service times, while (OPT-P) does not appear to be tractable even for that

case.

We now give some definitions.

Definition 3.3.1 (Achievability). A vector t of mean response times is said to be

achievable if there exists a vector of weights g > 0 for which the vector of mean response

times is t, i.e., ti = T i(g; ρ), for all i ∈ C.

Let T = {t : t is achievable} denote the set of achievable vectors. We now define

the feasibility of the vector of deadlines.

Definition 3.3.2 (Deadline feasibility). A vector of deadlines c ∈ R
R
+ is feasible if and

only if ∃t ∈ T such that t � c, where � is the componentwise order.

In the following, we say that a game is feasible if its vector of deadlines is feasible.

We will also use the notion of a feasible weight vector, as defined below.

Definition 3.3.3 (Weight feasibility). A vector of weights g ∈ R
R
+ is feasible if and

only if T i(g, ρ) ≤ ci for all i ∈ C.

Definition 3.3.4. A class i will be considered fair if the response time it would obtain

under PS, E(Bi)/(1− ρ), would satisfy its own constraint on the mean performance ci,

i.e., if

E(Bi)/ci ≤ (1− ρ).

It is known, see [8], that T i(g; ρ) is decreasing with gi and increasing in gj for j 6= i.

This implies that for the particular case when c ∈ T , the unique performance point
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that satisfies all the constraints is c. To see this, observe that if c is achievable then

T i(g, ρ) = ci for all i, and that reducing T i(g, ρ) for one class implies that T j(g, ρ)

increases for another class j. It can similarly be shown that if the game is feasible and

c /∈ T , then the number of performance vectors satisfying all the constraints is always

larger than one.

Without loss of generality, when studying (OPT-M) we assume that the classes are

ordered in decreasing order of E(Bk)/ck, i.e., if i < j, then E(Bi)/ci ≥ E(Bj)/cj . We

observe that the ratio E(Bk)/ck is the minimum acceptable throughput of a class-k

job with a service requirement equal to the mean. In the case of exponential service

time distribution, it becomes c1µ1 ≤ c2µ2 ≤ · · · ≤ cRµR. Equivalently, when studying

(OPT-HT) we will assume that classes are ordered in decreasing order of E(Bk)/c̃k.

Nash equilibrium

Assuming that the game is feasible, a vector of weights gNE = (gNE
1 , . . . , gNE

R ) is a Nash

equilibrium for the game (OPT-M) if each class is paying the least possible amount while

ensuring that its mean response time does not exceed its deadline. Thus, we can say

that a vector of weights gNE is a Nash equilibrium if

gNE
i = min

{
gi ≥ ǫ : T i(gi,g

NE
−i ; ρ) ≤ ci

}
,

for all i ∈ C, where gNE
−i =

(
gNE
1 , . . . , gNE

i−1 , g
NE
i+1 , . . . , g

NE
R

)
. We also define the best

response of class-i is defined as

g∗i = min
{
gi ≥ ǫ : T i(gi,g−i; ρ) ≤ ci

}
,

where g−i = (g1, . . . , gi−1, gi+1, . . . , gR).

We now give the necessary and sufficient conditions of a vector of weights to be a

Nash equilibrium. Using that T i(g; ρ) is decreasing with gi and increasing in gj for

j 6= i, it follows that, for a given i,

gNE
i > ǫ ⇒ T i(g

NE ; ρ) = ci, (3.2)

gNE
i = ǫ ⇒ T i(g

NE ; ρ) ≤ ci. (3.3)

It is shown in [13] that T i(g; ρ) is decreasing in gi and increasing with gj . Hence,

class which is paying more than ǫ is necessarily satisfying its constraint with equality.

Otherwise, if it were to be satisfying the constraint with strict inequality, then it could

pay less and still satisfy its deadline. On the other hand, a class which is paying the

least possible price could be satisfying its deadline with strict inequality.

We now present some properties that satisfy the equilibrium when the game is

feasible.
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Proposition 3.3.1. With general service time distributions and arbitrary number of

players, if the game is feasible, then

• there exists a Nash Equilibrium, and

• the dynamics of best-response converge to a Nash Equilibrium if the starting point

is feasible.

Proof. We notice that the dynamics of best-response are given by increasing the weight

of class i when T i(g; ρ) > ci and decreasing the weight of class i when T i(g; ρ) < ci
and gi > ǫ. Assume that we start the best-response dynamics from a feasible point g.

If all constraints T i(g; ρ) ≤ ci are satisfied as equality constraints (implying that the

deadline vector c is achievable), then g is clearly a Nash equilibrium since no class can

unilaterally decrease its weight and still satisfy its constraint. If, on the contrary, there

is a nonempty subset A ⊂ C such that T i(g; ρ) < ci for all classes i ∈ A, then we have

either gi = ǫ for all i ∈ A or there are some classes i ∈ A such that gi > ǫ. In the

former case, g is again an equilibrium since clearly no class can decrease its weight. In

the latter case, the best-response for each class i ∈ A such that gi > ǫ is to decrease

its weight. Moreover, after each best-response, the current vector of weights remains

feasible because by decreasing its weight a class can only improve the mean response

times of the other classes. Thus, in that case the best-response dynamics generate a

sequence of feasible weight vectors which is strictly decreasing in the lexicographic order.

Since feasible weight vectors belong to the set [ǫ,∞)R which is closed on the left, we

can conclude that the dynamics of best-response converge to a Nash Equilibrium when

started from a feasible point.

From the latter result it follows that, if the game is feasible, then an equilibrium

exists. Hence, to characterize the existence of an equilibrium we obtain the conditions

of a game to be feasible.

Efficiency of the Equilibrium

In this section, we study the efficiency of the equilibrium of (OPT-M). We first present

the social welfare. Then, we concentrate on the Price of Anarchy and the Price of

Stability, which are standard measures of the efficiency of the equilibrium. We finally

show that the equilibrium is efficient if it is unique.

We define the social welfare (or social optimum) of the system as the strategy of the

users such that the total payment is minimum. It is the vector of weights that solves
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the following minimization problem:

min
(g1,...,gR)

R∑

i=1

ρigi (SOC-M)

subject to Ti(g; ρ) ≤ ci, for all i = 1, . . . , R,

and gi ≥ ǫ, for all i = 1, . . . , R.

The main difference with respect to the game is that in the latter each user minimizes

its own payment while in the social optimum the users coordinate to choose the weights

that minimize the total payment. By definition, the total payment at the social optimum

cannot be larger than that at a Nash Equilibrium.

The efficiency (or sub-optimality) of the equilibrium of (OPT-M) can be measured

using the notions of Price of Stability (PoS) and Price of Anarchy (PoS) which are

defined as:

PoS = min
g∈GM

∑R
i=1 ρigi

∑R
i=1 ρig

SOC
i

, (3.4)

PoA = max
g∈GM

∑R
i=1 ρigi

∑R
i=1 ρig

SOC
i

, (3.5)

where GM denotes the set of Nash equilibria of (OPT-M) and gSOC is any vector of

weights that is socially optimal. From these definitions, it follows that PoA ≥ PoS ≥ 1,

and PoA = PoS in particular when the Nash equilibrium is unique.

We now show the relation that there exists between the social optimum and the

equilibrium.

Lemma 3.3.1. A social optimum is an equilibrium of (OPT-M).

Proof. Let gSOC be a social optimum. We first observe that any social optimum is a

vector of weights gSOC such that each component verifies one of the following equations:

if gSOC
i > ǫ, ⇒ T i(g

SOC ; ρ) = ci,

if gSOC
i = ǫ, ⇒ T i(g

SOC ; ρ) ≤ ci.

If it would exist i such that gSOC
i > ǫ and T i(g

SOC ; ρ) < ci, then it would be possible

to decrease gSOC
i while still satisfying the constraint T i(g

SOC ; ρ) ≤ ci, implying that

gSOC would not be the solution of (SOC-M).

These equations give the necessary conditions for a vector to be the social optimum.

They are, in fact, the same as (3.2) and (3.3) which are the necessary and sufficient

conditions for a vector to be a Nash equilibrium. It then follows that a social optimum

is also a a Nash Equilibrium.
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From this result and the definitions of (3.4)-(3.5), it follows directly the following

corollary.

Corollary 3.3.1. The game (OPT-M) satisfies that

• PoS = 1,

• if the equilibrium is unique, then PoA = 1.

3.4 Solution

This section is devoted to the analysis of the game (OPT-M). We first establish in

Section 3.4.1 the necessary and sufficient conditions for the existence of the equilibrium

of the game. We then study the efficiency of the Nash equilibrium in Section 3.4.2. We

provide an explicit characterization of the Nash equilibrium in Section 3.4.3.

3.4.1 Existence of the Equilibrium

We focus on the existence of the equilibrium of the game (OPT-M). As we said in

Section 3.3.2, if the game is feasible an equilibrium exists. We thus analyze the feasibility

of the game.

For fixed traffic conditions, the game is feasible if the vector c of deadlines is such

that there is an achievable vector t of performances such that ti ≤ ci for all i ∈ C.
For exponential service times, the set of achievable vectors for the DPS queue was

characterized in [40]. In order to present their result, we first need to introduce some

notations. Let R = P(C) \ ∅, where P(C) is the power set of C, be the set of all subsets

of C except the empty set. We define ρr =
∑

i∈r ρi, and

Wr =
1

1− ρr

∑

i∈r

ρi
µi

, (3.6)

for all r ∈ R.

With these notations, the result reads as follows. A vector t of performances is

achievable if and only if

∑

i∈C
ρiti = WC , (3.7)

∑

i∈r
ρiti ≥ Wr, ∀r ∈ R \ {C} . (3.8)

The following result gives the necessary and sufficient conditions for the game

(OPT-M) to be feasible.
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Theorem 3.4.1. Assuming exponential service times, the game (OPT-M) is feasible if

and only if
∑

i∈r
ρici ≥ Wr, ∀r ∈ R. (3.9)

Proof. See Appendix 3.A.1.

Observe that the achievability and feasibility conditions are similar, the difference

being that the constraint on the whole set has to be satisfied as an equality for achiev-

ability, whereas it can hold as a strict inequality for feasibility.

3.4.2 Efficiency of the Equilibrium

We now study the efficiency of the equilibrium of the game (OPT-M). According to

the result of Corollary R.2.1, if the game (OPT-M) is feasible, there exists at least one

Nash equilibrium. In the following result we present the number of equilibria of this

game.

Proposition 3.4.1. For the game (OPT-M) with general service times, we have that

• For an arbitrary number of classes, if c ∈ T , then there is an infinite number of

equilibria.

• For a two-player feasible game such that c /∈ T , there is a unique Nash equilibrium.

Proof. See Appendix 3.A.2.

We recall that the case c ∈ T is very particular, since it implies that c will be the

only performance point that satisfies all the constraints.

From the previous result on the uniqueness of the equilibrium and Corollary 3.3.1,

we obtain that the efficiency of the equilibrium is as follows:

Corollary 3.4.1. For the game (OPT-M) with general service times, we have that

• For an arbitrary number of classes, if c ∈ T , then PoA = ∞.

• For a two-player feasible game such that c /∈ T , then PoA = 1.

We observe that in the case where c is feasible, i.e., c ∈ T , the solution of the game

is not efficient since there are infinite equilibria. However, if c /∈ T and for two classes,

we have showed that the equilibrium is unique and this means that the equilibrium is

efficient.
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3.4.3 Characterization of the Equilibrium

In the previous section, we studied the efficiency of the equilibrium for general service

times. We now aim to characterize the equilibrium when c /∈ T .

We first notice that explicit expressions of the mean response times in a DPS queue

are known only in the case of two classes and exponential service times, see Section 2.1.

This restricts the set of cases in which an explicit solution to the game can be computed.

Proposition 3.4.2. For the two-player game with exponential service times and c1µ1 ≤
c2µ2, if the game is feasible and c /∈ T , then the unique equilibrium is

• gNE = (ǫ, ǫ) if class 1 is fair and

• otherwise, gNE = (gNE
1 , ǫ), where

gNE
1 = ǫ

−µ1ρ2 + µ2(1− ρ2) [µ1c1(1− ρ)− 1]

−µ1ρ2 − µ1(1− ρ1) [µ1c1(1− ρ)− 1]
.

Proof. See Appendix 3.A.3.

We explain briefly the structure of the Nash equilibrium. Assuming feasibility, it

follows from the ordering of the classes that at least class 2 is fair, i.e., T 2(g
NE ; ρ) ≤ c2.

If class 1 is also fair, then (g1, g2) = (ǫ, ǫ) is the equilibrium. On the contrary, if the

mean response time of class 1 for PS weights exceeds its deadline c1, the class 1 must

pay g1 > ǫ per unit-of-work to ensure that its time constraint is satisfied.

In Section 3.3.2 we showed that the dynamics of the best-response algorithm con-

verge to the equilibrium if the starting point is feasible, i.e., if T i(g; ρ) ≤ ci, for all

i ∈ C. We now show that the dynamics of the best-response, starting from any point,

converge to the Nash Equilibrium.

Proposition 3.4.3. For the two-player game with exponential service times, if the game

is feasible and c /∈ T , the best-response dynamics converge to the Nash Equilibrium for

any starting point.

Proof. See Appendix 3.A.4.

We now study how the equilibrium of (OPT-M) changes with the total load in the

system. For an arbitrary number of users, we define ρE and ρF as the threshold values

such that

• if ρ ≤ ρE then all classes are paying the minimum price ǫ,

• if ρE < ρ ≤ ρF the game is feasible and there is at least one class paying more

than ǫ and

• if ρ > ρF the game is not feasible.
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Characterization of ρE

We now concentrate on the value of ρE . For general service time requirements, it follows

from the ordering of the classes, E(B1)
c1

≥ E(B2)
c2

≥ ... ≥ E(BR)
cR

, that if class 1 is fair, that

is if
E(B1)

c1
≤ 1− ρ,

then all the users are fair and the equilibrium is unique and equal to (ǫ, . . . , ǫ). In this

case, the value of the PoA is one, which means that the game is efficient. Hence, the

minimum value ρE such that at least one user pays more than ǫ is obtained when

E(B1)

c1
= 1− ρE ,

that is for ρE = 1− E(B1)
c1

.

We remark that this expression of ρE holds for general services times and arbitrary

number of classes. We also note that if E(B1)/c1 is close to 0, then ρE is close to 1,

implying that the PS solution (ǫ, . . . , ǫ) corresponds to the equilibrium for a large range

of utilization rates.

Characterization of ρF

We present the value of the system load that makes the game not feasible. Assuming

exponential service times, we gave in Theorem 3.4.1 the necessary and sufficient condi-

tion for the game to be feasible. Here, we use this result to characterize the value of

ρF for exponential service times. Hence, we state that ρF is the minimum value of the

system load verifying that

∃r ∈ R such that
∑

i∈r
ρici < Wr.

Identical minimum acceptable throughput

A particular case of interest is obtained when all classes have the same minimum ac-

ceptable throughput, i.e., E(Bi)/ci is equal for all i ∈ C. In this case, we characterize

the equilibrium of the game and the value of ρF for general service times.

Proposition 3.4.4. If E(Bi)/ci = k < 1 for all i ∈ C, then

• the unique equilibrium of the game is the PS solution (ǫ, . . . , ǫ) for ρ ≤ 1− k, and

• the game is not feasible for ρ > 1− k.

Proof. If all users had the same weights (so the equilibrium were PS), we would have

that E(Bi)/ci = 1− ρ, for all i. Since E(Bi)/ci = k < 1, we conclude that if ρ ≤ 1− k
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then (ǫ, . . . , ǫ) is the unique equilibrium. When ρ = 1− k we have ci = E(Bi)/(1− ρ),

∀i, that is, the vector (c1, . . . , cR) is achievable and as soon as ρ increases further the

game becomes infeasible.

We thus have that for identical minimum acceptable throughput the values of ρF
and ρE coincide are is equal to 1 − k. We also conclude from this result that in case

of identical minimum acceptable throughput when ρ ≤ 1− k the equilibrium is efficient

since it is unique.

3.5 Heavy-traffic Approximation

In the previous section, we analyzed the equilibrium of the game (OPT-M). Given the

complexity of the queueing model we consider, we are not able to solve this problem in

closed-form for the general case. Hence, in this section, we develop an approximation

based on the game (OPT-HT) which is valid in heavy-traffic. In Section 3.5.1, we

study the existence of a solution of this game and then we analyze the efficiency of the

obtained equilibrium in Section 3.5.2. Finally, we explain how the solution of the game

(OPT-HT) can be used to give an approximation of the game (OPT-M).

3.5.1 Existence of Heavy-Traffic Equilibrium

In this section we focus on the existence of the heavy-traffic-equilibrium. We first

define an equilibrium for the game (OPT-HT). A vector gNE is a Nash equilibrium for

(OPT-HT) if

gNE
i = argmin

{
gi ≥ ǫ : T i(gi,g

NE
−i ; 1) ≤ c̃i

}
,

for all i ∈ C, where gNE
−i =

(
gNE
1 , . . . , gNE

i−1 , g
NE
i+1 , . . . , g

NE
R

)
and T i(g; 1) is the mean

response time of class-i jobs in heavy-traffic which is given by (2.8).

We now define achievability and feasibility in heavy-traffic. A vector of performance

t is said to be achievable in heavy-traffic if there exists a vector of weights g > 0 for

which T i(g; 1) = ti, for all i ∈ C. On the other hand, we say that the game (OPT-M)

is feasible if there exists a vector g such that T i(g; 1) ≤ c̃i, for all i ∈ C.
We concentrate on the expression given in (2.8) and we note that the mean response

time in heavy-traffic of class-i jobs is decreasing with gi and increasing with gj , for all

j 6= i. We also remark that Corollary R.2.1 follows since the mean response time of

the DPS queue satisfies the latter property, that is T i(g; ρ) is decreasing with gi and

increasing with gj , for all j 6= i. Hence, we can use the same reasoning as the one given

in this corollary to state the following the result:

Corollary 3.5.1. If the game (OPT-HT) is feasible, then

• there exists a Nash equilibrium for (OPT-HT) and
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• the dynamics of best-response converge to a Nash Equilibrium if the starting point

is feasible.

Hence, from this properties, we can conclude that, for the heavy-traffic case as well,

the feasibility of the game characterizes the existence of the equilibrium.

Prior to present our results on the feasibility of the game (OPT-HT), let us charac-

terize the achievability in heavy-traffic. We denote by T HT the set of all the performance

vectors that are achievable in heavy-traffic.

The following proposition characterizes the achievability of a vector of mean response

times in heavy-traffic:

Proposition 3.5.1. A vector of performances t ∈ T HT if and only if

R∑

k=1

λk
E(B2

k)

E(Bk)
tk =

R∑

j=1

λjE
(
B2

j

)
. (3.10)

Proof. See Appendix 3.A.5.

We now give the sufficient and necessary condition for the game (OPT-HT) to be

feasible.

Proposition 3.5.2. The game (OPT-HT) is feasible if and only if

∑

i

λiE
(
B2

i

)
(

c̃i
E(Bi)

− 1

)

≥ 0.

Proof. See Appendix 3.A.6.

It is important to note that a sufficient condition for the game to be feasible is that

all classes be fair in heavy-traffic. Note that T i(g
PS ; 1) = E(Bi), and thus

T i(g
PS ; 1) ≤ c̃i, ∀i ⇐⇒ E(Bi) ≤ c̃i, ∀i.

Using this property, if all the users are fair, then it follows that the left part of the

inequality of Proposition 3.5.2 is positive, which means that the problem is feasible.

It is also important to see that the feasibility and achievability results given in this

section are valid for general service times and arbitrary number of classes.
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3.5.2 Efficiency of Heavy-Traffic Equilibrium

In this section, we assume that the game (OPT-HT) is feasible and we study the effi-

ciency of the equilibrium of this game. We recall that it is assumed that the classes are

ordered in decreasing order of E(Bi)
c̃i

.

We note that if c is achievable in heavy-traffic, i.e., T i(g; 1) = c̃i for all i ∈ C, the
vector g is an equilibrium. Furthermore, we observe that the weight vector θ g satisfies

T i(θ g; 1) = c̃i for all i ∈ C and is thus an equilibrium for any value of θ. Hence, we

have that in the case where c ∈ T HT the are infinite equilibria.

The following theorem provides a complete characterisation of the unique Nash

equilibrium when c /∈ T HT .

Theorem 3.5.1. If the game is feasible and c /∈ T HT , the unique Nash equilibrium is

gNE
i = ǫ

t̃m/E(Bm)

c̃i/E(Bi)
, for all i < m,

gNE
i = ǫ, for all i ≥ m,

where m ∈ C is the minimum value such that there exists a value t̃m ≤ c̃m verifying

t̃m
E(Bm)

=

∑R
k=1 λkE

(
B2

k

)
−∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m λkE
(
B2

k

) . (3.11)

Proof. See Appendix 3.A.7.

We now focus on the value of m. In the equilibrium, the following condition is

satisfied:

• T i(g; 1) = c̃i, for all i < m.

• gNE
i = ǫ, for all i ≥ m.

In the particular case where all classes are fair, i.e., E(Bi) ≤ c̃i for all i ∈ C, we
notice that m = 1 and thus the equilibrium is gNE = (ǫ, . . . , ǫ). Besides, when m = R,

there is only one class paying the minimum pice and the rest of the mean response time

of the rest of the classes meet their deadlines.

The following corollary shows that the price paid by classes at the Nash equilibrium

decreases as the ratio E(Bk)/c̃k decreases.

Corollary 3.5.2. If the game is feasible and c /∈ T HT , let gNE = (gNE
1 , . . . , gNE

R ) be

the vector of weights at equilibrium. We have

gNE
1 ≥ gNE

2 ≥ · · · ≥ gNE
R−1 ≥ gNE

R = ǫ
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Proof. It follows from Theorem 3.5.1 and our assumption on the ordering of the classes.

It is interesting to observe that the ordering of classes at equilibrium do not depend

on the arrival or second moment of the distributions. Instead, the key parameter is

the ratio E(Bk)/c̃k, which can be interpreted as the throughput of a class k. Thus,

classes will deviate from the minimum weight in decreasing order with respect to the

throughput they expect to obtain from the system.

We can also define the social optimum of the system in heavy-traffic:

min
(g1,...,gR)

R∑

i=1

ρigi (SOC-HT)

subject to Ti(g; 1) ≤ c̃i, for all i = 1, . . . , R,

and gi ≥ ǫ, for all i = 1, . . . , R.

The efficiency of the equilibrium is measured with the notion of Price of Anarchy

which is defined as the ratio between the maximum payment of the users in the equilibria

and the payment of the users in the social optimum.

We now stablish the value of the efficiency of the game (OPT-HT).

Corollary 3.5.3. For the game (OPT-HT), we have that

• c /∈ T HT we have that PoA = ∞,

• otherwise, we have that the equilibrium is efficient since PoA = 1.

Proof. We first observe that, using the same reasoning as in the previous section, that

a social optimum is a Nash equilibrium in heavy-traffic.

We firs analyze the case when c ∈ T HT . In this instance, we know that there is

an infinite number of equilibria. Thus, we can conclude that the value of the PoA is

infinity.

On the other hand, when c /∈ T HT , we have shown in Theorem 3.5.1 that the

equilibrium is unique. Hence, the value of the PoA in the case is one.

3.5.3 Approximation of the Original Game

We explain how the results of the game in heavy-traffic can be used to obtain insights

into the solution of games (OPT-P) and (OPT-M).
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As explained in Section 2.1, provided that ρ is sufficiently large for the approximation

T i(g; ρ) =
T i(g;1)
1−ρ to be valid, the results established for game (OPT-HT) can be applied

to approximate the solution of (OPT-P) by setting

c̃i = −(1− ρ)di/ logαi.

Furthermore, we can also approximate the solution of (OPT-M) by setting

c̃i = (1− ρ)ci.

We will focus on (OPT-M). For this case we analyze this approximation to obtain

the (approximated) equilibrium with an arbitrary number of classes and general service

time distributions.

Existence of the Equilibrium

We now focus on the existence of the approximated equilibrium. Hence, we study the

feasibility of the approximation. Assuming exponential service times, the characteri-

zation of the feasibility of (OPT-M) is given in Theorem 3.4.1. It consists on a set of

inequalities that the vector of deadlines c must satisfy.

For general service times, we can characterize the (approximate) feasibility. From

Proposition 3.5.2 and using that c̃i = (1 − ρ)ci, it follows directly that the necessary

and sufficient condition for the (approximate) feasibility of (OPT-M) is

∑

i

λiE
(
B2

i

)
(

ci
E(Bi)/(1− ρ)

− 1

)

≥ 0. (3.12)

We observe that if all users are fair, then the game is feasible.

Using (3.12), we can approximate the value of ρF , as defined in Section (OPT-M),

for general service times by

ρF =

∑R
i=1 λiE

(
B2

i

) (
ci

E(Bi)
− 1
)

∑R
i=1 λi

E(B2
i )

E(Bi)
ci

.

Hence, if the total load is higher than this value, the (approximated) game is not

feasible.

Characterization and Efficiency

We aim to extend the result of Theorem 3.5.1 to the case ρ < 1. Hence, we use that

c̃i = ci(1− ρ) and t̃i = ti(1− ρ) abd we obtain that the Nash-Equilibrium of (OPT-M)



3.6 NUMERICAL EXPERIMENTS 41

can be approximated by

gNE
i = ǫ

tm/E(Bm)

ci/E(Bi)
, for all i < m,

and

gNE
i = ǫ, for all i ≥ m,

where m = 1, . . . , R is the minimum value such that there exists a value tm ≤ cm
verifying

tm
E(Bm)

=

∑R
k=1

λkE(B2
k)

(1−ρ) −∑m−1
k=1 λk

E(B2
k)

E(Bk)
ck

∑R
k=m λkE

(
B2

k

) . (3.13)

Note that if class 1 is fair, then all users are fair. In this case, the right-hand side

of (3.13) is upper-bounded by (1− ρ)−1, implying that

c1 ≥
E(B1)

1− ρ
≥ t1,

so that m = 1. Thus, if class 1 is fair, the approximate equilibrium corresponds to the

PS solution gNE
i = ǫ for all i, which is clearly the exact equilibrium.

Let us compare the above approximate characterization of the Nash equilibrium

with the exact result given in Proposition 3.4.2 in the case of two users and exponential

service time distributions. We observe that, in both cases, class 2 pays the minimum

price. Besides, if class 1 is fair, then the corresponding equilibrium in both cases coincide

and it is equal to the weights in the PS queue. We can state thus, that the approximation

is exact when class 1 is fair. If class 1 is not fair, the equilibrium in both cases have the

same form, i.e., gNE = (gNE
1 , ǫ), with gNE

1 > ǫ. In Section 3.6 we analyze the accuracy

of this approximation.

Finally, we want to measure the efficiency of the approximated equilibrium. Hence,

we use the notions of Price of Stability and Price Anarchy, as defined in (3.4) and (3.5).

Then, we observe that the approximated equilibrium is unique and this means that the

PoA is one. Thus, we can claim that the approximated game is also efficient.

3.6 Numerical Experiments

In this section, we numerically study the most important properties of the results of

this work. We first present several numerical experiments to compare the equilibrium

of the game (OPT-M) (which we call the original problem) with that of the heavy-

traffic approximation (OPT-HT). We then show that the dynamics of the best-response

converge to the Nash Equilibrium of (OPT-M) from any starting point.
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3.6.1 Validation of the Approximation

We analyze numerically the accuracy of the approximated equilibrium. Our main obser-

vation from the experiments that we conducted is that while in certain cases the error

in weights can be substantial, the proposed heavy-traffic approximation is good at pre-

dicting the set of classes that pay a higher price than minimum price at the equilibrium,

and the mean response times of the classes paying the minimum price.

The accuracy of the approximation is measured with the percentage relative error.

The expression of the percentage relative error for the weight of class i is given by

∣
∣
∣
∣

gSY S
i − gHT

i

gSY S
i

∣
∣
∣
∣
× 100,

where gSY S
i (resp., gHT

i ) is its equilibrium weight for the original problem (resp. HT

approximation).

Without loss of generality, the minimum weight ǫ is set to 1 in all the following

experiments.

Exponential service time distribution

First, we present the results for exponentially distributed service times. In the first set

of experiments, there are two players with deadlines c1 = 5 and c2 = 6, and the mean

service times µ1 = 2 and µ2 = 3. Note that c1µ1 = 10 < c2µ2 = 18. We now vary

the total system load starting from 0.8 until the system becomes unfeasible while main-

taining ρ1 = 0.3ρ and ρ2 = 0.7ρ. For each value of load, the equilibrium is computed

using the best-response algorithm. In order to compute the best-response of a class for

the original problem, the mean response time is computed from the system of equations

presented in [40]. In the top subfigure of Figure 3.1, we plot the equilibrium weights for

both the original problem and the HT approximation as a function of the total system

load. The percentage relative error between the two is shown in the bottom subfigure of

the same figure. Both problems become unfeasible for ρ > 0.93, so the data is restricted

to ρ ≤ 0.93. When the load of the system is between 0.9 and 0.93 we observe in Fig-

ure 3.1 (above) that the equilibrium of the heavy-traffic result approximates very well

the equilibrium of the original problem. In particular, the heavy-traffic approximation

follows the same increasing trend of the equilibrium weight of class 1 as that of the

original problem. The error of class 1 users is small, while there is no error for the users

of class 2. We see in Figure 3.1 (below) that the maximum percentage relative error is

9%.

In the second set of experiments, we present a scenario where the approximation

becomes accurate when ρ is close to 1. We scale the deadlines by (1− ρ)−1, that is, the

deadline of user i, ci =
c̃i

(1−ρ) for some fixed c̃i. This reflects that class i is aware that the

performance worsens as ρ increases, and is willing to adjust its deadline correspondingly.
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ror (below) as a function of the to-
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Figure 3.2: Comparision of equilibrium
weights (above) and the corresponding
percentage relative error (below) as a
function of the total load, and the dead-
lines of the two classes are scaled by (1−
ρ)−1. R = 2 and exponential service time
distribution.

When the deadlines are scaled with (1−ρ)−1, the constraint on the mean response time

of player i for the original problem becomes T i(g; ρ) ≤ c̃i
1−ρ , and that for the heavy-

traffic approximation becomes T i(g; 1) ≤ c̃i. Note that the latter constraint does not

change with ρ. We set the parameters to : µ1 = 2 and µ2 = 3, ρ1 = 0.3ρ, and ρ2 = 0.7ρ,

with the scaled deadlines being c̃1 = 0.3 and c̃2 = 0.7. In Figure 3.2, we present the

accuracy of the heavy-traffic approximation as ρ → 1. We observe that the error in the

weight of class 1 reduces as the load tends to 1 which means that in heavy-traffic.

In the next set of experiments, we look at a four-player game with exponential service

times. In Figure 3.3 the users have similar value of throughput, i.e., similar cµ, and in

Figure 3.4 they are more heterogeneous. The parameters of the users of each case are

listed below each figure. In both figures, the equilibrium weights are plotted in the top

subfigure, the corresponding error is plotted in the middle subfigure, and in the bottom

subfigure we plot the error in the mean response times of the classes. The trend in the

four-player plots is similar to that of the two-player example in which the deadlines are

not scaled, i.e., the payment of all the classes is ǫ if ρ ≤ ρE , at least one class pays more

than ǫ if ρE ≤ ρ ≤ ρF and if ρ ≥ ρF the problem is not feasible, where ρE and ρF are

as defined in Section 3.4.3. We observe that the error in the weights is acceptable when

the users are homogeneous (see middle subfigure of Figure 3.3) and the error in the

weights can increase when the disparity of the users increases (see middle subfigure of

Figure 3.4). A similar observation on the negative impact of heterogeneity on the error

was also made in [93]. However, we conclude that, in both instances, the approximation

captures correctly the set of users that pay more than ǫ and the prediction in the mean

response times is acceptable.
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Figure 3.4: Comparison of equilibrium
weights (above), the percentage relative
error of the weights (middle) and the per-
centage relative error of the time (bel-
low) as a function of the total system
load. R = 4 and exponential service
time distribution. c = [5/3, 5/4, 10, 100],
µ = [1, 2, 8, 12].

Hyper-exponential service requirements

Finally, in this section, we compare the approximation for a two-player game with

hyper-exponentially distributed service times. While there is no explicit expression for

mean response time in DPS with service time distributions other than the exponential

distribution, for the hyper-exponential distribution, a simple trick can be used to com-

pute the mean response times using those of the exponential distribution. For example,

consider a two-class DPS queue with hyper-exponential distribution of two phases each.

The service rates of the phases are (µ1, µ2) for class 1 and (µ3, µ4) for class 2, and the

arrival rates to these phases are (λ1, λ2) for class 1 and (λ3, λ4) for class 2. In order

to compute the mean response time in this queue when the weights are g = (g1, g2),

one first computes the mean response time in a four-class DPS queue with exponential

distribution and weights g = (g1, g1, g2, g2). The arrival rate of class i in this queue is

λi, and the rates of the exponential distribution of class i is taken to be µi. The mean

respone time of class i in the DPS queue with hyper-exponential distribution is then

T
HEXP
1 (g; ρ) =

λ1

λ1 + λ2
T 1(g; ρ) +

λ2

λ1 + λ2
T 2(g; ρ),
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Figure 3.5: Comparison of equilibrium weights (above) and the corresponding percent-
age relative error (below) as a function of the total system load. R = 2 and hyper-
exponential service time requirements.

and

T
HEXP
2 (g; ρ) =

λ3

λ3 + λ4
T 3(g; ρ) +

λ4

λ3 + λ4
T 4(g; ρ).

Using the above trick, the equilibrium weights were computed for the two-player

DPS game with parameters: µ1 = 1, µ2 = 3, µ3 = 5, µ4 = 7, and deadlines c1 = 5 and

c2 = 7. The fraction of the load of class 1 was (ρ1, ρ2) = (ρ6 ,
ρ
3), and for class 2 it was

(ρ3, ρ4) = (ρ4 ,
ρ
4). In Figure 3.5 we depict variation of the weights and the relative error

when the total load of the system changes. Finally, we observe that the error on the

equilibrium is similar to that of the exponentially distributed service times.

3.6.2 Convergence to the Nash Equilibrium

In this section, we analyze the convergence to the Nash equilibrium of the game (OPT-M).

In particular, we focus on the dynamics of the users under the best-response algorithm.

We consider exponential service times and three classes of users with the following pa-

rameters: the load of each class is (ρ1, ρ2, ρ3) = (0.1, 0.5, 0.2), the mean job sizes are

given by (µ1, µ2, µ3) = (1, 2, 3) and the deadlines are (c1, c2, c3) = (2, 2.5, 100). As

before, we fix the value of ǫ to 1. We are interested in observing the dynamics of

the best-response for different not feasible starting points. In the left column of Fig-

ure 3.6 the best-response starts from the point g = (1, 1, 1), in the middle column from

g = (3, 4, 5) and in the right column from g = (1, 15, 15). In the top subfigure of each

column we depict the evolution of the weights over time and in the bottom subfigure the

evolution of the mean response times over time. The x-axis of all the figures is in the

logarithmic scale for a more clear illustration of the dynamics of the best-response al-

gorithm. We observe that in all the instances the best-response algorithm convergences

in at most 200 iterations to the point (13.4, 2.5, 1) which is the Nash equilibrium. We

leave the proof of the convergence for future work.
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3.7 Conclusions

We presented a priced model that studies the strategic behaviour of users sharing the

capacity of a processor that operates with relative priorities. Each user chooses a price

which corresponds to a priority level and receives a share of the capacity that increases

with its payment. The objective of a user is to choose its priority level so as to minimize

its own payment, while guaranteeing that its jobs are served before its deadline. We

showed that the obtained equilibrium is efficient for two players and general service

times. Besides, we fully characterized the solution of this game when the number of

players is two and the service time distribution is exponential. We also defined a game

in the heavy-traffic regime which we solved for the general instance and we use it as an

approximation of the original problem. We proved that the equilibrium of the heavy-

traffic game and the approximation we provide are efficient.

We performed several numerical experiments to study the accuracy of the approxi-

mated equilibrium. On the one hand, we observed the approximation is accurate when

the minimum acceptable throughput of the users is similar. On the other hand, if

the heterogeneity of the throughput expectation of the users increases, we concluded

that the accuracy of the approximation can diminish. However, we derived that, in

all the instances, the heavy-traffic approximation captures the correct structure of the

equilibrium and gives us a negligible error in the mean response time prediction.
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3.A Appendix of Chapter 3

3.A.1 Proof of Theorem 3.4.1

As in Definition 3.3.1, we let T be the set of achievable vectors. Define the set

U =

{

c ∈ R
K
+ :

∑

i∈r
ρici ≥ Wr, ∀r ∈ R

}

.

Before giving a formal proof of Theorem 3.4.1, we briefly explain the main arguments

behind the proof. It is easy to see from (3.7)-(3.8) and Definition 3.3.2 that if c is a

feasible vector, then c ∈ U . However, the converse is less clear. In order to show that

each element c of U is a feasible vector, the idea is to construct from c a vector t ∈ U such

that t � c and for which WC ≤ ∑i∈C ρiti holds as an equality (whereas the inequality

can be strict for c). This vector t is obtained as the limit of a strictly decreasing

sequence
{
c(n)

}

n≥0
which, starting from c(0) = c, converges in a finite number of

steps. The key argument to generate this sequence is that, unless c(n) ∈ T , there

always exists at least one component of c(n) that appears only in inequalities. By

decreasing this component, we can obtain a vector c(n+1) ∈ U such that c(n+1) ≺ c(n)

and 0 ≤∑i∈C ρic
(n+1)
i −WC <

∑

i∈C ρic
(n)
i −WC , which implies the convergence to an

achievable vector. We shall first prove that if c is not an achievable vector, then there

is at least one of its components which is involved only in inequalities. Our first step in

this direction is stated in Lemma 3.A.1.

Lemma 3.A.1. If r ⊆ s then Wr ≤ Ws.

Proof. From (3.6),

Ws =
1

1− ρs

∑

i∈s

ρi
µi

≥ 1

1− ρs

∑

i∈r

ρi
µi

≥ 1− ρr

1− ρs

Wr ≥ Wr.

For c ∈ U , let us define the sets:

• S= =
{
r :
∑

i∈r ρici = Wr

}
and

• S> =
{
r :
∑

i∈r ρici > Wr

}
.

We have omitted the dependence of the sets on c. The second result we need is the

following.

Lemma 3.A.2. If r1, r2 ∈ S=, then r1 ∪ r2 ∈ S=.
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Proof. Let s = r1∪r2 and v = r1∩r2. In order to prove the desired result, we shall show

that if r1, r2 ∈ S= then Ws ≥ ∑

i∈s ρici. Since c ∈ U , we know that Ws ≤ ∑

i∈s ρici.
Therefore, the only possible outcome is Ws =

∑

i∈s ρici. From (3.6),

Ws =
1

1− ρs

∑

i∈s

ρi
µi

=
1

1− ρs

(
∑

i∈r1

ρi
µi

+
∑

i∈r2

ρi
µi

−
∑

i∈v

ρi
µi

)

=
1

1− ρs

((
1− ρr1

)
Wr1 +

(
1− ρr2

)
Wr2 − (1− ρv)Wv

)

= Wr1 +Wr2 +
1

1− ρs

((
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 − (1− ρv)Wv

)

=
∑

i∈r1
ρici +

∑

i∈r2
ρici +

1

1− ρs

((
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 − (1− ρv)Wv

)

=
∑

i∈s
ρici +

∑

i∈v
ρici +

1

1− ρs

((
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 − (1− ρv)Wv

)

≥
∑

i∈s
ρici +Wv +

1

1− ρs

((
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 − (1− ρv)Wv

)

≥
∑

i∈s
ρici +

1

1− ρs

((
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 − (ρs − ρv)Wv

)
.

In order to complete the proof it is sufficient to show that the second term on the RHS

is non-negative, which will then imply that Ws ≥ ∑

i∈s ρici. Since v = r1 ∩ r2, from

Lemma 3.A.1, it follows that Wr1 ≥ Wv and Wr2 ≥ Wv. Thus,

(
ρs − ρr1

)
Wr1 +

(
ρs − ρr2

)
Wr2 ≥

(
ρs − ρr1 + ρs − ρr2

)
Wv = (ρs − ρv)Wv,

where the last inequality follows from the fact that ρr1 + ρr2 = ρs + ρv.

Corollary 3.A.1. The set S= is closed under finite unions.

We are now in position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. If c is feasible then it is easy to see that c ∈ U . We now prove

that if c ∈ U , then c is feasible. Towards this end, for every c, we shall construct a finite

sequence of vectors c = c(0) ≻ c(1) ≻ . . . ≻ c(n), with n ≤ R, c(i) ∈ U , ∀i and c(n) ∈ T .

Also, n will depend upon c. The vector c(n) is then an achievable vector which makes

c feasible.

Consider the vector c(n) obtained at step n. Define the corresponding sets S=
n and

S>
n which contain the indices of the equalities and the strict inequalities that define c(n).

Also, define En =
⋃

r∈S=
n
r,
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the set of classes that appear in at least one equality. We shall show that the sequence

of En associated to the componentwise decreasing vectors will eventually contain C, and
this will happen in a finite number of steps.

If En = C, it follows from Corollary 3.A.1 that C ∈ S=
n , and that c(n) is achievable.

Otherwise, take some i ∈ C \ En, that is, a class which appears only in inequalities.

Define

c
(n+1)
i = max

s : i∈s

Ws −
∑

j∈s,j 6=i ρjc
(n)
j

ρi

c
(n+1)
j = c

(n)
j , ∀j 6= i.

Note that c
(n+1)
i ≥ W{i}/ρi > 0, and that c

(n)
i > c

(n+1)
i . Therefore c(n) ≻ c(n+1).

With this definition class i will appear in at least one equality, and this class will

be added to En. Therefore, En ⊂ En+1, and S=
n ⊂ S=

n+1. Since there are R classes, after

at most R steps all the classes will appear in at least one equality, that is, there is an

n ≤ R such that En = C. From Corollary 3.A.1, it follows that C ∈ S=
n , and c(n) is an

achievable vector such that c(n) � c.

3.A.2 Proof of Proposition 3.4.1

If c is achievable, there exists a weight vector g such that T i(g; ρ) = ci for all i ∈ C. This
weight vector is an equilibrium since no class can decrease its weight and still satisfy

its constraint. To conclude the proof, it is enough to observe that the weight vector

θ g is such that T i(θ g; ρ) = ci for all i ∈ C and is thus an equilibrium for any value of

θ ≥ min
(

ǫ
g1
, . . . , ǫ

gR

)

.

We now focus on the case where If c is not achievable. Assume that there exist two

equilibria g and h 6= g. If h1 = g1, then we can assume without loss of generality that

h2 < g2. This implies that g2 > ǫ, and thus, according to (3.2), that T 2(g; ρ) = c2.

Since T 2(g; ρ) is strictly decreasing in g2, it yields T 2((h1, h2); ρ) = T 2((g1, h2); ρ) > c2.

Hence, h is not a feasible point for class 2 and thus cannot be an equilibrium. This is a

contradiction, and therefore we cannot have two different equilibria g and h such that

h1 = g1.

Assume therefore that h1 < g1. This implies that g1 > ǫ, and thus, from (3.2),

that T 1(g; ρ) = c1. Since T 1(g; ρ) is strictly decreasing in g1, h1 < g1 implies that

T 1(g; ρ) = c1 < T 1((h1, g2); ρ). However, for h to be an equilibrium, we need to have

T 1((h1, h2); ρ) ≤ c1 < T 1((h1, g2); ρ). Since T 1(g; ρ) is increasing in g2, it yields h2 < g2,

which in turn implies that g2 > ǫ. The equilibrium g is therefore such that g1 > ǫ and

g2 > ǫ. However, since we have assumed that c is not achievable, we know that there

exists i ∈ {1, 2} such that T i(g
NE ; ρ) < ci. According to (3.2), this implies that gi = ǫ.



50 SINGLE SERVER WITH RELATIVE PRIORITIES

This is a contradiction. We thus conclude that we cannot have two different equilibria.

3.A.3 Proof of Proposition 3.4.2

According to the order of the classes, if class 1 is fair, then c2 µ2 ≥ c1 µ1 ≥ (1 − ρ)−1.

Therefore the Processor Sharing weights satisfy both time constraints. The point gNE =

(ǫ, ǫ) is clearly the unique Nash equilibrium since both classes have the minimum weight

possible and the time constraints are satisfied.

If class 1 is not fair, i.e., c1 µ1 < (1− ρ)−1, then the feasibility of the game implies

that (1−ρ)−1 ≤ c2 µ2. In this case, the equilibrium is achieved in g = (g1, ǫ), where g1 is

such that T 1(g; ρ) = c1 and T 2(g; ρ) ≤ c2. Indeed g1 is the minimum weight satisfying

class-1 time constraint and ǫ is the minimum weight possible for class 2 whose time

constraint is satisfied.

From (2.3), it results that

T 1(g; ρ) = c1 ⇐⇒ g2
g1

=
−µ1ρ2 − µ1(1− ρ1) [µ1c1(1− ρ)− 1]

−µ1ρ2 + µ2(1− ρ2) [µ1c1(1− ρ)− 1]
,

which yields the desired result since g2 = ǫ.

3.A.4 Proof of Proposition 3.4.3

We first note from (3.7) and (3.9) that for any weight vector g it holds that

ρ1T 1(g; ρ) + ρ2T 2(g; ρ) ≤ ρ1c1 + ρ2c2. (3.14)

Let g0 = (g01, g
0
2) be the starting point of the Best-Response algorithm. If this

point satisfies that T i(g
0; ρ) ≤ ci for i = 1, 2, then, as we said in Section 3.3.2, best-

response convergences to the equilibrium. Otherwise, (3.14) implies that we have either

T 1(g
0; ρ) > c1 or T 2(g

0; ρ) > c2, but not both.

Assume that T 1(g
0; ρ) > c1. Then, the best response of class 1 is to increase

its weight to a value g11 such that at point g1 = (g11, g
0
2) its constraint T 1(g

1; ρ) ≤
c1 is satisfied as an equality. At this point, we have from (3.14) that ρ1T 1(g

1; ρ) +

ρ2T 2(g
1; ρ) = ρ1c1 + ρ2T 2(g

1; ρ) ≤ ρ1c1 + ρ2c2 and thus that T 2(g
1; ρ) ≤ c2. We

conclude that the weight vector g1 is feasible. Hence, using Proposition R.2.1, we can

claim that the best-response algorithm converges to the equilibrium.

3.A.5 Proof of Proposition 3.5.1

It can be easily proven that if a vector of performance t is achievable in heavy-traffic then

it satisfies (3.10). For the other implication, we show that a vector t ∈ R
R
+ satisfying

(3.10) is achievable in heavy-traffic, i.e., there exists a vector of weights g such that
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T i(g; 1) = ti for all i ∈ C. Let g be a weight vector such that gi
gj

=
tj/E(Bj)
ti/E(Bi)

for all i 6= j.

With (2.8), we have

T i(g; 1) = E(Bi)

∑

k λkE
(
B2

k

)

∑

k λkE
(
B2

k

) gi
gk

= E(Bi)

∑

k λkE
(
B2

k

)

∑

k λkE
(
B2

k

) tk/E(Bk)
ti/E(Bi)

= ti

∑

k λkE
(
B2

k

)

∑

k λk
E(B2

k)
E(Bk)

tk

= ti,

for all i ∈ C, where the last inequality follows from (3.10). We thus conclude that the

vector t is achievable.

3.A.6 Proof of Proposition 3.5.2

If the problem is feasible in heavy-traffic there exists an achievable vector in heavy-

traffic t = (t1, . . . , tR) such that ti ≤ c̃i, for all i. Then, since ti ≤ c̃i for all i, it follows

from Proposition 3.5.1 that
∑

i λi
E(B2

i )
E(Bi)

c̃i ≥
∑

k λkE
(
B2

k

)
.

We now focus on the other implication of the proposition. Given a vector of deadlines

c̃ = (c̃1, . . . , c̃R) such that
∑

k λk
E(B2

k)
E(Bk)

c̃k ≥ ∑

k λkE
(
B2

k

)
, we show that there exists a

vector of performances t achievable in heavy-traffic. Let t = (t1, . . . , tR) be such that

ti = c̃i

∑

k λkE
(
B2

k

)

∑

k λk
E(B2

k)
E(Bk)

c̃k

,

for all i. We observe that ti is positive for all i and from
∑

k λk
E(B2

k)
E(Bk)

c̃k ≥∑k λkE
(
B2

k

)

we derive that ti ≤ c̃i for all i. Moreover

∑

k

λk
E
(
B2

k

)

E(Bk)
tk =

∑

k

λk
E
(
B2

k

)

E(Bk)
c̃i

∑

i λiE
(
B2

i

)

∑

i λi
E(B2

i )
E(Bi)

c̃i

=
∑

i

λiE
(
B2

i

)
,

and we thus conclude with Proposition 3.5.1 that the vector t is achievable.

3.A.7 Proof of Theorem 3.5.1

Let us first introduce some results that will be used to prove Theorem 3.5.1. Let gm be

a vector of the form

gm = (gm1 , gm2 , . . . , gmm−1, ǫ, . . . , ǫ), (3.15)

where gmi > ǫ, if i < m. We now show the following property of the vector gm.

Lemma 3.A.3. If Tm(gm; 1) ≤ c̃m, then, for all j > m, T j(g
m; 1) ≤ c̃j.

Proof. From (2.8) and Tm(gm; 1) ≤ c̃m, we obtain for all j > m,
∑

k λkE(B2
k)

∑

k λkE(B2
k)/gk

≤
c̃mgmm/E(Bm) = c̃m ǫ/E(Bm) ≤ c̃j ǫ/E(Bj), where the last inequality holds since the
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ordering of the classes we assume. We now notice that the result follows directly from

(2.8) since
∑

k λkE(B2
k)

∑

k λkE(B2
k)/gk

≤ c̃j ǫ/E(Bj) ⇐⇒ T j(g; 1) ≤ c̃j .

We are now in position to prove the result of Theorem 3.5.1.

Proof of Theorem 3.5.1. Letm be the minimum value such that Tm(gm; 1) ≤ c̃m, where

gm is as defined in (3.15). According to Lemma 3.A.3, we have that T k(g
m; 1) ≤ c̃k, for

k ≥ m. On the other hand, we choose gk such that T k(g
m; 1) = c̃k for all k < m. It then

results that gm is the equilibrium since in case any of the first m− 1 coordinates of gm

diminishes its weight its time constraint is not satisfied and the rest of the coordinates

of gm are ǫ.

We now characterize the first m − 1 components of the equilibrium. From (2.8), it

follow that
gmi
gmj

=
T j(g

m;1)/E(Bj)

T i(gm;1)/E(Bi)
for all i 6= j. Since T i(g

m; 1) = c̃i for all i < m, we can

state that for all i < m

gmi
gmm

=
t̃m/E(Bm)

c̃i/E(Bi)
⇐⇒ gmi = ǫ

t̃m/E(Bm)

c̃i/E(Bi)
.

Finally, we prove that Tm(gm; 1) = t̃m ≤ c̃m is equivalent to (3.11). Using (2.8), we

obtain

c̃m ≥ t̃m = E(Bm)

∑R
k=1 λkE

(
B2

k

)

∑R
k=1 λkE

(
B2

k

) gmm
gmk

= E(Bm)

∑R
k=1 λkE

(
B2

k

)

∑m−1
k=1 λkE

(
B2

k

) c̃k/E(Bk)
˜tm/E(Bm)

+
∑R

k=m λkE
(
B2

k

) .

And rearranging both sides of the equation we derive the expression (3.11)

t̃m
E(Bm)

=

∑R
k=1 λkE

(
B2

k

)
−∑m−1

k=1 λk
E(B2

k)
E(Bk)

ck
∑R

k=m λkE
(
B2

k

) .

We now show this equilibrium is unique proving that if the equilibrium is gm, then

gm+i is not the equilibrium, for i = 1, . . . , R−m. We thus consider that there exists a

value m satisfying

c̃m
E(Bm)

≥ tm
E(Bm)

=

∑R
k=1 λkE

(
B2

k

)
−∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m λkE
(
B2

k

) ,
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which is equivalent to

tm
E(Bm)

R∑

k=m

λkE(B
2
k) =

R∑

k=1

λkE
(
B2

k

)
−

m−1∑

k=1

λk
E
(
B2

k

)

E(Bk)
c̃k. (3.16)

We will see that for any i = 1, . . . , R−m, gm+i that satisfies (3.11) is not the equilibrium.

We suppose that there exist a value i = 1, . . . , R−m such that

˜cm+i

E(Bm+i)
≥ tm+i

E(Bm+i)
=

∑R
k=1 λkE

(
B2

k

)
−∑m+i−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m+i λkE
(
B2

k

) , (3.17)

is verified.

It thus follows that

˜cm+i

E(Bm+i)
≥ tm+i

E(Bm+i)
=

∑R
k=1 λkE

(
B2

k

)
−∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k −
∑m+i−1

k=m λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m+i λkE
(
B2

k

) .

Taking into account the equality of (3.16) and that
˜tm

E(Bm) ≤ ˜cm
E(Bm) ≤ c̃k

E(Bk)
for all

k > m, we derive

tm+i

E(Bm+i)
=

tm
E(Bm)

∑R
k=m λkE(B

2
k)−

∑m+i−1
k=m λk

E(B2
k)

E(Bk)
c̃k

∑R
k=m+i λkE

(
B2

k

)

≤
˜cm

E(Bm)

∑R
k=m+i λkE(B

2
k)

∑R
k=m+i λkE

(
B2

k

) =
c̃m

E(Bm)
.

From the relation gk
gj

=
T j(g;ρ)/E(Bj)

Tk(g;ρ)/E(Bk)
and using that Tm(gm+i; ρ) = c̃m and Tm+i(g

m+i; ρ) =

tm+i if g
m+i is an equilibrium, we obtain that

tm+i

E(Bm+i)
≤ c̃m

E(Bm)
⇐⇒ gm+i

m+i ≥ gm+i
m

which is not possible since gm+i
m+i = ǫ and gm+i

m > ǫ if gm+i is an equilibrium.
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4
Non-cooperative Load Balancing

We analyze the performance of non-cooperative decentralized routing in server farms.

In this system, each dispatcher receives a portion of the total traffic and routes it to

the servers so as to minimize the mean response times of its jobs. For this setting, a

non-cooperative game can be formulated. We aim to compare the performance in the

equilibrium of this game with the performance of a system with a unique dispatcher.

This chapter is organized as follows. We introduce the problem in Section 4.1 and

we present the related work in Section 4.2. In Section 4.3 we describe the model. In

Section 4.4 we investigate the worst case traffic conditions. In Section 4.5, we give more

precise results for server farms with two classes of servers. We study the inefficiency of

a server farm with an infinite number of dispatchers in Section 4.6. Finally, the main

conclusions of this work are presented in Section 4.7. Some of the proofs of this model

are given in Appendix 4.A.

4.1 Efficiency of Non-Cooperative Load Balancing

In Chapter 3, we analyzed a resource-sharing game in a single server. In this chapter,

we analyze the resource-sharing in server farms, which are multi-server systems with a

variety of applications, such as cluster computing, web hosting or scientific simulation.

A fundamental problem to optimize the performance of a server farm is how to balance

the load over the servers1.

We first present a a centralized architecture for load-balancing in server farms. We

1We shall use the terms load balancing and routing interchangeably.
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DISPATCHER

Figure 4.1: centralized system for a server farm.

represent in Figure 4.1 the centralized architecture we consider. In this figure, the users

are the blue circles that are on the left and want to send data to the servers, that are

situated on the right. We observe that there is only one dispatcher between the set of

clients and the set of servers. Besides, the dispatcher receives all the data of the clients

and routes the traffic to the servers so as to optimize a certain performance objective,

such as the mean processing time of jobs for instance. The difficulty of this optimization

technique increase with the number of servers and, modern data centers have thousands

of processors. For instance, Akamai Technologies, in March 2012, operated with 105,000

servers [2] and it is estimated that Google has more than 900,000 servers [1]. Further-

more, the size of server-farms is still increasing and thus we can say that centralized

architectures are not implementable in current server farms. Decentralized architectures

have emerged as a solution to this problem.

In Figure 4.2, we present the decentralized architecture. We observe that in this

setting, there is more than one dispatcher between the clients and the servers, and each

dispatcher receives a portion of the traffic.

In the literature, several approaches have been suggested to implement decentralized

routing. Approaches based on distributed optimization techniques have been presented

in [16, 66].

We consider a different approach that is based on autonomous, selfish agents [78].

In these systems, each dispatcher is independent and optimizes the performance of the

traffic it receives. For this system, a non-cooperative game can be formulated and thus

it can be analyzed using game-theoretical techniques. Rational agents choose a strategy

under these circumstances which is called a Nash equilibrium.

We remark that the decentralized approach we have just described is more scalable

that the centralized architecture, since each dispatcher controls a portion of the in-

coming traffic. Furthermore, non-cooperative systems have a wide range of advantages
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DISPATCHER

DISPATCHER

DISPATCHER

Figure 4.2: Decentralized system for a server farm.

with respect to centralized ones. For example, the selfish routing does not need any

coordination among the dispatchers. This means that this setting is simple to imple-

ment and that it is robust to failures. However, it is shown in the literature that the

loss of performance given by the selfish behaviour of the dispatcher can be high. The

inefficiency of selfish routing is measured in the literature with the notion of Price of

Anarchy (PoA).

We analyze the inefficiency of non-cooperative load balancing and we show that

the PoA is a very pessimistic measure to quantify the loss in performance caused by

selfish routing. Besides, we show that the PoA can achieve a large value but this value

is observed only in instances that hardly occur in practice. For example, in [52], the

worst-case architecture has one server whose capacity is much larger (tending to infinity)

compared to that of the other servers. It is doubtful that such asymmetries will occur

in data-centers where processors are more than likely to have similar characteristics.

In a data-center, the speed of the servers cannot be modified in general, whereas

the incoming traffic cannot be controlled by the service provider and changes over time.

Thus, for this kind of applications, it makes more sense to analyze the performance of

selfish routing with respect to the centralized system for a fixed data-center architecture,

i.e., fixed values of the speeds of the servers. Hence, we define the inefficiency of a given

data center architecture as the worst-case, among all possible traffic distributions, of

the ratio between the performance in the Nash equilibrium and the performance of the

centralized architecture. We observe that the values of the inefficiency are between 1

and infinity.

Let us now explain the difference between the PoA and the inefficiency. The in-

efficiency is the ratio between the performances of the decentralized and centralized

settings, in the worst case traffic conditions when the capacities of the servers are fixed,

whereas the PoA is the same ratio, but taken for the worst possible combination of traf-
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fic conditions and server speeds. Hence, by calculating the worst possible inefficiency,

one retrieves the PoA.

We now explain the main contributions of this work. For an arbitrary capacities of

the servers, we analyze the traffic conditions (or load) associated with the inefficiency.

We show that the inefficiency is in general not achieved in heavy-traffic or close to

saturation conditions. Even more, we show that the performance of the decentralized

and of the centralized routing coincides in the heavy-traffic regime, i.e., when the load

of the system approaches to one. We consider that this result is interesting since, in

queueing theory, we obtain a bad performance in heavy traffic. For example, in a

M/M/1 queue, the mean response time tends to infinity when the load goes to one. We

also provide examples for which the inefficiency is obtained for fairly low values of the

utilization rate.

We then observe that for each problem instance with arbitrary server capacities we

can construct a scenario with two server speeds whose inefficiency is worse. We thus

conjecture that the case of two classes of servers is the worst, and that our conclusions

on the efficiency of non-cooperative load balancing extend beyond this case.

In the case of two server classes, we show that the inefficiency is obtained when

selfish routing uses only one class of servers and is marginally using the second class of

servers. This scenario was used in [52] and [14] to obtain a lower bound on the PoA

for their models. Further, we obtain a closed-form formula for the inefficiency which in

particular depends only on the ratio of the number of servers in each class and on the

ratio of the capacities of each class (but not on the total nor on their capacities). When

the number of servers is large, we also show that the PoA is equal to K
2
√
K−1

, where K

is the number of dispatchers. We then show that the inefficiency is very close to 1 in

most cases of two server classes, and that it approaches the known upper bound (given

by the PoA) in a very specific setting, namely, when there is only one fast server that

is infinitely faster than the slower ones.

We also investigate the case where the number of dispatchers is infinite. For an

arbitrary server capacities, we show that the performance of the decentralized and the

centralized settings are not equal in the heavy-traffic regime, in contrast with the case

of finite number of dispatchers. For the case of two servers classes, we give an expression

of the inefficiency that depends only on the ratio of the number of servers in each class

and on the ratio of the capacities of each class. We show that, for a server farm with

two different speeds, the PoA equals the number of servers, which coincides with the

result presented in [52], and that it is achieved only when there is one fast server that

is infinitely faster than the slower ones. In all the other configurations, we observe that

the inefficiency is very close to one.

Even though most of the results are given for a server farm with two different speeds,

we believe that our work opens a new avenue in the study of the PoA and we hope that

future research will be done not only on the PoA, but also on the inefficiency.
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4.2 Related Work

A fundamental problem in networking is to determine how the traffic must be routed.

It is well known, see [72, 77, 67], that users that act according to their own interests can

lead to non optimal results. This phenomenon given by uncoordinated users has been

widely studied in transportation theory and communication networks, see for example

[69, 81, 38] and it is known in the literature as selfish routing problem or non-cooperative

routing game. In this work, we analyze the efficiency of the equilibrium obtained in an

atomic splittable routing game.

There are many results regarding the optimality of load balancing models in server

farms. If the state (number of customers) of all the servers is available by the routing

agent, the optimality is given by the Join the Shortest Queue policy. The study of the

Join the Shortest Queue is know to be more a difficult task. In fact, only approximations

have been proposed in the literature for the general case, see for example [37, 45]. The

Power of Two model is shown to give an exponential improvement when the number

of servers tends to infinity. The analysis of the Power of Two discipline in a general

setting remains open and we refer to [75] for a survey on this topic. In [47, 27] the

authors propose and analyze the use of the Size Interval task Assignment policy. If the

service requirement of incoming jobs is known, the size interval task assignment has

been proven to be optimal in [36].

We investigate the non-cooperative routing in server farms when the number of cus-

tomers in the servers is unknown by the players, i.e., the load balancing in unobservable

queues. In the last years researchers have extensively studied load balancing models

with unobservable queues. In [12] the authors consider that, for each incoming job,

the previous routing decision is taken into account to perform the load balancing task.

Interesting load balancing models in the non-atomic case are also analyzed in [11, 22, 9].

In [11] the authors analyze the equilibrium in the oligopolistic price competition model

achieved by the interaction between users and provider. The authors in [22] study the

inefficiency of the equilibrium obtained in the non-atomic load balancing games when

the scheduling of the servers are PS and Shortest Remaining Processing Time. Finally,

in [9], the authors consider the Bernoulli splitting policy and PS queues for the non-

atomic load balancing games. The equilibrium for the case of infinite dispatchers we

give in Section 4.6 coincides with the one given in [9], however they only analyze the

PoA and not the inefficiency.

The efficiency of the equilibrium of the load balancing model with non observable

queues has been studied in the presence of non-linear delay functions, see, for example,

[52], [15], [14], [86] and [22]. We now summarize the previous upper-bounds on the

Price of Anarchy load balancing games. In [52] the authors show that the PoA of the

non atomic case is less than the number of servers. On the contrary, the authors in [14]

focus on the atomic case and they prove that the PoA is less than the square root of the

number of dispatchers. According to this result, the value of the PoA is very large when
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the number of servers and the number of dispatchers is high. The fact that the Nash

equilibrium can be very inefficient has paved the way to a lot of research on mechanism

design that aims at coming up with Nash equilibria that are efficient with respect to

the centralized setting [61, 60, 80, 23, 78]. In this work we show that even though the

value of the PoA can be high, the difference between the equilibrium performance and

the centralized performance is small in most instances.

4.3 Problem Formulation

We consider a non-cooperative routing game with K dispatchers and S Processor-

Sharing servers. Denote C = {1, . . . ,K} to be the set of dispatchers and S = {1, . . . , S}
to be the set of servers. Jobs received by dispatcher i are said to be jobs of stream i.

Server j ∈ S has capacity rj . It is assumed that servers are numbered in the order

of decreasing capacity, i.e., if m ≤ n, then rm ≥ rn . Let r = (rj)j∈S denote the vector

of server capacities and let R =
∑

n∈S rn denote the total capacity of the system.

Jobs of stream i ∈ C arrive to the system according to a Poisson process and have

generally distributed service-times. We do not specify the arrival rate and the charac-

teristics of the service-time distribution due to the fact that in an M/G/1− PS queue

the mean number of jobs depends on the arrival process and service-time distribution

only through the traffic intensity, i.e., the product of the arrival rate and the mean

service-time. Let λi be the traffic intensity of stream i. It is assumed that λi ≤ λj for

i ≤ j. Moreover, it will also be assumed that the vector λ of traffic intensities belongs

to the following set:

Λ(λ̄) =

{

λ ∈ IRK :
∑

i∈C
λi = λ

}

,

where λ̄ denotes the total incoming traffic intensity. It is assumed that λ̄ < R, which

is the necessary and sufficient condition to guarantee the stability of the system. We

denote by ρ = λ̄
R

the total traffic of the system.

We will sometimes be interested in what happens when λ̄ → R, a regime which we

will refer to as heavy-traffic (ρ → 1).

Let xi = (xi,j)j∈S denote the routing strategy of dispatcher i, with xi,j being the

amount of traffic it sends towards server j. Dispatcher i seeks to find a routing strategy

that minimizes the mean sojourn times of its jobs, which, by Little’s law, is equivalent

to minimizing the mean number of jobs in the system as seen by this stream. This

optimization problem can be formulated as follows:
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minimize Ti(x) =
∑

j∈S

xi,j
rj − yj

(ROUTE-i)

subject to
∑

j∈S
xi,j = λi, i = 1, . . . ,K, (4.1)

and 0 ≤ xi,j ≤ rj , ∀j ∈ S, (4.2)

where yj =
∑

k∈C xk,j is the traffic offered to server j. Note that the optimization

problem solved by dispatcher i depends on the routing decisions of the other dispatchers

since yj = xi,j +
∑

k 6=i xk,j . We let Xi denote the set of feasible routing strategies for

dispatcher i, i.e., the set of routing strategies satisfying constraints (4.1)-(4.2). A vector

x = (xi)i∈C belonging to the product strategy space X =
⊗

i∈C Xi is called a strategy

profile.

A Nash equilibrium of the routing game is a strategy profile from which no dispatcher

finds it beneficial to deviate unilaterally. Hence, x ∈ X is a Nash Equilibrium Point

(NEP) if xi is an optimal solution of problem (ROUTE-i) for all dispatcher i ∈ C.

Let x be a NEP for the system with K dispatchers. The global performance of the

system can be assessed using the global cost

DK(λ, r) =
∑

i∈C
Ti(x) =

∑

j∈S

yj
rj − yj

,

where the offered traffic yj are those at the NEP. The above cost represents the mean

number of jobs in the system. Note that when there is a single dispatcher, we have a

single dispatcher with λ1 = λ̄. The global cost can therefore be written as D1(λ̄, r) in

this case.

We shall use the ratio between the performance obtained by the Nash equilibrium

and the global optimal solution as a metric in order to assess the inefficiency of a

decentralized scheme with K dispatchers and S servers. We define the inefficiency as

the performance ratio under the worst possible traffic conditions, namely:

inefficiency ISK(r) = sup
λ∈Λ(λ̄),λ̄<R

DK(λ, r)

D1(λ̄, r)
. (4.3)

The rationale for this definition is that in practice the system administrator controls

neither the total incoming traffic nor how it is split between the dispatchers, whereas the

number of servers and their capacities are fixed. Therefore it makes sense to consider

the worst traffic conditions for the inefficiency of selfish routing, provided the system

is stable.

The PoA for this system as defined in [14] can be retrieved by looking at the worst
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inefficiency, i.e.,

PoA(K,S) = sup
r

ISK(r). (4.4)

4.4 Worst Case Traffic Conditions

In this section, we show that for a sufficiently large load, the ratio DK(λ,r)

D1(λ̄,r)
decreases

with λ̄. This result implies that the inefficiency of a data-center is not achieved in the

heavy-traffic regime. Moreover, we also prove that when the system is in heavy-traffic,

i.e., when λ̄ → R, the performance of both settings is the same.

The main difficulty in determining the behaviour of the inefficiency stems from the

fact that for most cases there are no easy-to-compute explicit expressions for the NEP.

A first simplification results from the following theorem which was proved in one of our

previous works [14]. It states that, among all traffic vectors with total traffic intensity

λ̄, the global cost DK(λ, r) achieves its maximum when all dispatchers control the same

fraction of the total traffic. Formally,

Theorem 4.4.1 ([14]).

DK(λ, r) ≤ DK(
λ̄

K
e, r). ∀λ ∈ Λ(λ̄).

where e is the all-ones vector.

Thus, we have identified the traffic vector in the set Λ(λ̄) which has the worst-ratio

of global cost at the NEP to the global optimal cost. It follows from the above result

that

Corollary 4.4.1.

ISK(r) = sup
λ̄<R

DK( λ̄
K e, r)

D1(λ̄, r)
.

Routing games in which players have exactly the same strategy set are known as

symmetric games. These games belong to the class of potential games [65], that is, they

have the property that there exists a function, called the potential such that the NEP

can be obtained as the solution of an optimization problem with the potential as the

objective. This property considerably simplifies the computation of the NEP. Another

important consequence of the above results is that the inefficiency depends only the

total traffic intensity and not on individual traffic flows to each of the dispatchers.

Another consequence of Theorem 4.4.1 is that the inefficiency of decentralized rout-

ing increases with the number of dispatchers, that is,

Lemma 4.4.1.

ISK(r) ≤ ISK+1(r), ∀K ≥ 1.
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Figure 4.3: Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5 as the

load in the system ranges from 0% to 100%.

Proof. We have for all λ̄ < R,

DK(
λ̄

K
e, r) = DK+1(

(
λ̄

K
e, 0

)

, r) ≤ DK+1(
λ̄

K + 1
e, r),

where the last inequality follows from Theorem 4.4.1. It yields

sup
λ̄<R

DK( λ̄
K e, r)

D1(λ̄, r)
≤ sup

λ̄<R

DK+1(
λ̄

K+1 e, r)

D1(λ̄, r)
,

i.e., IK(r) ≤ IK+1(r).

Before going further, let us take a look at the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
as a function of the

load ρ = λ̄/R, as is shown in Figure 4.3 for two and five dispatchers. The data-center

characteristics are the following: 200 servers of speed 6, 100 servers of speed 3, 300

servers of speed 2, and 200 servers of speed 1. It can be observed that as the load

increases the ratio goes through peaks and valleys, and finally it moves towards 1 as the

load approaches 1. In the numerical experiments, we noted that the peaks corresponded

to the total traffic intensity when selfish routing started to use one more class of servers.

Moreover, just after these peaks the number of servers used by selfish routing and the

centralized one was the same. A similar behaviour is observed on different sets of

experiments.

In general, it is not easy to make formal the above observation, that is to say, there

are no simple expressions for the value of loads which corresponds to the peaks and the

valleys. However, in heavy-traffic, it helps to observe that both selfish and centralized

routing will be using the same number of servers. Then, in order to show that heavy-

traffic conditions are not inefficient, it is sufficient to show that the ratio decreases with

load when both settings use the same number of servers.
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Proposition 4.4.1. If the total traffic intensity λ̄ is such that centralized and the de-

centralized settings use the same number of servers (more than one), then the ratio

DK( λ̄
K e, r)/D1(λ̄, r) is decreasing with λ̄.

Proof. See Appendix 4.A.2.

In the above result we exclude the case of one server so as to obtain a stronger

result. If both the settings use just one server, then the ratio remains 1, which is non-

increasing. For a sufficiently high load all the servers will be used by both settings in

order to guarantee the stability of the system. It then follows that in a server farm

with an arbitrary number of servers and with arbitrary server capacities, heavy-traffic

regime is not inefficient. In fact, we can prove a stronger result which states that the

inefficiency of the heavy-traffic regime is close to 1, that is, in heavy-traffic both settings

have similar performances. Formally,

Theorem 4.4.2. For a fixed K < ∞,

lim
λ̄→R

DK( λ̄
K e, r)

D1(λ̄, r)
= 1.

Proof. See Appendix 4.A.3.

It is important that the number of dispatchers be finite for the above result to hold.

As we show in Section 4.6, if the number of dispatchers is infinite, as in the case of

non-atomic games, the above limit may be a value larger than 1.

This result is important because it is widely believed that the maximum inefficiency

of the decentralized routing scheme is obtained in the heavy-traffic regime. Theo-

rem 4.4.2 shows that this belief is false. As can be observed in Figure 4.3, the worst

case traffic conditions can occur at low or moderate utilization rates (in fact, the worst

total traffic intensity can be arbitrary close to 0 if the server capacities are sufficiently

close to each other). In heavy-traffic, even though the cost in both the settings will

grow, the rate of growth is the same which results in a ratio close to 1.

The characterization of the exact traffic intensity which results in ISK(r) proves to be

a difficult task for arbitrary values of the capacities. In the following section we restrict

ourselves to two server classes.

4.5 Inefficiency for Two Classes of Servers

Before considering in detail the two-classes case, let us first observe how the inefficiency

depends on the configuration of servers. Assume that there are 5 dispatchers and 13

servers. Figure 4.4 presents the evolution of the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
according to the total
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r=(6,6,5,5,5,4,4,2,2,2,2,1,1)
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Figure 4.4: Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) when K = 5 and S = 13 as the

load in the system ranges from 0% to 90% for a server farm with different values of the
capacities.

load of the system for several vectors r of server capacities. We observe that the highest

inefficiency is obtained in the case of two classes of servers with extreme capacity values.

From extensive numerical experimentations, we conjecture that, given the number of

servers, for each problem instance with arbitrary server capacities we can construct a

scenario with the same number of servers and two server speeds whose inefficiency is

worse. This is formally stated in Conjecture 4.5.1.

Conjecture 4.5.1. For a data-center of S servers with r1 > rS

ISK(r) ≥ ISK(r∗),

where r = (

m
︷ ︸︸ ︷
r1, . . . , r1,

S-m
︷ ︸︸ ︷
rS , . . . , rS) and r∗ = (

m
︷ ︸︸ ︷
r1, . . . , r1,

S-m
︷ ︸︸ ︷
rm+1, . . . , rS−1, rS), with r1 >

rm+1 ≥ · · · ≥ rS−1 ≥ rS and m ≥ 1.

A direct consequence of the above conjecture is that if for two classes of servers the

inefficiency is very close to one except in some pathological cases, this should also be

true for more than two classes.

In the following, we thus consider a server farm with two classes of servers. Let

S1 be the number of ”fast” servers of capacity r1, and S2 = S − S1 be the number

of ”slow” servers, each one of capacity r2, eith r1 > r2
2. The behaviour of the ratio

DK( λ̄
K e, r)/D1(λ̄, r) is illustrated in Figure 4.5 in the case of a server farm with S1 = 100

fast servers of capacity r1 = 100, and S2 = 300 slow servers of capacity r2 = 10. We

plot the evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) as the load on the system ranges

from 0% to 1 for K = 2, K = 5.

It was observed that for low loads both the settings used the fast servers. The ratio

in this regime was 1. After a certain point, the centralized setting started to use the

slow servers as well, and the ratio increased with the load until the point when the

2In the case r2 = r1, it is easy to see that the NEP is always an optimal routing solution, whatever
the total traffic intensity.
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Figure 4.5: Evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5 as the

load in the system ranges from 0% to 100%.

decentralized setting also started to use the slow servers. From this point on, the ratio

decreased with increase in the load.

We shall now characterize the point where the ratio starts to increase and where the

peak occurs. Define

λ̄OPT = S1
√
r1(

√
r1 −

√
r2),

and

λ̄NE = S1r1



1− 2
√

(K − 1)2 + 4K r1
r2

− (K − 1)



 .

The following lemma gives the conditions on λ̄ under which the centralized setting and

the decentralized one use only the fast class of servers, or both classes.

Lemma 4.5.1. For K ≥ 2, λ̄OPT < λ̄NE, and

1. if λ̄ ≤ λ̄OPT , both settings use only the ”fast” servers,

2. if λ̄OPT ≤ λ̄ ≤ λ̄NE, the decentralized setting uses only the ”fast” servers, while

the centralized one uses all servers,

3. if λ̄ > λ̄NE, both settings use all servers.

Proof. See Appendix 4.A.4.

Since λ̄OPT < λ̄NE , a consequence of Lemma 4.5.1 is that the decentralized setting

always uses a subset of the servers used by the centralized one. We immediately obtain

expressions of the performance in the centralized and decentralized settings, as given in

Corollary 4.5.1.
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Corollary 4.5.1. For the centralized setting, if λ̄ < λ̄OPT , then

D1(λ̄, r) = λ̄/(r1 −
λ̄

S1
),

otherwise

D1(λ̄, r) =

[

λ̄

√
r1
r2

+ S1y1

(

1−
√

r1
r2

)]
1

r1 − y1
,

where y1 =
√
r1

λ̄−S2
√
r2(

√
r2−

√
r1)

S1
√
r1+S2

√
r2

, and y2 = (λ̄ − S1y1)/S2 are the loads on each fast

server and on each slow server in the case λ̄ > λ̄OPT , respectively. Similarly, if λ̄ <

λ̄NE, then

DK(
λ̄

K
e, r) = λ̄/(r1 −

λ̄

S1
),

and

DK(
λ̄

K
e, r) =

1

2

2∑

j=1

Sj

[√

(K − 1)2+4Krjγ(K)− (K + 1)

]

otherwise.

Proof. We first prove the results for the centralized setting. For λ̄ < λ̄OPT , we know

from Lemma 4.5.1 that the centralized setting uses only the first group of servers, and

we thus have

D1(λ̄, r) =

S1∑

j=1

λ̄
S1

r1 − λ̄
S1

=
λ̄

r1 − λ̄
S1

.

For λ̄ ≥ λ̄OPT , we know from Lemma 4.5.1 that the centralized setting uses all the

servers. According to the KKT conditions,

r1
(r1 − y1)2

=
r2

(r2 − y2)2
(4.5)

where λ̄ = S1y1 + S2y2. After some algebra, it yields

y1 =
√
r1
λ̄− S2

√
r2(

√
r2 −

√
r1)

S1
√
r1 + S2

√
r2

. (4.6)
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With the constraint of S1y1 + S2y2 = λ̄ and (4.5), we obtain

D1(λ̄, r) = S1
y1

r1 − y1
+ S2

y2
r2 − y2

= S1
y1

r1 − y1
+ (λ̄− S1y1)

1

r2 − y2

= S1
y1

r1 − y1
+ (λ̄− S1y1)

√
r1
r2

1

r1 − y1

=

[

λ̄

√
r1
r2

+ S1y1

(

1−
√

r1
r2

)]
1

r1 − y1
,

where y1 is given in (4.6).

Let us now consider the decentralized setting. For λ̄ < λ̄NE , we know from Lemma 4.5.1

that the decentralized setting uses only the servers of the first class, and we thus have

DK( λ̄
K e, r) = λ̄

r1− λ̄
S1

. For λ̄ ≥ λ̄NE , all the servers are used and using (4.12) we obtain

DK(
λ̄

K
e, r) =

S1+S2∑

j=1

yj(K)

rj

(

1− yj(K)

rj

)−1

=
1

2

S1+S2∑

j=1

[√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

,

and thus

DK(
λ̄

K
e, r) =

1

2

2∑

j=1

Sj

[√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

.

In Lemma 4.5.1, we identified three intervals, namely, [0, λ̄OPT ), [λ̄OPT , λ̄NE), [λ̄NE , R),

each one corresponding to a different set of servers used by the two settings. In Proposi-

tion 4.5.1, we describe how the ratio DK( λ̄
K e, r)/D1(λ̄, r) evolves in each of these three

intervals.

Proposition 4.5.1. The ratio DK( λ̄
K e, r)/D1(λ̄, r) is

(a) equal to 1 for 0 ≤ λ̄ ≤ λ̄OPT ,

(b) strictly increasing over the interval
(
λ̄OPT , λ̄NE

)
,

(c) and strictly decreasing over the interval
(
λ̄NE , R

)
.

Proof. See Appendix 4.A.5.

Moreover, the ratio DK( λ̄
K e, r)/D1(λ̄, r) has the following property.
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Lemma 4.5.2. The ratio DK( λ̄
K e, r)/D1(λ̄, r) is a continuous function of λ̄ over the

interval [0, R).

Proof. First, we state that this function is continuous in [0, λ̄OPT ), (λ̄OPT , λ̄NE) and

(λ̄NE , R) which follows from the definitions ofDK( λ̄
K e, r) andD1(λ̄, r) in Corollary 4.5.1.

Now, we show that
DK( λ̄

K
e,r)

D1(λ̄,r)
is continuous in λ̄OPT as follows:

lim
λ̄→λ̄OPT−

DK( λ̄
K e, r)

D1(λ̄, r)
= lim

λ̄→λ̄OPT+

DK( λ̄
K e, r)

D1(λ̄, r)
=

DK( λ̄
OPT

K e, r)

D1(λ̄OPT , r)
= 1.

On the other hand, we also prove that it is continuous in λ̄NE :

lim
λ̄→λ̄NE−

DK( λ̄
K e, r)

D1(λ̄, r)
= lim

λ̄→λ̄NE+

DK( λ̄
K e, r)

D1(λ̄, r)
=

DK( λ̄
NE

K e, r)

D1(λ̄NE , r)

=
1
2S1[

√

(K − 1)2 + 4Kr1/r2 − (K + 1)]
(S1

√
r1+S2

√
r2)2

2S1r1√
(K−1)2+4Kr1/r2−(K−1)

+S2r2
− (S1 + S2)

.

We can now state the main result of this section.

Theorem 4.5.1. The inefficiency is worst when the total arriving traffic intensity equals

λ̄NE, namely,

ISK(r) =
DK( λ̄

NE

K e, r)

D1(λ̄NE , r)
.

Proof. It was shown in Lemma 4.5.2 that DK( λ̄
K e, r)/D1(λ̄, r) is a continuous function

of λ̄ over the interval [0, R). Proposition 4.5.1.(a) states that the ratio is minimum for

0 ≤ λ̄ ≤ λ̄OPT . For λ̄ in
(
λ̄OPT , λ̄NE

)
, we know from Proposition 4.5.1.(b) that this

ratio is strictly increasing, which implies that

ISK(r) ≥ DK(
λ̄NE

K
e, r)/D1(λ̄

NE , r),

by continuity. Since, according to Proposition 4.5.1.(c), the ratio is decreasing over the

interval (λ̄NE , R), we can conclude that its maximum value is obtained for λ̄ = λ̄NE .

Theorem 4.5.1 fully characterizes the worst case traffic conditions for a server farm

with two classes of servers. It states that the worst inefficiency of the decentralized

setting is achieved when (a) each dispatcher controls the same amount of traffic and

(b) the total traffic intensity is such that the decentralized setting only starts using the
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Figure 4.6: The evolution of the ratio DK( λ̄
K e, r)/D1(λ̄, r) for K = 2 and K = 5 with

respect to ρ in a server farm with 3 server classes.

slow servers. The behaviour described by Proposition 4.5.1 can easily be observed in

Figure 4.5.

For more than two classes of servers, we were unfortunately not able to prove the

above results concerning the worst traffic conditions. Nevertheless, we conjecture that

a similar behaviour happens also in this case. As another illustration of this behaviour,

in Figure 4.6 we plot the ratio DK( λ̄
K e, r)/D1(λ̄, r) as a function of the load on the

system, for a server farm with 3 server classes (and for K = 2, K = 5) with S1 = 100

fast servers of capacity r1 = 30, S2 = 200 intermediate servers of capacity r2 = 20 and

S3 = 100 slow servers of capacity r3 = 10.

4.5.1 Inefficiency Analysis

We now give the expression for the inefficiency of selfish routing for data-centers with

two classes of servers. Using Theorem 4.5.1 we assume the worst traffic conditions for

the inefficiency of selfish routing, i.e., the symmetric game obtained for λ̄ = λ̄NE .

Proposition 4.5.2. Let β = r1
r2

> 1 and α = S1
S2

> 0, then

ISK(r) =
1

2

√

(K − 1)2 + 4Kβ − (K + 1)
( 1
α
+
√
β)2

1
α
+ 2β√

(K−1)2+4Kβ−(K−1)

− ( 1α + 1)
. (4.7)

Proof. According to Theorem 4.5.1, we have ISK(r) = DK( λ̄
NE

K e, r)/D1(λ̄
NE , r). The

proof is then obtained after some algebra by using the expressions for DK( λ̄
NE

K e, r) and

D1(λ̄
NE , r) given in Corollary 4.5.1, and the expression for λ̄NE given in Lemma 4.5.1.
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The inefficiency ISK(r) does not depend on the total number of servers S, but only

on the ratio of server capacities and on the ratio of the numbers of servers of each type.

In Figure 4.7 and 4.8, we plot the inefficiency IK(r) of the non-cooperative routing

scheme with K = 2 and K = 5 dispatchers and S = 1000 servers as the parameters α

and β change from 1
S−1 to 2 and from 1 to 1000, respectively. It can be observed that

even for unbalanced scenarios (α small and β large), the inefficiency is always fairly

close to 1, indicating that, even in the worst case traffic conditions, the gap between the

NEP and the optimal routing solution is not significant. With slight abuse of notation,

let us denote the RHS of (4.7) by IK(α, β).

Lemma 4.5.3. The function IK(α, β) is decreasing with α.

Proof. First, we modify IK(α, β) and we obtain

IK(α, β) =
1

2

(x− 2)( 1α + 2β
x )

1
α(2

√
β − 1− 2β

x ) + β(1− 2
x)

,

where x =
√

(K − 1)2 + 4Kβ − (K − 1).

We now show that the derivative of IK(α, β) with respect to α is negative using that

the derivative of 1
α with respect to α is negative:

∂IK(α, β)

∂α
=

1
2

(
1
α

)′ [
β(1− 2

x)−
2β
x (2

√
β − 1− 2β

x )
]

[
1
α(2

√
β − 1− 2β

x ) + β(1− 2
x)
]2

=

1
2

(
1
α

)′ (
1− 2β

x

)2

[
1
α(2

√
β − 1− 2β

x ) + β(1− 2
x)
]2 < 0.

A consequence of the above result is that given the ratio of server speeds in a data-

center, the inefficiency is largest when there is one fast server and all the other servers

are slow. Selfish routing has the tendency to use the fast servers more than the slow

ones. When there is just one fast server, its performance tends to be the worst as

compared to that of the centralized routing which reduces its cost by sending traffic to

the slower ones as well. Thus, in decentralized routing architectures, it is best to avoid

server configurations with this particular kind of asymmetry.
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Figure 4.7: Evolution of the inefficiency
as a function of α and β for K = 2 dis-
patchers and S = 1000 servers.

Figure 4.8: Evolution of the inefficiency
as a function of α and β for K = 5 dis-
patchers and S = 1000 servers.

4.5.2 Price of Anarchy

The PoA is defined as the worst possible inefficiency when the server capacities are

varied. Then, from (4.3), (4.4) and Proposition 4.5.2, it follows that

PoA(K,S) = sup
α,β

IK(α, β).

From Lemma 4.5.3 and the fact that, for a fixed S, α can take values in { 1
S−1 ,

2
S−2 , . . . , S−

1}, we can deduce that

PoA(K,S) = sup
β

IK

(
1

S − 1
, β

)

. (4.8)

We are able to prove that IK

(
1

S−1 , β
)

is increasing with β. This means that the

PoA of a server farm with S servers and K dispatchers is achieved when α = 1
S−1 and β

infinity, i.e., when there is only one fast server and it is infinitely faster than the slower

ones. While there is no simple expression for the PoA in terms of K and S, we can

nonetheless derive a certain number of properties from the preceding set of results.

Proposition 4.5.3. The Price of Anarchy has the following properties.

1. For fixed K, PoA(K,S) is increasing in S; and

2. for a fixed S, PoA(K,S) is increasing in K.

Proof. For fixed K and for every β, from Lemma 4.5.3 and (4.8),

IK

(
1

S − 1
, β

)

≤ IK

(
1

S
, β

)

≤ sup
β

IK

(
1

S
, β

)

= PoA(K,S + 1),
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Figure 4.9: The Price of Anarchy as a function of the number of servers for different
values of the number of dispatcher.

where the last equality follows from (4.8). Taking the supremum over β in the above

inequality, we obtain, for a fixed K,

PoA(K,S) ≤ PoA(K,S + 1),

which proves the first property.

For a fixed S and β, from Lemma 4.4.1,

IK

(
1

S − 1
, β

)

≤ IK+1

(
1

S − 1
, β

)

≤ sup
β

IK+1

(
1

S − 1
, β

)

= PoA(K + 1, S),

Again, taking the supremum over β in the above inequality, we obtain, for a fixed S,

PoA(K,S) ≤ PoA(K + 1, S),

which proves the second property.

In Figure 4.9, the PoA is plotted as a function of S for different values of K. It is

observed that this value remains modest even when the number of servers is 10, 000.

We now give an upper bound the PoA. For this, we first need the following result.

Lemma 4.5.4. For a server farm with two server classes and K dispatchers,

lim
S→∞

PoA(K,S) =
K

2
√
K − 1

.
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Proof. See Appendix 4.A.6.

Proposition 4.5.4. For a server farm with two server classes and K dispatchers, and

for all K and S,

PoA(K,S) ≤ min

(
K

2
√
K − 1

, S

)

.

Proof. From Proposition 4.5.3, PoA(K,S) is increasing with S. Combining this fact

with Lemma 4.5.4, we can conclude that

PoA(K,S) ≤ K

2
√
K − 1

.

Moreover, it was shown in [52] that, for the Wardrop case which is the limit of K → ∞,

PoA(∞, S) ≤ S. Thus,

PoA(K,S) ≤ S.

We can deduce the desired result from the above two inequalities.

In server farms with large number of servers, it follows from Lemma 4.5.4 that the

PoA will be K
2
√
K−1

. In [14], it was shown that this value was a lower bound on the

PoA. The model in that paper had server dependent holding cost per unit time. The

lower bound was obtained in an extreme case with negligible (tending to 0) holding

cost on the fast servers and the decentralized setting marginally using the slow servers.

Our present results show that the lower bound is indeed tight. Moreover, even in a less

asymmetrical setting of equal holding costs per unit time, one can construct examples

in which the PoA is attained.

The PoA obtained in the non-atomic case in [52] comes into play when there are

few servers and a relatively large number of dispatcher. However, for data-centers the

configuration is reversed: there are a few dispatchers and a large number of servers. In

this case it is more appropriate to use the upper bound given in Lemma 4.5.4.

4.6 Inefficiency with an Infinite Number of Dispatchers

We know from Lemma 4.4.1 that the inefficiency increases with the number of dispatch-

ers K. This motivates the analysis of the inefficiency when the number of dispatchers

K grows to infinity. In this section, we show that in the heavy-traffic regime the inef-

ficiency is not one, in contrast to the case of finite K. For the case of two classes of

servers we give the expression of the inefficiency, we characterize the situation under

which the PoA is achieved and show that it is equal to the number of servers.
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We define inefficiency of a server farm with S servers and an infinite number of

dispatchers as

IS∞(r) = lim
K→∞

ISK(r). (4.9)

4.6.1 Heavy-traffic Analysis

We study the performance of a data center with an arbitrary number of servers S when

the system is in the heavy-traffic regime. We give the value of limK→∞
DK( λ̄

K
e,r)

D1(λ̄,r)
in the

following proposition:

Proposition 4.6.1. For a data-center with S servers, we have

lim
λ̄→R

lim
K→∞

DK( λ̄
K e, r)

D1(λ̄, r)
=

S R
(
∑S

i=1

√
ri

)2 .

Proof. See Appendix 4.A.7.

We observe that this result does not coincide with the one obtained for the Nash

equilibrium for K large, as given in Theorem 4.4.2. This implies that the limits of the

number of dispatchers and heavy-traffic do not interchange, i.e.,

lim
K→∞

lim
λ̄→R

DK( λ̄
K e, r)

D1(λ̄, r)
6= lim

λ̄→R
lim

K→∞

DK( λ̄
K e, r)

D1(λ̄, r)
.

4.6.2 The case of Two Classes of Servers

We focus on the case of a data center with servers of two different speeds, r1 and r2
respectively, where r1 > r2. For the case of K = ∞, we conjecture that the worst

inefficiency is obtained for two server-classes, i.e., the Conjecture 4.5.1 holds when the

number of dispachers grows to infinity.

Let S1 be the number of “fast” servers and S2 = S − S1 be the number of ”slow”

servers. We give the expression of the inefficiency for a data center with two classes of

servers in terms only on the parameters α = S1
S2

and β = r1
r2

> 1.

Corollary 4.6.1.

I∞(α, β) =
(β − 1)(1 + 1

α)

(
√
β + 1

α)
2 − ( 1α + 1)2

. (4.10)

Proof. The result follows from Theorem 4.5.1 and (4.9), taking into account that

√

(K − 1)2 + 4Kx− (K − 1) = 2x,
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Figure 4.10: Evolution of the inefficiency as a function of α and β for K = 106 and
S = 1000.

when K → ∞, ∀x ≥ 1.

Using this expression, we can use the parameters α ∈ { 1
S−1 ,

2
S−2 , . . . ,

S−2
2 , S−1} and

β to characterize the inefficiency for a data center with two-server classes and infinite

number of servers. Lemma 4.6.1 states the main properties of the inefficiency for an

infinite number of dispatchers.

Lemma 4.6.1. We have I∞(α, β) is decreasing with α, for all β, and I∞(α, β) is

increasing with β, for all α.

Proof. The result follows from Corollary 4.6.1.

A direct consequence of Corollary 4.6.1 and Lemma 4.6.1 is that the Price of Anarchy

of a data center with two classes of servers and infinite number of dispatchers is equal

to the number of servers S.

Proposition 4.6.2. PoA(∞, S) = S.

Proof. According to Lemma 4.6.1, the worst inefficiency is obtained when α = 1
S−1 and

β → ∞. Using the formula of Corollary 4.6.1 for this values of α and β, we get the

desired result.

We observe that this result coincides with the result given by [52].

We illustrate in Figure 4.10 the evolution of the inefficiency of a server farm of

S = 1000 servers and K = 106 dispatchers when α changes from 1
S−1 to 0.15 and β

from 1 to 108. We observe that the inefficiency equals the PoA when α = 1
S−1 and

β = 108, i.e., when there is only one fast server and it is 108 times faster than the slower

ones. We also see in Figure 4.10 that the inefficiency stays very close to one in most

cases, even if the worst inefficiency is 1000. Thus, we can conclude that although the

inefficiency can be as bad as the number of servers when the number of dispatchers is

infinity, the decentralized setting is almost always as efficient as the centralized setting.
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4.6.3 Price of Anarchy

We have seen that the PoA equals the number of servers in case of an infinity number

of dispatchers, while for K finite the upper-bound is given by the minimum of K
2
√
K−1

and S. We observe that, given the number of servers S, there exist a K∗ such that

• if K ≤ K∗, then PoA ≤ K
2
√
K−1

,

• if K ≥ K∗, then PoA ≤ S.

For a sufficiently large S, we can say that S = K∗

2
√
K∗−1

≈ 0.5
√
K∗. Thus, we claim

that for a sufficiently large S, then K∗ ≈ 4S2 and this means that if the number of

dispatchers is smaller than 4S2 the upper-bound on the PoA is given by K
2
√
K−1

, and

by the number of servers S otherwise.

4.7 Conclusions

Price of Anarchy is an oft-used worst-case measure of the inefficiency of non-cooperative

decentralized architectures. In spite of its popularity, we have observed that the Price of

Anarchy is an overly pessimistic measure that does not reflect the performance obtained

in most instances of the load balancing game. For an arbitrary architecture in the

system, we have seen that, contrary to a common belief, the inefficiency is in general

not achieved in the heavy-traffic regime. Surprisingly, we have shown that inefficiency

might be achieved at arbitrarily low load. For the case of two classes of servers we

give an explicit expression of the inefficiency and we have shown that non-cooperative

load balancing has close-to-optimal performances in most cases. We also show that the

worst-case performances given by the Price of Anarchy occur only in a very specific

setting, namely, when there is only one fast server and it is infinitely faster than the

slower ones.

We believe that our study opens up a new complementary point of view on the PoA

and we hope that in the future researchers will not only investigate the PoA, but also the

inefficiency. As our work suggests, even if the PoA is very bad, the inefficiency might be

low in most instances of the problem. We believe that this issue should be investigated

for other models. As a future work, we aim to prove that that our conclusions are also

true for more than two classes of servers.

4.A Appendix of Chapter 4

4.A.1 Some Known Results

The results in this section are taken from [14]. Since they are cited several times in

the present work, we choose to present them here for its easy perusal. Let W (K, z) =
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∑

j∈S Wj(K, z), we define the function

Wj(K, z) = ✶{z∈[ 1
rj

, 1
rj+1

)} ·
(

j
∑

s=1

2rs
√

(K − 1)2+4Krsz−(K − 1)
−

j
∑

s=1

rs+λ̄

)

. (4.11)

The following proposition gives the solution of the symmetric game.

Proposition 4.A.1. The subset of servers that are used at the NEP is S∗(K) =

{1, 2, . . . , j∗(K)}, where j∗(K) is the greatest value of j such that W (K, 1/rj+1) ≤
0 < W (K, 1/rj). The equilibrium flows are xi,j(K) = yj(K)/K, i ∈ C, j ∈ S∗(K),

where the offered traffic of server j is given by

yj(K) = rj

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)
√

(K − 1)2 + 4Kγ(K)rj − (K − 1)
, (4.12)

with γ(K) the unique root of W (K, z) = 0 in [ 1r1 ,∞).

4.A.2 Proof of Proposition 4.4.1

Before proving Proposition 4.4.1, we establish closed-form expressions for the value of

the performance of the centralized and decentralized settings. Recall that we assume a

server farm with S servers with decreasing values of the capacities, i.e, ri ≤ rj , if i > j.

The result is stated in the following lemma.

Lemma 4.A.1. Let n be the number of servers that the centralized setting uses, for

n = 1 . . . , S, then

D1(λ̄, r) =

(
∑n

j=1
√
rj

)2

∑n
j=1 rj − λ̄

− n.

Similarly, if the decentralized setting uses n servers, we have

DK(
λ̄

K
e, r) =

1

2

n∑

j=1

[√

(K − 1)2+4Krjγ(K)− (K + 1)

]

.

Proof. We first prove the results for the centralized setting. When the centralized setting

uses n servers Proposition 4.A.1 states that in this case,

yj(1) = rj

(

1− 1
√

γ(1)
√
rj

)

, j = 1, . . . , n,

that yields
yj(1)

rj − yj(1)
=
√

γ(1)
√
rj − 1, for j = 1, . . . , n.
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We thus obtain that

D1(λ̄, r) =
n∑

j=1

yj(1)

rj − yj(1)
=
√

γ(1)
n∑

j=1

√
rj − n.

Since γ(1) is the unique root of W (K, γ(1)) = 0 as defined in Appendix 4.A.1 and,

according to Proposition 4.A.1, then γ(1) is the solution of

1
√

γ(1)

n∑

j=1

√
rj =

n∑

j=1

rj − λ̄. (4.13)

Thus, it follows that
√

γ(1) =
∑n

j=1
√
rj/(

∑n
j=1 rj − λ̄) and

D1(λ̄, r) =
(
∑n

j=1
√
rj)

2

∑n
j=1 rj − λ̄

− n.

Let us now consider the decentralized setting. If the number of servers used by the

decentralized setting is n, then (4.12) gives that for j = 1, . . . , n

1− yj(K)

rj
=

2
√

(K − 1)2 + 4Kγ(K)rj − (K − 1)
. (4.14)

From (4.12) and (4.14), it yields the desired result

DK(
λ̄

K
e, r) =

n∑

j=1

yj(K)

rj

(

1− yj(K)

rj

)−1

=
1

2

n∑

j=1

[√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

.

We first show in the following lemma an important property to prove Proposi-

tion 4.4.1.

Lemma 4.A.2. Let ak =
√

(K − 1)2 + 4Kγ(K)rk + (K − 1), then for all i > j,
aj
ai

is

increasing with λ̄.

Proof. First, we define bj =
√

(K − 1)2 + 4Kγ(K)rj and we see that
bj
bi

is increasing

with λ̄ if
(K−1)2+4Kγ(K)rj
(K−1)2+4Kγ(K)ri

is increasing with λ̄ because
bj
bi

is positive and thus:

∂

∂λ̄

(
(K − 1)2 + 4Kγ(K)rj
(K − 1)2 + 4Kγ(K)ri

)

≥ 0 ⇐⇒ 4K
∂γ(K)

∂λ̄
(K − 1)2(rj − ri) ≥ 0

that it is true due to rj ≥ ri if i > j. Hence, we have proved that
(K−1)2+4Kγ(K)rj
(K−1)2+4Kγ(K)ri

is

increasing with λ̄ and this implies that
bj
bi

is increasing with λ̄. We also observe that
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∂bj
∂λ̄

≥ ∂bi
∂λ̄

, if i > j:

∂bj

∂λ̄
≥ ∂bi

∂λ̄
⇐⇒

2K ∂γ(K)

∂λ̄
rj

bj
≥

2K ∂γ(K)

∂λ̄
ri

bi

⇐⇒ 1
√

(K−1)2

r2j
+ 4Kγ(K)

rj

≥ 1
√

(K−1)2

r2i
+ 4Kγ(K)

ri

,

and this inequality holds since rj ≥ ri when i > j.

As
∂bj
∂λ̄

=
∂aj
∂λ̄

and aj = bj + (K − 1), for j = 1, . . . , n, we are able to state that if
bj
bi

is increasing, then
aj
ai

is increasing with λ̄:

∂

∂λ̄

(
aj
ai

)

> 0 ⇐⇒
∂bj
∂λ̄

ai − ∂bi
∂λ̄

aj

a2i
> 0 ⇐⇒ ∂bj

∂λ̄
bi −

∂bi
∂λ̄

bj + (K − 1)(
∂bj

∂λ̄
− ∂bi

∂λ̄
) > 0,

and we know the inequality is satisfied because
∂
(

bj
bi

)

∂λ̄
> 0 and

∂bj
∂λ̄

> ∂bi
∂λ̄

.

We are now in situation to prove the result of Proposition 4.4.1.

Proof. We show that when both settings use n servers (n = 1, . . . , S), then the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
is decreasing with λ̄. We use the expressions of DK( λ̄

K e, r) and D1(λ̄, r) given

in Lemma 4.A.1 and we modify the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
as follows:

DK( λ̄
K e, r)

D1(λ̄, r)
=

1
2

∑n
j=1

[√

(K − 1)2+4Krjγ(K)− (K + 1)
]

−n+
√

γ(1)
∑n

j=1
√
rj

=
−n+ 1

2

∑n
j=1

[√

(K − 1)2+4Krjγ(K)− (K − 1)
]

−n+
√

γ(1)
∑n

j=1
√
rj

=
f1 + f2
f1 + g2

,

where we define f1 =
−n√
γ(1)

, g2 =
∑n

j=1
√
rj and

f2 =
1

2
√

γ(1)

n∑

j=1

[√

(K − 1)2+4Krjγ(K)− (K − 1)

]

.

We want to prove that the derivative of
DK( λ̄

K
e,r)

D1(λ̄,r)
with respect to λ̄ is negative. We

have that:

∂

∂λ̄

(

DK( λ̄
K e, r)

D1(λ̄, r)

)

< 0 ⇐⇒ ∂f1
∂λ̄

(g2 − f2) +
∂f2
∂λ̄

DK( λ̄
K e, r)

√

γ(1)
< 0.
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We observe that f1 is increasing with λ̄, because γ(1) increases with λ̄, andD1(λ̄, r) ≤
DK( λ̄

K e, r) implies that g2 ≤ f2. Therefore, if we show that f2 is decreasing with λ̄ and

we can conclude that
DK( λ̄

K
e,r)

D1(λ̄,r)
is decreasing with λ̄. From (4.13) and (4.11), if both

settings use n servers then

1
√

γ(1)
=

∑n
j=1 rj − λ̄
∑n

j=1
√
rj

=
1

∑n
j=1

√
rj

n∑

s=1

2rs
as

,

where as =
√

(K − 1)2 + 4Kγ(K)rs − (K − 1). We rewrite f2 as follows:

f2 =
1

∑n
j=1

√
rj

n∑

j=1

aj

n∑

s=1

rs
as

=
1

∑n
j=1

√
rj





n∑

j=1

rj +

n∑

j=1

∑

i>j

[

rj
ai
aj

+ ri
aj
ai

]


 .

We define as =
√

(K − 1)2 + 4Kγ(K)rs+(K−1) and we notice that if we multiply

and divide as by as it yields as = 4Kγ(K)rs
as

. So f2 gets modified as follows with this

property:

f2 =
1

∑n
j=1

√
rj





n∑

j=1

rj +

n∑

j=1

∑

i>j

[

rj
ai
aj

+ ri
aj
ai

]


 .

Now, we show that rj/a
2
j > ri/a

2
i for all i > j since rk

a2k
is decreasing with k because

we can write it as rk
a2k

=

[(√
(K−1)2

rk
+ 4Kγ(K) + K−1√

rk

)−1
]2

and rk decreases with k.

Finally, we see that f2 is decreasing with λ̄:

∂f2
∂λ̄

=
1

∑n
j=1

√
rj

n∑

j=1

∑

i>j

[

(
∂aj

∂λ̄
ai −

∂ai
∂λ̄

aj)

(

ri
a2i

− rj
a2j

)]

< 0,

and we conclude that this is true because from Lemma 4.A.2
aj
ai

is increasing with λ̄

if i > j (so that
∂aj
∂λ̄

ai − ∂ai
∂λ̄

aj > 0) and we have observed that rj/a
2
j > ri/a

2
i when

i > j.

4.A.3 Proof of Theorem 4.4.2

Proof. First, we know that in heavy-traffic all the servers are used, so we consider that

S servers are used in both settings. We also observe that in heavy-traffic γ(K), as

defined in Proposition 4.A.1, tends to ∞, and the following approximation is satisfied:

√

(K − 1)2 + 4Kγ(K)rj − (K − 1) ≈ 2
√

Kγ(K)rj . (4.15)

From (4.15) and the definition of γ(K), we obtain
√

Kγ(K) ≈
∑S

j=1
√
rj

∑S
j=1 rj−λ̄

. Now,
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using this expression, (4.15) and Lemma 4.A.1, we show that DK( λ̄
K e, r) ≈ D1(λ̄, r) in

heavy-traffic:

DK(
λ̄

K
e, r) =

1

2

S∑

j=1

[√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

= −S +
1

2

S∑

j=1

[√

(K − 1)2 + 4Kγ(K)rj − (K − 1)

]

≈ −S +
√

Kγ(K)

S∑

j=1

√
rj = −S +

(
∑S

j=1
√
rj)

2

∑S
j=1 rj − λ̄

= D1(λ̄, r).

4.A.4 Proof of Lemma 4.5.1

Proof. Let us first prove that λ̄OPT < λ̄NE :

λ̄OPT < λ̄NE ⇐⇒ √
r1r2 >

2r1
√

(K − 1)2 + 4Kr1/r2 − (K − 1)

⇐⇒ √
r1r2

√

(K − 1)2 + 4Kr1/r2 >
√
r1 [2

√
r1 + (K − 1)

√
r2]

⇐⇒ 4Kr1 > 4r1 + 4(K − 1)
√
r1r2

⇐⇒ r1 > r2.

We now turn to the second part of the proof. According to Proposition 4.A.1, the

centralized setting uses only the fast servers (S1 servers of capacity r1) for all values of

λ̄ such that W2(1,
1
r2
) ≤ 0. It yields

λ̄ ≤ (S1r1 + S2r2)−
√
r2(S1

√
r1 − S2

√
r2)

which is equivalent to λ̄ ≤ λ̄OPT .

Similarly, we know from Proposition 4.A.1, that the decentralized setting starts

using the second group of servers if and only if

λ̄ ≥ S1r1 + S2r2 −
S1+S2∑

s=1

2rs
√

(K − 1)2+4Krs/r2 − (K − 1)

= S1r1 + S2r2 −
2∑

s=1

Ss
2rs

√

(K − 1)2+4Krs/r2 − (K − 1)

= S1r1 − S1
2r1

√

(K − 1)2+4Kr1/r2 − (K − 1)
,

which is equivalent to λ̄ ≥ λ̄NE , as claimed.
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4.A.5 Proof of Proposition 4.5.1

We shall break-down the proof of the proposition in three parts according to the three

intervals which define the behaviour of the ratio DK( λ̄
K e, r)/D1(λ̄, r). In the following

two lemmata, we present that the ratio is increasing in one of the intervals and decreasing

in the other.

Lemma 4.A.3. The ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
is strictly increasing over the interval

(
λ̄OPT , λ̄NE

)
.

Proof. In order to prove that
DK( λ̄

K
e,r)

D1(λ̄,r)
is an increasing function of λ̄ for λ̄ ∈ (λ̄OPT , λ̄NE)

we shall prove that
∂
∂λ̄

(

DK( λ̄
K e, r)

)

DK( λ̄
K e, r)

>
∂
∂λ̄

(
D1(λ̄, r)

)

D1(λ̄, r)
.

Since λ̄ < λ̄NE , we have DK( λ̄
K e, r) = λ̄

r1− λ̄
S1

and

∂DK( λ̄
K e, r)

∂λ̄
=

r1

(r1 − λ̄
S1
)2

=
r1

λ̄(r1 − λ̄
S1
)
DK(

λ̄

K
e, r),

from which we deduce that

∂
∂λ̄

DK( λ̄
K e, r)

DK( λ̄
K e, r)

=
r1

λ̄(r1 − λ̄
S1
)
=

r1
λ̄2

DK(
λ̄

K
e, r).

For the centralized setting, λ̄ ≥ λ̄OPT means that

D1(λ̄, r) = S1
y1

r1 − y1
+ S2

y2
r2 − y2

.

According to (4.5), the derivative of D1(
λ̄
K e, r) gets modified as follows:

∂D1(λ̄, r)

∂λ̄
= S1

r1y
′
1

(r1 − y1)2
+ S2

r2y
′
2

(r2 − y2)2
= (S1y

′
1 + S2y

′
2)

r1
(r1 − y1)2

.

The constraint S1y1 + S2y2 = λ̄ implies that S1y
′
1 + S2y

′
2 = 1 and hence

∂D1(λ̄, r)

∂λ̄
=

r1
(r1 − y1)2

.
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It yields

∂
∂λ̄

D1(λ̄, r)

D1(λ̄, r)
=

r1
(r1 − y1)2

1
[
D1(λ̄, r)

]2D1(λ̄, r)

=
r1

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 D1(λ̄, r).

As a result, for λ̄ ∈ (λ̄OPT , λ̄NE),
∂
∂λ̄

DK( λ̄
K
e,r)

DK( λ̄
K
e,r)

>
∂
∂λ̄

D1(λ̄,r)

D1(λ̄,r)
is equivalent to

r1
λ̄2

DK(
λ̄

K
e, r) >

r1
[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 D1(λ̄, r),

and
DK( λ̄

K e, r)

D1(λ̄, r)
>

λ̄2

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 .

Now, we assume that there exist λ̄ ∈ (λ̄OPT , λ̄NE) such that
DK( λ̄

K
e,r)

D1(λ̄,r)
is not increas-

ing with λ̄.

Since
DK( λ̄

K
e,r)

D1(λ̄,r)
≥ 1, it results

1 ≤ DK( λ̄
K e, r)

D1(λ̄, r)
≤ λ̄2

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 .

Since we have that

λ̄2

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 ≥ 1,

then
λ̄

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

) ≥ 1,

because the numerator and the denominator are both positive. Thus, with (4.6), the

above yields

1 ≤ λ̄

λ̄
√

r1
r2

+ S1
√
r1

λ̄−S2
√
r2(

√
r2−

√
r1)

S1
√
r1+S2

√
r2

(

1−
√

r1
r2

)

≤ λ̄(S1
√
r1 + S2

√
r2)

λ̄
√
r1(S1 + S2)− S1S2

√
r1(

√
r2 −

√
r1)2

.
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This is equivalent to

λ̄
√
r1(S1 + S2)− S1S2

√
r1(

√
r2 −

√
r1)

2 ≤ λ̄(S1
√
r1 + S2

√
r2),

and after rearranging both sides of the expression, we arrive at the following condition

λ̄ ≤ S1
√
r1(

√
r1 −

√
r2) = λ̄OPT ,

that it is a contradiction since λ̄ ∈ (λ̄OPT , λ̄NEP ).

Lemma 4.A.4. The ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
is strictly decreasing over the interval

(
λ̄NE , R

)
.

Proof. In the interval
(
λ̄NE , R

)
we know that all servers are used. Thus, according to

Proposition 4.4.1, the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
is decreasing as a function of λ̄.

The proof of Proposition 4.5.1 results from Corollary 4.5.1, Lemma 4.A.3 and

Lemma 4.A.4.

4.A.6 Proof of Lemma 4.5.4

Proof. From (4.8), we observe that

lim
S→∞

PoA(K,S) = sup
β

lim
S→∞

IK

(
1

S − 1
, β

)

.

In order to compute the limit of the PoA, we shall first compute the limit of IK
and then we shall compute the supremum. Let x =

√

(K − 1)2 + 4Kβ − (K − 1). We

rewrite (4.7) as

IK

(
1

S − 1
, β

)

=
1

2

x− 2
(S−1+

√
β)2

S−1+ 2β
x

− S
.

For large S, we show that

(S − 1 +
√
β)2

S − 1 + 2β
y

− S ≈ 2
√

β − 1− 2β

x
,
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as follows:

(S − 1 +
√
β)2

S − 1 + 2β
x

≈ (S − 1)2 + 2
√
β(S − 1) + β

(S − 1)
(

1 + 2β
(S−1)x

)

≈
(

S − 1 + 2
√

β +
β

(S − 1)

)

·
(

1− 2β

(S − 1)x

)

≈ S − 1 + 2
√

β − 2β

x
.

Now that we have computed the limit of IK as S → ∞, we shall compute the

supremum with respect to β. In order to do this, we shall show that the limit computed

previously is an increasing function of β.

Denote FK(β) = limS→∞ IK(1/(S − 1), β). We shall show that it is an increasing

function of β. Let y =
√

(K − 1)2 + 4Kβ. We write

FK(β) =
1

2

y − (K + 1)

2
√
β − 1− y+K−1

2K

.

Using that β > 1 we show that the derivative of FK(β) with respect to β is positive:

∂FK(β)

∂β
> 0 ⇐⇒ y′

[

2
√

β − 1− y +K − 1

2K

]

− (y − (K + 1))

(
1√
β
− 1

2K
y′
)

> 0.

This expression can be simplified as follows:

2y′(
√

β − 1)− (y − (K + 1))
1√
β

> 0.

Since y′ is the derivative of y =
√

(K − 1)2 + 4Kβ with respect to β, we derive it

and substituting in the above expression it yields:

4K(
√
β − 1)

y
− (y − (K + 1))

1√
β

> 0.

Multiplying by b
√
β and using that y =

√

(K − 1)2 + 4Kβ we obtain

4K
√

β(
√

β − 1)−
[
(K − 1)2 + 4Kβ − (K + 1)y

]
> 0

⇐⇒ 4Kβ − 4K
√

β −
[
(K + 1)2 + 4K(β − 1)− (K + 1)y

]
> 0.

This expression can be simplified and it results:

−4K(
√

β − 1) + (K + 1)(y − (K + 1)) > 0.
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Now, we notice that (y − (K + 1) = 4K(β−1)
y+K+1 and thus

−4K(
√

β − 1) + (K + 1)
4K(β − 1)

y +K + 1
> 0.

Since β − 1 = (
√
β − 1)(

√
β + 1), we get

−1 + (K + 1)
(
√
β + 1)

y +K + 1
> 0.

If we multiply this expression by y +K + 1, it results
√
β(K + 1)− y > 0. Now, we

divide and multiply this expression by
√
β(K + 1) + y and we obtain

β(K + 1)2 −
[
(K + 1)2 + 4K(β − 1)

]

√
β(K + 1) + y

> 0.

This expression can be simplified as follows:

(β − 1)(K + 1)2 − 4K(β − 1) > 0 ⇐⇒ (K − 1)2(β − 1) > 0,

and thus we have proved that FK(β) is a decreasing function of β.

4.A.7 Proof of Proposition 4.6.1

Proof. Let n be the number of servers used by the decentralized setting for an infinity

number of dispatchers, with n = 1, . . . , S. We observe that

√

(K − 1)2 + 4Kγ(K)rj → 2γ(∞)rj , when K → ∞.

We use this property in (4.11) to show that γ(∞) = n
∑n

j=1 rj−λ̄
and for the expression

of DK( λ̄
K e, r) given in Lemma 4.A.1, we obtain that

lim
K→∞

DK(
λ̄

K
e, r) =

1

2

n∑

j=1

[2rjγ(∞)− 2] =
n
∑n

j=1 rj
∑n

j=1 rj − λ̄
− n.

Now, we evaluate DK( λ̄
K e, r)/D1(λ̄, r) when K → ∞ and it yields to

lim
K→∞

DK( λ̄
K e, r)

D1(λ̄, r)
=

n
∑n

j=1 rj
∑n

j=1 rj−λ̄
− n

(
∑n

j=1
√
rj)

2

∑n
j=1 rj−n

− n

=
λ̄

λ̄−∑n
j=1 rj +

1
n

(
∑n

j=1
√
rj

)2 ,

and we know that in heavy-traffic all the servers are used, i.e., when λ̄ → R, we have
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n = S. Hence, it results

lim
ρ→1

lim
K→∞

DK( λ̄
K e, r)

D1(λ̄, r)
=

S R
(
∑S

i=1

√
ri

)2 .



5
Path Discovery Algorithms

In this chapter, we study a complete graph where the values of the edges are initially

unknown, but can be discovered querying an oracle. Given a performance metric that

depends on the edge values, we seek to discover an optimal path between two nodes by

means of uncovering the least possible amount of edge values. We aim to analyze the

efficiency of algorithms that solve this problem.

This chapter is organized as follows. In Section 5.1 we give some motivation of

this work and present the problem. We give the related work in Section 5.2 and in

Section 5.3 we formulate the problem. We prove in Section 5.4 our lower bounds on the

number of queries and in Section 5.5 we establish lower and upper bounds on the query

ratio. In Section 5.6 we present the numerical experiments. Finally, in Section 5.7,

some conclusions are drawn and future research directions are proposed. Some of the

proofs of this work are given in Appendix 5.A.

5.1 Optimization in Networks with Unknown Edges Value

In this section, we introduce the problem that we analyze in this chapter. First, we

explain the main motivation of this work in Section 5.1.1. Then, in Section 5.1.2 we

present the Optimal Path Discovery problem.

5.1.1 Motivation

Consider a set of nodes located at various spots in the Internet, and imagine that a

source node wants to deliver a message to a destination node with the best performance
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Figure 5.1: Location of the 19 nodes selected in the NLNog ring.

possible according to a certain metric. It may happen that the direct Internet path

between the source and destination nodes has an unacceptable performance. In that

case, provided that other nodes can act as relays for the message, it may be worth

searching for an alternate path passing through one or more intermediate nodes. One

can be even more ambitious and search for the best performance path in the complete

graph formed by all nodes. However, monitoring the quality of the Internet paths

between all pairs of nodes by sending probe packets can be excessively costly since the

number of such paths has order n2 if there are n nodes in a complete graph. Hence, it

makes sense to minimize the monitoring effort required to discover the optimal path.

Prior to our study, we have performed measurements in the Internet that clearly

show that path outages and performance degradations are routine events. To do so,

we selected 19 nodes of the NLNog ring [3] and measured the latency and loss rates

between all pairs of nodes every two minutes during one week. The localization of the

19 nodes is depicted in Figure 5.1.

The most important conclusions of these experiments are the following:

• For 65% of origin/destination pairs a path outage occurs at least once in the week.

Moreover, 21% of these path outages lasted more than 4 minutes (and more than

14 minutes for 11% of them).

• The IP route is not the minimum latency path in 38% of the cases. There is

always at least one origin/destination pair whose latency can be reduced by more

than 76% by selecting an alternate path to the IP route.
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Figure 5.2: An alternative path is selected when the direct path fails.

• Similarly, more than 11% of the IP routes have a loss rate greater than 1%. By

selecting alternate paths to those proposed by IP routing protocols, it would have

been possible to have no loss at all.

According to these measurements, we can conclude that the performance of the paths

selected by Internet routing protocols is not always optimal. Thus, instead of relying on

the IP routing protocols, an alternative approach is to use an overlay network between

the nodes. The basic idea is illustrated in Figure 5.2, where it is shown that, in case the

IP route is unavailable or congested, an alternative path is selected. The selected path

is usually one with optimal performance. To find such a path, we want to minimize the

required monitoring effort since, as we already mentioned, monitoring the quality of the

Internet paths between all pairs of nodes by sending probe packets can be very costly.

Another possible application of this work is the discovery of an optimal path in very

large graphs. For such graphs, algorithms that need to store all the information of a

graph before processing it cannot be implemented since data cannot fit it. Hence, it is

important in large graphs to design algorithms that solve the desired problem minimiz-

ing the required information. In [39] the authors analyze the problem of large graphs

and they suggest a relational approach for the shortest path case. We study analytically

the performance of algorithms that solve the Optimal Path Discovery problem.

5.1.2 The Optimal Path Discovery problem

We consider a complete undirected graph G = (V,E), where V is the set of nodes and E

is the set of edges, and the number of nodes is n. The real value of the edges are positive
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and initially unknown, but can be asked. The performance of a path P(s,t) is given by

its value F (P(s,t)). Hence, for a given function F that defines the performance of paths,

the objective is to discover a path P ∗ between s and t that optimizes the performance.

In other words, we aim to find a path P ∗ from s to t such that F (P ∗) ≤ F (P ) for all

s− t-paths P , in case of minimization problem, or a path P ∗ such that F (P ) ≤ F (P ∗)
for all s− t-paths P in case of maximization problem. The issue is that the edge values

are hidden. Hence, any algorithm that aims to solve the problem needs to discover the

value of some edges to find an optimal path. The goal then is to find an optimal path by

means of uncovering the least possible amount of edge values. We call to this problem

the Optimal Path Discovery (OPD) problem.

To the best of our knowledge, the OPD problem has been studied in the literature

only for particular cases. An example is [87] where the authors introduce the shortest

path discovery problem. The shortest path discovery problem seeks to find the lower-

cost path with the minimum number of queried edges. The conditions we require to F , in

this chapter, are very general. Besides, depending on the objective function we consider

and if the optimization goal is minimize or maximize, the OPD problem analyzes not

only the shortest path but also other interesting problems such as obtaining the safest

path or the widest path.

In this work we consider that the knowledge of the edges in the graph is homoge-

neous. We note that a general graph, not necessarily complete, can be considered as a

complete graph where the knowledge of the edges is heterogeneous since the non-existent

edges are initially known to be infinite. Hence, our assumption means that there is no

previous knowledge of the topology of the graph and, thus, we need to concentrate on

complete graphs.

We now present the main contributions of this work. We first prove that, for any

instance with n nodes, any algorithm will need to query at least n − 1 edges to find

a solution of the problem. On the other hand, we observe that this lower bound is

very optimistic and we also show that, for any algorithm, there exists a bad input

such that the number of edges queried by the algorithm will be of the same order of

magnitude than the total number of edges. The latter results suggest that the number of

queries is not an appropriate measure to discriminate between algorithms for the OPD

problem. We thus propose a new measure, the query ratio, to evaluate the performance

of algorithms that solve the OPD problem. The query ratio of an algorithm is defined as

the worst-case ratio (over all instances) of the number of queries made by an algorithm

on an instance to the minimum number of queries required to find a feasible path for

that instance. We prove that any algorithm has a query ratio of at least 1+ 4
n − 8

n2 and

propose an approximation algorithm that uncovers the same set of edges when it finds

the optimal solution and whose query ratio is upper bounded by 2− 1
n−1 .

We present in Section 5.1.1 the main motivation for the OPD problem. Prior to

that, we show an example of the problem we analyze in this chapter.
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Figure 5.3: Initially unknown graph with
5 nodes.
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Figure 5.4: Algorithm queries the directed
path from s to t in the first step.

Example of the OPD problem

We now give an example for a better understanding of the Optimal Path Discovery

problem. In this example, we consider the shortest path discovery problem in a complete

graph with 5 nodes. The values of the edges are initially unknown, but we know they

are positive and that they can be queried. The objective is to discover the shortest path

between s and t querying the minimum number of edges.

In Figure 5.3, we represent the initial state of the graph. For this graph, it is

not possible to conclude which is the shortest path, since the value of all the edges is

unknown. Hence, an algorithm that solves this problem queries the values of edges until

it has queried enough edges to ensure that the shortest path between s and t is found.

We emphasize that the only information available for the algorithm to know whether

the shortest path is found or not, is the values of the previously queried edges and that

the value of the unknown edges is positive.

Consider an algorithm that seeks to find the shortest path from s to t querying the

minimum number of edges. First, the algorithm queries the direct path. We observe

in Figure 5.4 that the value of the direct path is 10. Therefore, the algorithm needs to

continue querying edges, since it does not know if there is any other path that is shorter.

Hence, the algorithm continues querying edges until it can ensure that the shortest path

is found.

We consider that the set of queried edges by algorithm to ensure that the shortest

path is found is as given in Figure 5.5. We observe that in this situation it can be

ensured that the shortest path is the direct path from s to t. In fact, any non-directed

path from s to t is larger than 10, since it contains, at least, an edge whose values is

higher than 10. Moreover, Figure 5.5 also illustrates that the number of edges that this

algorithm has queried to find the shortest path is 6.

We know focus on the best algorithm that solves this instance. We observe in
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Figure 5.6: The minimum number of
queries required is 4.

Figure 5.6 that, if we only query the edges (S, T ), (S, a), (S, b) and (S, c), we can ensure

that the shortest path from s to t is the direct path (S, T ). We show this using the

same argument as before, that is, any path with one or more hops must traverse these

edges and, thus, we can conclude that it is not the shortest path. This result means

that it is sufficient to query only 4 edges in this graph to find a shortest path.

We observe that the number of queried edges by the algorithm of Figure 5.5 is 6

while the the minimum number of queries required to solve the problem is 4. This

means that the algorithm we have presented in Figure 5.5 is sub-optimal. Furthermore,

for this graph, we have that the ratio of the number of queried edges by the algorithm

and the minimum number of queries is 6/4. In this chapter, we measure the efficiency

of algorithms that solve this problem using the notion of query ratio, which is defined

as the worst possible case, among all the graphs of the same number of nodes, of the

latter ratio.

5.2 Related Work

We introduce the OPD problem which is a general framework to find an optimal path

according to a given metrics when the values of the edges are initially unknown. Hence,

the goal is to find the optimal path querying the minimum number of edges. When

the values of the edges are known, the optimal path finding has been studied only for

particular cases of the objective function, see [59] for example for optimal algorithms in

terms of time, space, and cost of solution path.

As we said in Section 5.1, the OPD problem has been only studied for particular

cases. An example is given in [87] which introduces the shortest path discovery problem.

In [87], the authors present a greedy algorithm that solves the shortest path discovery

problem. The algorithm is greedy because it increments the search following the shortest
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path known at each step. Such greedy criterion determines a family of algorithms. The

authors show that for any algorithm not in this family, there exists an algorithm in

the family that outperforms the one not in the family. In this work, they measure

the performance of algorithms that solve this problem with the number of queries. In

our work, we show that this measure, the number of queries, is inappropriate and we

propose the query ratio as a measure of performance of algorithms that solve the OPD

problem.

Algorithms such as Dijkstra’s [30] or A∗ [49] are classical tools that perform a single

search that do no require previous information on the graph. However, they solve the

OPD problem with a query ratio that can be as bad as n/2. To see this, consider an

input in which the direct edge has value 1/2, any other edge that is incident to the

destination node has value 1, and the rest of the edges have value 0. Without loss of

generality, we assume that the search algorithm starts its search in the source node.

The algorithm will query all the edges incident to the source node. Then, it will pick

any node different from the source and the destination, and will query all the edges

incident to that node. The algorithm will repeat that process until it has queried all

the edges incident to any node that is not the source nor the destination node. Hence,

in total, such an algorithm will perform n(n − 1)/2 queries. Nevertheless, the optimal

certificate has size (n− 1).

Another related work is [7] where the authors present the use of agents to discover

the edges of the graph or a shortest path from a source to a sink node. They give

bounds on the number of agents required to discover directed and undirected graphs.

The objective function of this problem is the number of agents used to discover the

solution, which differs from the objective function of our problem which is to minimize

the query ratio.

The authors of [70] study the shortest path problem when the graph is partially

unknown in advance, but specified dynamically. These problems seek dynamic decision

rules so that the total traversed distance has the best possible ratio to the shortest

path. The authors describe optimal decision rules for two cases: layered graphs of

width two, and two-optimal scenes with unit square obstacle. We observe that there

exists a relation between the problem in [70] and our problem. However, the objective

function are not the same since in the problem it is the ratio between distances, in our

problem the objective function is the ratio between number of edges.

In the context of bioinformatics, the survey [19] presents a collection of results and

methods in the area of combinatorial search, focusing on graph reconstruction using

queries of different type. The authors aim to reconstruct a hidden graph from a class

of graphs making as few queries as possible. The goal of such problem differs from the

goal of our problem, since the OPD problem aims to find an optimal path. The survey

[85] presents a compilation of results in the context of Shortest-Path Queries in Static

Networks where the goal is to discover the shortest path of an unknown graph. The

main difference of these problems with our problem is that Shortest-Path Queries in
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Static Networks includes a preprocessing algorithm that may compute some information

of the network to then be able to answer shortest-path or distance queries.

The algorithm we present in this chapter searches from the source and the sink node

at the same time. This type of algorithms are known in the literature as bidirectional

search algorithms and their study for the shortest path case has a long history, see

[73, 64, 63]. For example, in [29] the authors suggest the Birectional Heuristic Front-

to-Front algorithm i.e., the BHFFA2, which is know to be computationally expensive.

The authors of [41, 28] present improved versions of the latter algorithm that are com-

putationally less expensive.

5.3 Problem Formulation

In this section we formulate the OPD problem. First, we describe this problem and we

give the main definitions in Section 5.3.1. In Section 5.3.2 we present our assumptions.

5.3.1 Model description

In the OPD problem, we seek to find the optimal path between two nodes. In order

to discover this path, an algorithm has to uncover the unknown values of the edges.

We use the abstraction of an oracle for that purpose. Let O be an oracle that can be

accessed by an algorithm to uncover the value of an edge or a set of edges, i. e., the

oracle is accessed by an algorithm by requesting the value of an edge or a set of edges.

Hence, the oracle reveals to the algorithm the value of all the requested edges. For

short, we say that an algorithm uncovers an edge when we refer to all this process.

We now give some definitions. Let P(s,t) be a path between the nodes s and t and

δ(s,t) be the value of the optimal path between s and t.

Definition 5.3.1. The path P(s,t) is an α-approximation for the minimization case if

it is satisfied that
F (P(s,t))

δ(s,t)
≤ α,

and, for the maximization case, if

δ(s,t)

F (P(s,t))
≤ α.

When δ(s,t) is totally unknown (no lower bound is known except for the fact that

δ(s,t) is positive and finite), there is no guarantee on the value of path P(s,t) with respect

to that of an optimal path, and we say that P(s,t) is an ∞-approximation.

Definition 5.3.2. A set of edges C ⊆ E is an α-certificate of G if and only if

- the value of the edges in C is known, whereas edges in E \C have unknown values,
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- C contains a path from s to t, the so called proposed path, and

- there are enough uncovered edges in C to guarantee that the proposed path is an

α-approximation.

We remark that every edge in the proposed path belongs to the α-certificate. Hence,

its value is fully known. In all instances there exists at least one α-certificate for any α.

Indeed, the set E that contains all the edges of the graph is an α-certificate for any α.

Definition 5.3.3. An instance I of the OPD problem is formed by the following ele-

ments:

• a complete undirected graph G = (V,E) with n nodes,

• two nodes s and t ∈ V ,

• a targeted approximation factor α ≥ 1,

• a function F : 2E → [0,∞) that defines the value of any set of edges and

• an oracle O that can be accessed by an algorithm to uncover a set of edges.

The size of an instance I is said to be the number of nodes of the fully connected

graph G, and it is denoted by |I|.

Definition 5.3.4. A feasible solution for the OPD problem is an α-certificate whose

values are fully uncovered.

Let us denote by U(A(I)) the set of edges whose value has been uncovered by an

algorithm A when solving the OPD problem on the instance I. In other words, the set

U(A(I)) is the α-certificate given by algorithm A as a solution for the instance I. We

now define the number of queries of an algorithm that solves the OPD problem.

Definition 5.3.5. The number of queries for instances of size n of an algorithm that

solves the OPD problem is βn if and only if

|U(A(I))| ≤ βn ∀ I such that |I| = n.

We note that there might be many α-certificates in an instance and an algorithm

has to search for one. We are interested in the size of a smallest α-certificate of an

instance, i.e., the α−certificate with least number of edges. Let us denote by |Cα
min(I)|

the size of a smallest α-certificate of instance I. Henceforth, we define the query ratio

of an algorithm as follows.

Definition 5.3.6. The query ratio of an algorithm A that proposes an α-approximation

as a solution to solve the OPD problem is defined by the following ratio.

max
I

|U(A(I))|
|Cα

min(I)|
.
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5.3.2 Our assumptions

As we said in Section 2.3, the value of a set of edges H is given by F (H), where

F : 2E → [0,∞) is a function that depends on the values of the edges of H.

We consider that the function F satisfies the following conditions:

• given H ⊂ E, it holds that,

F (H) = 0 ⇐⇒ H = {∅},

• given H,H ′, H ′′ ⊆ E such that H ∩H ′′ = ∅ and H ∩H ′ = ∅, it holds that

if F (H ′) ≤ F (H ′′) ⇒ F (H ∪H ′) ≤ F (H ∪H ′′),

• given H,H ′ ⊆ E, where H ′ proper subset of H, it holds that

F (H ′) < F (H), for the minimization case and

F (H ′) > F (H), for the maximization case.

The last condition establishes the monotonicity property of the function F . From

this condition, we can say that, for the minimization case, the function F , applied to

any subset of edges of a path, is a lower-bound of the value of the of this path. On the

other hand, for the maximization case, the function F , applied to any subset of edges of

a path, is an upper-bound of the value of the of this path. In particular, all non-directed

path P(s,t) satisfies that for all e ∈ P(s,t) F (e) < F (P(s,t)) for the minimization case and

F (e) > F (P(s,t)) for the maximization case.

We also assume that F of an edge coincides with the value of this edge, i.e., F (e) =

f(e) > 0, for all e ∈ E.

We now present two interesting problems for networking researchers that arise as

particular cases of the function F we consider:

• in the case where F =
∑

e∈P(s,t)
f(e), where f(e) is the length of the edge e ∈ E,

the value of a path represents its length. In this case, the OPD problem finds

the shortest path between two nodes. This problem is known in the literature as

the Shortest Path Discovery Problem [87]. It has applications for the discovery of

minimum-latency paths in communication networks.

• in the case where F , applied to a path, represents the probability of successful

travel of a packet in this path, which can be written as
∏

e∈P(s,t)
p(e), where

p(e) ∈ [0, 1] is the probability that a packet is not lost in edge e, the OPD problem

finds the path that maximizes the probability of packets successful arrival to its

destination.
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We also need to assume that our function F is such that an optimal path can be

computed in polynomial time when the values of the edges are known.

For clarity of the presentation, in the following sections we focus on the case where

the optimization goal is to minimize. However, all the techniques can be used to analyze

maximization case and the results obtained for both cases coincide.

5.4 Number of Queries as Efficiency Measure

In this section, we concentrate on the number of queries of algorithms that solve the

OPD problem. We first show that a set of edges must contain a cut-set of G in order

to ensure to be a solution of the OPD problem. Then, we present an instance with n

nodes such that any algorithm needs to uncover more than n2/4 edges.

We first show that any α-certificate contains a cut set of G.

Lemma 5.4.1. For any instance of the OPD problem with α ≥ 1, all α-certificate

contain a cut-set in G such that the corresponding cut places s in one set of the partition

and t in the other.

Proof. First, we remark that an α-certificate contains a proposed path by definition.

Therefore, the value F (P(s,t)) of the proposed path P(s,t) is fully determined. Second, we

remark that, in order to provide any finite approximation guarantee, the α-certificate

needs to provide a bound for the value of a optimal path between s and t. Otherwise,

no bound for the value of an optimal path between s and t (except for the fact that

they are positive and finite).

Now, consider an instance I of optimal path discovery problem and an α-certificate

C. Let us assume that the α-certificate does not contain a cut-set that separates s and

t. Hence, there exists a path P ∗
(s,t) between s and t so that P ∗

(s,t) ∩ C = ∅. Since only

edges in C have a known value, the value of P ∗
(s,t) is totally unknown for the α-certificate

C, implying that C cannot give a bound on an optimal path. Thus, the α-certificate C
cannot guarantee any finite approximation for its proposed solution. Therefore, there

is a contradiction because C is not an α-certificate.

We now use the definition of any finite α ≥ 1 and α-approximation of Section 5.3

to characterize an α-approximation of the OPD problem.

Lemma 5.4.2. For any instance of the OPD problem, let C be any set of edges that

contains a path between s and t and a cut-set in G such that the corresponding cut places

s in one part and t in the other. Hence, C is an α-certificate for some finite α ≥ 1.

Proof. Consider a set of edges C as in the statement of the lemma. Let us denote by P C
(s,t)

the path in C between s and t. It holds that P(s,t) ∩ C 6= ∅ for any path P(s,t) ∈ P(s,t).
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Since min{F (P(s,t) ∩ C) : P(s,t) ∈ P(s,t)} ≤ δ∗(s,t), it holds that

F (P C
(s,t)) ≤

F (P C
(s,t))

min{F (P(s,t) ∩ C) : P(s,t) ∈ P(s,t)}
δ∗(s,t) = α δ∗(s,t).

This implies that C is an α−certificate for α < ∞.

According to the result of Lemma 5.4.1 any alpha-approximation must contain a

cut-set. This result enables us to present lower bounds for the number of queries βn
required so that an algorithm can guarantee a finite α-approximation.

Corollary 5.4.1. For any algorithm that solves the OPD problem for a finite approxi-

mation α ≥ 1, it holds that βn ≥ n− 1.

Proof. It is a direct consequence of Lemma 5.4.1 and the fact that the smallest cut-set

in the complete graph has size n− 1.

Nevertheless, the previous lower bound for βn is optimistic since there exist cases in

which any algorithm needs to uncover strictly more than n−1 edges in order to provide

a finite approximation.

Lemma 5.4.3. For any finite approximation α ≥ 1 and any integer 1 ≤ p ≤ n/2, there

exists an instance of the OPD problem so that any algorithm requires at least p · (n− p)

uncovered edges in order to provide an α-approximation.

Proof. We prove this lemma via the construction of an input that certifies the conditions

stated in the lemma. The direct edge (s, t) has value 1. Let us split the set of nodes in

one set of size p and one set of size n − p that leaves s in a group and t in the other.

The value of each edge with its end points in different sets (except for the direct edge)

is f(e) = α ≥ 1. Besides, for each edge with its two end points in the same set we set

f(e) = ǫ, where ǫ is positive and small.

We now use that for any path P it holds that f(e) < F (P ) to prove that the only

α-approximation is the direct path (s, t). To see this, we notice that the value of all the

non-directed paths is strictly higher than α since they contain at least one edges whose

value is α, whereas the value of the direct path is one. However, in order to guarantee

such condition, any algorithm needs to uncover at least the cut-set of size p · (n−p).

From the previous result, we can conclude that there exists an input such that the

number of uncovered edges to provide an α-approximation is n2/4.

Corollary 5.4.2. For any algorithm A that solves the OPD problem for an instance I

of size n such that α ≥ 1, there exists an input so that A requires at least n2/4 uncovered

edges in order to provide an α-approximation.
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According to Corollary 5.4.2, we consider meaningless the number of queries βn of

an algorithm. Indeed, for any algorithm and whatever the value of α ≥ 1, it is always

possible to find a bad instance such that the number of edges uncovered by the algorithm

will be of the same order of magnitude than the total number of edges. Therefore we

change our aim. In the rest of this work, we focus on the study of the query ratio of

algorithms that proposes α-approximations to solve the OPD problem. We believe that

the query ratio is a fair measure to evaluate the performance of algorithms for these

problems since it expresses how far is the number of queries asked by an algorithm with

respect to the best possible any algorithm can perform in that instance.

5.5 Query Ratio Analysis

In this part of the thesis, we concentrate on the study of the query ratio of algorithms

that solve the OPD problem. We first present a lower bound on the query ratio via the

design of an adversary constructed for any algorithm. Then, we present an algorithm

and give an upper-bound of its query ratio.

5.5.1 Lower Bound on the Query Ratio

We now present a lower-bound on the query-ratio of any algorithm that solves the OPD

problem. We show that for any algorithm, there exists an input I such that the ratio

|U(A(I))|/|Cα
min(I)| is strictly higher than one, for any value of α.

Lemma 5.5.1. For any algorithm A that solves the OPD problem with α ≥ 1, there

exists a particular instance I of size n such that

|U(A(I))|
|Cα

min(I)|
≥ 1 +

4

n
− 8

n2
.

Proof. See Appendix 5.A.1.

A direct consequence of Lemma 5.5.1 is the following theorem.

Theorem 5.5.1. For any algorithm A that solves the OPD problem with α ≥ 1, it holds

that

max
I

|U(A(I))|
|Cα

min(I)|
≥ 1 +

4

n
− 8

n2
.

We say that an algorithm solves optimally the OPD problem if its query ratio is

one. Hence, according to the result of Theorem 5.5.1, there is no algorithm that solves

the OPD problem optimally.
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Algorithm 2 Algorithm for Optimal Path Discovery Problem

1: INITIALIZE sets ms = {∅}, mt = {∅};
paths PATHprop = ∅;
paths PATH(s,u) = ∅, and PATH(u,t) = ∅ ∀u ∈ V/{s, t};
variable approx = ∞;
variables s∗ = s and t∗ = t;

2: while approx > α do

3: UPDATE ms := ms ∪ s∗.
4: UPDATE mt := mt ∪ t∗.
5: QUERY {(s∗, t∗)}.
6: QUERY {(s∗, u) : ∀u ∈ V/{ms ∪mt}}.
7: QUERY {(u, t∗) : ∀v ∈ V/{ms ∪mt}}.
8: COMPUTE the optimal path from s to t containing only uncovered edges.
9: UPDATE PATHprop to the optimal path from s to t containing only uncovered

edges.
10: COMPUTE the optimal su-path containing only uncovered edges ∀u ∈ V/{ms ∪

mt}.
11: UPDATE PATH(s,u) to the optimal su-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
12: COMPUTE the optimal ut-path containing only uncovered edges ∀ u ∈ V/{ms ∪

mt}.
13: UPDATE PATH(t,u) to the optimal ut-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
14: COMPUTE s∗ := argminu∈V/{ms∪mt} F (PATH(s,u)).
15: COMPUTE t∗ := argminu∈V/{ms∪mt} F (PATH(u,t)).

16: UPDATE approx :=
F (PATHprop)

F (PATH(s,s∗)∪PATH(t∗,t))
.

17: end while

18: RETURN P(s,t) := PATHprop.

5.5.2 Upper-bound of the Query Ratio

In this section, we present an algorithm that proposes an α-approximation as a solution

of the OPD problem. We remark that in the proposed algorithm α is a parameter, and

it can be set arbitrarily. Therefore, the proposed algorithm is a parametrized algorithm

that guarantees the approximation factor that we arbitrarily decide to obtain. We

compute the query ratio of such an algorithm proving that it never queries more than

two times the size of the smallest certificate of an instance, when it proposes an optimal

solution. We first analyze the algorithm that solves the OPD problem. A precise

description of the algorithm is presented in Algorithm 2.

We now explain how the algorithm is executed. First, it initializes the values s∗ and

t∗ to s and t respectively (see line 1 in Algorithm 2). The algorithm works in rounds.

At each round, the algorithm advances one step further in a double search that starts

from nodes s and t. First, Algorithm 2 adds s∗ (resp. t∗) to the set ms (resp. mt).
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Then, it queries the edge (s∗, t∗) as well as all the edges of the form (s∗, u) and (u, t∗)
where u are all the nodes not belonging to ms or mt (see lines 5 to 7 in Algorithm 2).

The algorithm then computes the optimal path between s and t that contains only

uncovered edges which is denoted PATHprop (see lines 8 and 9 in Algorithm 2). Then,

the algorithm picks the closest nodes to s and t among the nodes that have not been

previously picked. The closest node to s (resp. t) is denoted by s∗ (resp. t∗) (see

lines 14 and 15 in Algorithm 2). Finally, the algorithm computes whether PATHprop

is an α-approximation in line 16. If that is the case, Algorithm 2 stops and returns

PATHprop, otherwise, it iterates one more round.

The correctness of the algorithm follows directly from the following two facts. First,

the algorithm proposes a fully uncovered path. Second, the proposed path is an α-

approximation since in the last round it holds that
F (PATHprop)

F (PATH(s,s∗)∪PATH(t∗,t))
≤ α and

F (PATH(s,s∗) ∪ PATH(t∗,t)) is a lower bound on δ∗(s,t).

We now analyze the query ratio of Algorithm 2. To do so, we first compute the

number of queries performed by the algorithm up to a generic round i.

Lemma 5.5.2. For instance I with α ≥ 1, the number of queried edges by Algorithm 2

up to the i-th round is equal to i(2n− 2i− 1).

Proof. At each round, the algorithm queries 2|V/{ms∪mt}|+1 edges according to lines

5 to 7 of Algorithm 2. At each round, the sizes of ms and mt increases in one element.

Note that s∗ and t∗ are different at each round. Otherwise, if at some round s∗ = t∗,
in the previous round the algorithm would have stopped since the union of the optimal

path from s to s∗ and the optimal path from t∗ to t would have been the optimal path

from s to t. Hence, approx would have been equal to 1. Therefore, at the j-th round,

the size of V/{ms ∪mt} is equal to (n− 2j).

Thus, the number of edges queried by the algorithm up to round i is the sum of the

queries at all the previous rounds, i.e.,

i∑

j=1

(2(n− 2j) + 1) = i(2n− 2i− 1).

On the other hand, if Algorithm 2 stops after i rounds, we are able to give a lower

bound on the size of the smallest certificate of the instance. We give such a lower bound

in the following lemma.

Lemma 5.5.3. If Algorithm 2 stops after i rounds in an instance I, the size of the

minimum 1-certificate of the instance is at least i(n− i), i.e.,

|C1
min(I)| ≥ i(n− i).
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Figure 5.7: Initially unknown complete graph with 6 nodes.

Proof. See Appendix 5.A.2.

We are now in position to present the query ratio of Algorithm 2.

Theorem 5.5.2. Let AOPD denote Algorithm 2. Therefore, for the query ratio of

AOPD, it holds:

max
I

|U(AOPD(I))|
|C1

min(I)|
≤ 2− 1

n− 1
.

Proof. From Lemmas 5.5.2 and 5.5.3, it holds:

|U(AOPD(I))|
|C1

min(I)|
≤ i(2n− 2i− 1)

i(n− i)
= 2− 1

n− i
≤ 2− 1

n− 1
.

We now present an example where Algorithm 2 finds the shortest path between two

given nodes.

5.5.3 Example of Algorithm 2

We consider a complete graph with 6 nodes where the edges values are initially unknown,

as shown in Figure 5.7. We focus on the shortest path case between the nodes s and t,

i.e., the function F we consider is the sum, i.e., F (H) =
∑

e∈H f(e) and we have that

α = 1.

Algorithm 2 initializes the sets ms and mt to s and t, respectively. In Figure 5.8,

we represent the set of edges that Algorithm 2 queries in the first step. This set is

formed by the following edges: (s, t), (s, a), (s, b), (s, c), (s, d), (a, t), (b, t), (c, t) and

(d, t). Then, the algorithm sets the values of s∗ and t∗ to d and a, respectively, and the

shortest path that the algorithm proposes is PATHprop = (s, t). Furthermore, after the



5.5 QUERY RATIO ANALYSIS 105

�

��

� �

�

�

��

��

�

��
��

����

��

Figure 5.8: Set of edges queried by Algo-
rithm 2 in the first step
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Figure 5.9: Set of edges queried by Algo-
rithm 2 in the second step

first step, the value of the approximation factor is the following

F (PATHprop)

F (PATH(s,s∗) ∪ PATH(t∗,t))
=

F (s, t)

F ((s, d) ∪ (a, t))
=

10

1 + 1
= 5,

and it is higher than the desired α, which is one. Hence, the algorithm does not stop

in this first step.

In the second step, node s∗ is added to the set ms and node t∗ to the set mt,

which gives ms = {s} ∪ {s∗} and mt = {t} ∪ {t∗}. As a consequence, we have that

V/ms ∪mt = {b, c}. Thus, as it can be seen in Figure 5.9, the set of edges that are

queried in the second step is formed by (s∗, b), (s∗, c), (b, t∗), (c, t∗) and (s∗, t∗), where
s∗ = d and t∗ = a.

We now show that in the second step the algorithm stops since it has found the

shortest path. In Figure 5.10, we illustrate the edges that have been queried in the first

and second steps by Algorithm 2. For a better visualization, the dashed lines represent

the edges whose value is one and the continuous lines the edges with value equal to 10.

The proposed path by the algorithm is again the direct path, i.e., PATHprop = (s, t).

To see this, we observe that any other path from s to t with only uncovered edges

traverses, at least, one edge whose value is 10, respectively. The algorithm updates the

value of s∗ and t∗ to b and d respectively. For these values, it results that

F (PATH(s,s∗) ∪ PATH(t∗,t)) = F (s, b) + F (c, t) = 10 + 10 = 20.

We notice that the value of (s, t) is 10, which results that the approximation ratio

is less than 1, i.e.,

F (PATHprop)

F (PATH(s,s∗) ∪ PATH(t∗,t))
=

10

10 + 10
< 1.

Hence, since the approximation factor is less than one, the proposed path is the

shortest path. We note that the algorithm has queried 15 edges to obtain the shortest
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Figure 5.10: Set of queried edges by Al-
gorithm 2. Value of dashed lines (resp.
continuous lines) is one (resp. ten).
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Figure 5.11: Minimum set of edges to be
queried to find the shortest path from s to
t.

path from s to t.

We now focus on the size of the minimum certificate of this instance. In Figure 5.11,

we present the set of edges that must be queried to ensure that the shortest path between

s and t is found. We observe that this set is formed by the following edges: (s, t), (s, b),

(s, c), (a, d), (b, d) and (c, d). Besides, the size of the minimum certificate is 6. However,

the number of queries required by the algorithm to find the shortest path is 16. Hence,

for this instance, we have that

|U(A(I))|
|C1

min|
=

14

8
= 1.75,

which is less than the upper bound we derived in Theorem 5.5.2, as it can be observed

below:

1.75 =
14

8
< 2− 1

n− 1
= 2− 1

5
= 1.8.

5.5.4 Comparison with other algorithms

We first compare the performance of Algorithm 2 and the algorithm presented in [87]

when it solves the OPD problem. Then, we analyze the query ratio of single search

algorithms and we compare it the result obtained in Theorem 5.5.2.

We now describe a modification of the algorithm of [87] that solves the OPD problem.

This algorithm works in rounds. In each round, it computes the optimal path between

s and t with the current knowledge and the initial estimations. If all the edges of the

optimal path have been previously queried, the algorithms stops and returns this path.

Otherwise, it queries all the edges of this path and continues. Ties are broken giving

priority to the paths with least number of edges.

The algorithm of [87], when it solves the shortest path discovery problem, requires

some initial estimations of the values of the edges, that must be a less than the real

value of the edges. We consider that all the edges are initially estimated to zero. In the
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rest of the work, we denote by AGre
0 this algorithm and by AOPD Algorithm 2.

In the following lemma, we prove that the set of uncovered edges by Algorithm 2

and AGre
0 .

Lemma 5.5.4. For any instance I with α = 1, it holds that

U(AOPD(I)) = U(AGre
0 (I)).

Proof. See Appendix 5.A.3.

Using this result we can also give the query ratio of algorithm AGre
0 .

Theorem 5.5.3. For the algorithm AGre
0 we have that

max
I

|U(AGre
0 (I))|

|C1
min(I)|

≤ 2− 1

n− 1
.

In Theorem 5.5.2 and Theorem 5.5.3 we prove an upper-bound of the query ratio of

Algorithm 2 and algorithm AGre
0 . We observe that the query ratio of both algorithms

when they find the optimal solution coincides.

We remark that the upper-bound given in Theorem 5.5.2 and Theorem 5.5.3 is tight

and it is achieved when the size of the smallest certificate is n − 1 and the algorithms

uncover 2n− 3 edges.

We now compare the performance of Algorithm 2 with that of single search algo-

rithms such as A∗. As we said in Section 5.2, the query ratio of the single search

algorithms, such as A∗, is of order of n. We note that this value is much higher than

the upper bound on the query ratio obtained for Algorithm 2 in Theorem 5.5.2.

5.6 Numerical Experiments

In this section, we experimentally analyze the algorithm presented in Section 5.5.2. We

focus on the particular case of the shortest path discovery problem. As a consequence,

we consider that F is the sum of the values of the edges of a path, i.e., F (H) =
∑

e∈H f(e).

We first analyze the query ratio of Algorithm 2 when it finds the optimal solution

in random graphs and then we compare it with the obtained upper-bound. First, we

need to compute the size of the minimum certificate in a random graph. Hence, we now

formulate this problem.

We denote by f(e) the values of an edge e ∈ E and δ∗(s,t) is the shortest path between

s and t. The minimum certificate of a graph is obtained as a solution of the following
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optimization problem:

min
∑

e∈E
u(e)

s.t. δ∗(,t) ≤
∑

e∈P(s,t)

u(e)f(e), ∀P(s,t) ∈ P(s,t)

u(e) ∈ {0, 1}

According to this formulation, the minimum certificate is formed by the set of edges

such that u(e) = 1. The latter means that the size of the minimum certificate is given

by |Cα
min| =

∑

e∈V u(e).

We consider 100 random graphs with 8 nodes where the values of the edges are uni-

formly distributed random numbers between zero and one, i.e., f(e) ∈ (0, 1). For these

graphs, we execute Algorithm 2 and we calculate the size of the minimum certificate.

In Table 5.1 we show the distribution of the values of the query ratio we obtained. For

clarity, we only represent in Table 5.1 the values of the query ratio with frequency larger

than 5%. We observe that the query ratio is 1 the 23% of the cases which means that

our algorithm have solved the OPD problem optimally in 23 random graphs. On the

other hand, the upper-bound given in Theorem 5.5.2 is attained 20 times which means

that the bound obtained for our algorithm is tight. The mean of the query ratio over

the 100 instances is 1.437.

Query Ratio Frequency

1 23%

1.22 23%

1.2941 7%

1.6923 12%

1.8571 20%

Table 5.1: Distribution of the query ratio of the presented algorithm for 100 random
graphs of 8 nodes

In the second set of experiments, we compare the performance of Algorithm 2 (Algo-

rithm “algo” in Figure 5.12) with two modifications of the greedy algorithm presented

in [87].

(a) The first algorithm at each step computes the shortest path according to the

value of the uncovered edges and the value of the unknown edges set to a, and

uncovers the edge of this path that is closest to the source. We refer to algorithm

as deterministic and in Figure 5.12 is represented as “determ”.

(b) The second algorithm at each step computes the shortest path according to the

value of the uncovered edges and the value of the unknown edges set to 0, and
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Figure 5.12: Approximation factor evolution comparison. Uniformly distributed edges
and 50 nodes. Y axis in logarithmic scale.

uncovers an edge of this path picked uniformly at random. We refer to algorithm

as random and in Figure 5.12 is represented as “rand”.

We consider a random graph with 50 nodes where the values of the edges are uni-

formly distributed random numbers between zero and one. We execute Algorithm 2, the

deterministic algorithm and the random algorithm for all the origin-destination pairs

of this graph. In each execution of all the algorithms, we compute the evolution of the

approximation factor with respect to the number of uncovered edges. We recall that

the approximation factor is given by the ratio

F (PATHprop)

F (PATH(s,s∗) ∪ PATH(t∗,t))
,

where PATHprop is the proposed path and PATH(s,s∗) ∪ PATH(t∗,t) is a lower bound

on the shortest path. Hence, in Figure 5.12 we plot the average of the approximation

factor over all the possible source-destination pairs to show the average performance of

different algorithms. The y-axis of this figure is in the logarithmic scale.

In Figure 5.12 we show that the mean approximation factor of the deterministic

algorithm decreases fast when the number of queries is 50 while the others decrease in a

more constant fashion. However, this algorithm needs to uncover almost 1000 edges to

achieve an approximation factor equal to one which is much higher than for the other

algorithms. Moreover, we see that the average approximation factor of Algorithm 2

achieves the value 1 for a less number of uncovered edges comparing with the random

algorithm. Furthermore, the average approximation factor of Algorithm 2 is smaller

than the deterministic algorithm when the number of uncovered edges is higher than

100 and always less than the random algorithm.
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5.7 Conclusions

In this chapter we presented the OPD problem. For a given function F that is applied

to paths, algorithms that solve the OPD problem aim to find the path that optimizes

its value minimizing the number of queries. We observed that interesting cases arise as

particular cases of the OPD, for example the shortest path discovery problem or finding

the path with maximum probability of successful arrival of packets to the destination.

We first show that the number of queries does not measure correctly the performance

of algorithms solving the OPD problem. However, we introduced the query ratio, a

new measure which provides an important insight into the real quality of an algorithm

solving these problems. That is because it compares the number of queries performed by

the algorithm with the least amount of queries required to solve the problem. Therefore,

we consider that the query ratio is the correct measure to take into account in the design

of algorithms to solve the OPD problem. Finally, we have proposed an algorithm that

searches from both ends and whose query ratio is upper bounded by 2, guaranteeing

that the number of queries made by this algorithm is at most twice the minimum one

for any instance.

5.A Appendix of Chapter 5

5.A.1 Proof of Lemma 5.5.1

In order to prove this result, we construct a bad instance I for each algorithm. The

construction is made adversarially. We give a malicious adversary that acts as the oracle

and, each time that an algorithm uncovers an edge, the adversary gives the value of that

edge to the algorithm so that the performance of the algorithm is as bad as possible.

The adversary is precisely described in Algorithm 3.

The adversary constructs an instance similar to the instance of lemma 5.4.3, but ad

hoc to each algorithm. In the instance constructed by the adversary, the optimal path

between s and t is always the direct edge (s, t). Furthermore, the direct path is the only

α-approximation. On the other hand, the instance has a partition of the set of vertices

with s in one set of the partition and t in the other set. The partition and the size of

each sets of the partition depend on the algorithm. Edges that connect two nodes each

in a different set of the partition have value α. While, edges that connect two nodes of

the same set of the partition have value ǫ, where ǫ is positive and small.

Each algorithm can be seen as a sequence of edges to be uncovered. An algorithm

poses a query to the oracle that is an edge to be uncovered. The oracle answers each

query providing the value of that edge. In this particular construction, the adversary

plays the role of the oracle. Edges to be uncovered by an algorithm can be grouped in

four groups:
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Algorithm 3 Adversary that construct a bad instance for any algorithm that solves
the OPD problem, where e1, e2 . . . , el are the edges queried by the algorithm, i. e., ei is
the edge queried at the i-th step.

1: INITIALIZE sets Gs = {s} and Gt = {t};
functions g(u) = 0, ∀u ∈ V/{s, t}, g(s) = s, and g(t) = t.

2: for i = 1, . . . , l do
3: if ei = (s, t) then
4: REPLAY f(ei) = 1.
5: end if

6: if ei = (s, u) such that g(u) = 0 then

7: REPLAY f(ei) = ǫ and update g(u) := s and Gs := Gs ∪ {u}.
8: end if

9: if ei = (s, u) such that g(u) = t then
10: REPLAY f(ei) = α.
11: end if

12: if ei = (u, t) such that g(u) = 0 then

13: REPLAY f(ei) = ǫ and update g(u) := t and Gt := Gt ∪ {u}.
14: end if

15: if ei = (u, t) such that g(u) = s then

16: REPLAY f(ei) = α.
17: end if

18: if ei = (u, v) such that g(u) = g(v) = 0 then

19: REPLAY f(ei) = ǫ.
20: end if

21: if ei = (u, v) such that g(u) = 0 and g(v) ∈ {s, t} then

22: REPLAY f(ei) = ǫ.
23: UPDATE g(u) := g(v).
24: UPDATE g(u′) := g(v)∀u′ such that there exists a path from u to u′ composed

by uncovered edges each with value equal to ǫ.
25: UPDATE Gg(v) := Gg(v) ∪ {u} ∪ {u′ : u′ →ǫ u}, where u′ →ǫ u means that u

and u′ are connected by a path of uncovered edges each with value equal to ǫ.
26: end if

27: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) ∈ {s, t}/g(u) then
28: REPLAY f(ei) = α.
29: end if

30: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) = g(u) then
31: REPLAY f(ei) = ǫ.
32: end if

33: end for

i) {(s, t)},

ii) {(s, u) : u ∈ V/{t}},

iii) {(u, t) : u ∈ V/{s}} and,
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iv) {(u, v) : u ∧ v ∈ V/{s, t}}.

The way in which the adversary determines the partition is described in the following

lines. Nodes s and t are initially placed one in each set of the partition, let us denote

these sets by Gs and Gt, respectively (see the initialization of function g(s) and g(t)

in line 1 of Algorithm 3). If the algorithm queries the edge (s, t) to be uncovered, the

adversary answers to the algorithm f(s, t) = 1 (see lines 3 and 4 in Algorithm 3). If the

algorithm queries an edge of the second group to be uncovered and the node u has not

been placed in any set of the partition, the adversary answers f(s, u) = ǫ and places u

in the set Gs (see lines 6 and 7 in Algorithm 3). Otherwise, when u has been placed in

a set of the partition (it can be only the set Gt), the adversary answers f(s, u) = α (see

lines 9 and 10 in Algorithm 3). The adversary acts equivalently when the algorithm

queries an edge of the third group. That is, if u has not been placed in any set of the

partition, the adversary answers f(u, t) = ǫ and places u in the set Gt (see lines 12

and 13 in Algorithm 3). Otherwise, when u has been placed in a set of the partition

(it can be only the set Gs), the adversary answers f(u, t) = α (see lines 15 and 16 in

Algorithm 3). Finally, if the algorithm queries an edge of the fourth group, there exist

four different cases: u and v have not been placed in any set of the partition, then the

adversary answers f(u, v) = ǫ and none is placed in any set of the partition (see lines

18 and 19 in Algorithm 3). When one of them has been placed in a set of the partition,

say u, and the other one has not, the adversary answers f(u, v) = ǫ and node v is placed

in the same set than u. In this case, node v might have neighbours not yet assigned

to a set of the partition as well. In that case, all the nodes in the same connected

component than v are placed in the same set as nodes u and v (see lines 21 to 25 in

Algorithm 3). Finally, if the two nodes have been placed in a set of the partition, the

adversary answers f(u, v) = ǫ if the two nodes belong to the same set of the partition,

or f(u, v) = α if they belong to different sets (see lines 27 to 31 in Algorithm 3).

We observe that the optimal path from s to t in any instance constructed by the ad-

versary, regardless the algorithm, is the edge (s, t). Moreover, the only α-approximation

is the direct path. On the other hand, for any algorithm, we obtain two sets Gs and

Gt, according to the notation defined in Algorithm 3, that form a partition of V , i.e.,

Gs ∩ Gt = ∅ and Gs ∪ Gt = V . The sets Gs and Gt form a partition since every node

is added either to the set Gs or to the set Gt. Moreover, since any algorithm needs to

present an α-certificate and such certificate must contain a partition of V , therefore,

every node is added to one set.

The smallest α-certificate consists in all the edges that connect the nodes of both

sets of the partition Gs and Gt. Hence, it holds that |Cα
min(I)| = |Gs| · |Gt|. Moreover,

we see that the number of uncovered edges by the algorithm is the sum of |Cα
min(I)| and

the number of uncovered edges in each set of the partition. The graph formed by the

uncovered edges in each set of the partition is connected, since by construction there

exists a path from s (resp, t) to any node in Gs (resp, Gt). Therefore, the number of

uncovered edges in each set of the partition is at least |Gs|−1 and |Gt|−1, respectively.
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Thus, it holds that:

|U(A(I))|
|Cα

min(I)|
≥ |Cα

min(I)|+ |Gs| − 1 + |Gt| − 1

|Cα
min(I)|

= 1 +
|Gs|+ |Gt| − 2

|Gs| · |Gt|
.

Since, it also holds that |Gs| + |Gt| = n, the fraction |Gs|+|Gt|−2
|Gs|·|Gt| yields its minimum

value when |Gs| = |Gt| = n
2 . Hence, we obtain

|U(A(I))|
|Cα

min(I)|
≥ 1 +

4

n
− 8

n2
.

5.A.2 Proof of Lemma 5.5.3

In this proof we use the following notation. We denote by ms,j (respectively, mt,j) the

set ms (respectively mt) at the end of the j-th round of the algorithm. We also denote

by s∗j (respectively t∗j ) the node that was added to ms (respectively to mt) at the j-th

round of the algorithm. According to these definitions, we have that in round j,

ms,j = ms,j−1 ∪ {s∗j}, mt,j = mt,j−1 ∪ {t∗j},

where ms,0 = mt,0 = {∅} and s∗1 = s and t∗1 = t. We use ms = ms,i and mt = mt,i to

denote the sets ms and mt after Algorithm 2 has finished. Moreover, for any two nodes

u, v and a set of nodes U ⊆ V , we denote by P ∗
(u,v)|U the optimal path between u and

v in the graph induced by the set of nodes U .

First we show that the following inequality hold for all 1 ≤ j ≤ i.

F (P ∗
(s,s∗j−1)

|ms,j−1 ∪ P ∗
(t∗j−1,t)

|mt,j−1) ≤ F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ). (5.1)

We first consider that the path P ∗
(s,s∗j )

visits s∗j−1 and P ∗
(t∗j ,t)

visits t∗j−1. In this case,

we observe that

P ∗
(s,s∗j−1)

|ms,j−1 ⊂ P ∗
(s,s∗j )

|ms,j ,

which implies that

P ∗
(s,s∗j−1)

|ms,j−1 ∪ P ∗
(t∗j−1,t)

|mt,j−1 ⊂ P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ,

and it follows that

F (P ∗
(s,s∗j−1)

|ms,j−1 ∪ P ∗
(t∗j−1,t)

|mt,j−1) < F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ).

We now consider that the path P ∗
(s,s∗j )

|ms,j does not visit the node s∗j−1, due to the
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order in which Algorithm 2 chooses nodes s∗j−1 and s∗j , it holds:

F (P ∗
(s,s∗j−1)

|ms,j−1 ≤ F (P ∗
(s,s∗j )

|ms,j−1−{s∗j−1}.

which implies that

F (P ∗
(s,s∗j−1)

|ms,j−1 ∪ P ∗
(t∗j−1,t)

|mt,j−1) ≤ F (P ∗
(s,s∗j )

|ms,j−1−{s∗j−1}∪{s∗j} ∪ P ∗
(t∗j−1,t)

|mt,j−1).

Otherwise, the algorithm would have picked s∗j before s
∗
j−1. Since the path P ∗

(s,s∗j )
|ms,j

does not visit the node s∗j−1, it also holds that

P ∗
(s,s∗j )

|ms,j = P ∗
(s,s∗j )

|ms,j−1−{s∗j−1}∪{s∗j}.

Therefore, it holds:

F (P ∗
(s,s∗j−1)

|ms,j−1 ∪ P ∗
(t∗j−1,t)

|mt,j−1) ≤ F (P ∗
(s,s∗j )

|ms,j−1−{s∗j−1}∪{s∗j} ∪ P ∗
(t∗j−1,t)

|mt,j−1)

= F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j−1,t)

|mt,j−1).

Now, if P ∗
(t∗j ,t)

|mt,j visits t∗j−1 then with the same argument as before we state that

P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j−1,t)

|mt,j−1 ⊂ P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ,

and thus (5.1) holds since

F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j−1,t)

|mt,j−1) < F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ).

On the contrary, if P ∗
(t∗j ,t)

|mt,j does not visit t∗j−1, we use the previous reasoning to

derive that

F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j−1,t)

|mt,j−1) ≤ F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j−1,t)

|mt−1,j−{t∗j−1}∪{t∗j})

= F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j ).

In conclusion, (5.1) holds for all 1 ≤ j ≤ i.

Second, we show that the following equation holds.

F (P(s,t))

F (P ∗
(s,s∗i )

|ms ∪ P ∗
(t∗i ,t)

|mt)
> 1. (5.2)

The optimal path proposed by the algorithm might be fully uncovered either at the

very last round of the algorithm or it was uncovered in an earlier round. When the

proposed path was uncovered in the last round of the algorithm, (5.2) holds because in

this case the proposed path must visit s∗i and t∗i and thus P(s,t) = P ∗
(s,s∗i )

|ms ∪ P ∗
(s∗i ,t

∗

i )
∪
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P ∗
(t∗i ,t)

|mt , where P
∗
(s∗i ,t

∗

i )
is the optimal path from s∗i to t∗i . Hence P

∗
(s,s∗i )

|ms ∪P ∗
(t∗i ,t)

|mt ⊆
P(s,t) which means that the ratio F (P ∗

(s,s∗i )
|ms ∪ P ∗

(t∗i ,t)
|mt) < F (P(s,t)), i.e, the ratio of

(5.2) is strictly higher than one.

In the case when the proposed path was uncovered in a round earlier than the last

round of the algorithm, (5.2) holds because in the round i− 1, the algorithm computes
F (P(s,t))

F (P ∗

(s,s∗
i
)
|ms∪P ∗

(t,t∗
i
)
|mt )

and the result has to be larger than 1 since the algorithm does not

stop. Therefore it holds:

F (P(s,t))

F (P ∗
(s,s∗i )

|ms ∪ P ∗
(t∗i ,t)

|mt)
> 1.

Now, using (5.1)-(5.2), we are able to show that, for all 1 ≤ j ≤ i, it holds the

following:
F (P(s,t))

F (P ∗
(s,s∗j )

|ms,j ∪ P ∗
(t∗j ,t)

|mt,j )
> 1.

Therefore, for any 1 ≤ j ≤ i and any path that intersects P ∗
(s,s∗j )

|ms,j and P ∗
(t∗j ),t

|mt,j ,

any 1-certificate needs at least one edge not in P ∗
(s,s∗j )

|ms,j ∪P ∗
(t∗j ,t)

|mt,j to show that the

proposed path is the optimal path. Now, for any pair of nodes s∗j , t
∗
j , consider the paths

of the form P ∗
(s,s∗j )

|ms,j ∪ P(s∗j ,t
∗

j )
|V/{ms,j∪mt,j} ∪ P ∗

(t∗j ,t)
|mt,j , where P(s∗j ,t

∗

j )
|V/{ms,j∪mt,j}

denotes a path between s∗j and t∗j in V/{ms,j ∪mt,j}. There exists at least n − 2j + 1

disjoint paths of the form previously described, one per each node in V/{ms,j ∪ mt,j}
plus the path that connects directly s∗j and t∗j . Hence, at least n− 2j +1 edges need to

be present in any 1-certificate for each pair of nodes s∗j , t
∗
j .

Therefore, if we sum up all these edges, we obtain that any 1-certificate needs to

contain at least the following amount of edges.

i∑

j=1

n− 2j + 1 = in− i(i+ 1) + i = i(n− i).

5.A.3 Proof of Lemma 5.5.4

In this proof we use a similar notation than in the proof of Lemma 5.5.3, that is, we

say that in round j Algorithm 2 uncovers the edge (s∗j , t
∗
j ) and all the edges (s∗j , u) and

(u, t∗j ) for all u that do not belong to ms,j ∪mt,j .

The proof proceeds by an induction in the steps. Therefore, we define a common

notion of step for both algorithms. We consider that at step j algorithm AGre
0 does

n− 2j + 1 rounds where, in each round, it computes the optimal path with the current

information and uncovers all the edges of this path. A step for AOPD is one round of

Algorithm 2.

We want to show that the set of edges that both algorithms uncover when they
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provide a 1-approximation is the same. To do that, we show that in each step j both

algorithms uncover the same set of edges by an induction on the number of steps.

We now check that in the first step both algorithms uncover the same set of edges.

Since all the edges are initially estimated to a ≥ 0, the algorithm AGre
0 finds that the

optimal is the direct path (s, t). In the next 2(n−1) rounds, AGre
0 finds that the optimal

paths are all the two-hop paths. Hence, algorithm AGre
0 uncovers the edge (s, t) and

the edges (s, u) and (u, t) for all u ∈ V/{s, t}. On the other hand, Algorithm 2 also

uncovers the mentioned set of edges in its first step.

We then suppose that until step j both algorithms have uncovered the same set of

edges and they haven not stopped yet. We aim to prove that the set of uncovered edges

after step j also coincide. At step j algorithm AGre
0 does n− 2j +1 rounds and in each

round it computes the optimal path with the known information and uncovers all the

edges of this path. We know that the optimal paths computed by AGre
0 at step j must

contain unknown edges since the algorithm has not stopped. Furthermore, at step j,

the only edges that are unknown are those that connect nodes that do not belong to

ms,j−1 ∪mt,j−1. Hence, we have that

s∗j = argmin
v∈V/{ms,j−1∪mt,j−1}

F (P(s,v)),

and

t∗j = argmin
v∈V/{ms,j−1∪mt,j−1}

F (P(v,t)),

and the unknown edges are estimated to 0 which is the minimum possible value. This

means that the optimal paths computed by AGre
0 at step j are of the form PATH(s,s∗j )

∪
P(s∗j ,t

∗

j )
∪PATH(t∗j ,t)

, where P(s∗j ,t
∗

j )
is either (s∗j , t

∗
j ) or a path from s∗ to t∗ that traverses

only one node that does not belong toms,j∪mt,j . Furthermore, in these paths the unique

unknown edges are (s∗j , t
∗
j ) and the edges (s∗j , u) and (u, t∗j ) where u does not belong to

ms,j ∪mt,j , which are the edges that uncovers Algorithm 2 at step j. Therefore, AGre
0

uncovers the same set of edges that Algorithm 2 at step j.
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Summary and Future Research

In this thesis, we analyzed the efficiency of telecommunication systems. Hence, we

focused on the performance of various systems and we compared it with the optimal

one. First, we focused in a single server queue model and we investigated the efficiency

of a pricing technique of users that share a common resource. Then, we concentrated

on multi-server systems and we explored the efficiency of the non-cooperative load

balancing. Finally, we considered a network where the values of the edges are initially

unknown. We looked at the efficiency of algorithms that find an optimal path between

two given nodes.

Let us now present the main conclusions of this work, as well as the different direc-

tions our work can be taken further.

6.1 Single Server with Relative Priorities

We presented a non-cooperative game where users compete for the capacity of a resource.

Each player chooses its payment, that is proportional of its priority to get service. The

objective of each user is thus to minimize its payment while it is satisfied that its jobs

are served before a given deadline. We assume that the capacity is shared according

to the DPS model. In the DPS queue the rate allocated to each class depends on its

relative priority. Due to the lack of explicit expressions of the response times in the

DPS discipline, this game can be analyzed only in particular cases. For example, we

gave the conditions of the existence of an equilibrium when the service requirements are

exponential.
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We also studied the efficiency of this game. We showed that the Price of Anarchy

is one if the equilibrium is unique. Unfortunately, we are able to prove that there is a

unique equilibrium when there are two players and the service time requirements are

general. For the cases when this game cannot be solved in closed-form, we present an

approximation based on a heavy-traffic result. In the simulations section, we measure

the accuracy of the proposed approximation. We observed that the payments given by

this approximation can provide a non negligible error if the users are heterogeneous.

However, it captures correctly the structure of the solution and the performances are

always accurate.

We identify some problems that this work leaves open. For example, we showed

that the dynamics of the best-response algorithm converge to the Nash equilibrium in

the following cases: (i) when the starting point is feasible, and (ii) when the number of

players is two and the service time requirements is general. Hence, an interesting issue

is considering the approximated game to show that the dynamics of the best-response

algorithm converge to the Nash equilibrium for any point when the number of players

is arbitrary.

We now present another possible extension of this work. In this game, we assumed

that there is a minimum price to be paid by the users in order to get service. An

interesting situation arises if we consider that there is also a maximum price that users

are willing to pay. In this case, a player decreases its traffic if its price in the equilibrium

exceeds the maximum price.

6.2 Non-cooperative Load Balancing

We compared the performance of two load balancing techniques in server farms. First,

we studied a centralized architecture, where a single dispatcher receives all the incoming

jobs. Then, we considered a decentralized architecture with finite number (strictly

higher than one) of selfish dispatchers. We say that these dispatchers are selfish since

each one receives a portion of the total traffic and seeks to minimize the mean response

time of its jobs. Hence, for the decentralized case, a non-cooperative game can be

defined.

The goal was to compare the performance of both architectures. This performance

comparison have been previously done using the notion of Price of Anarchy, that is

defined as the ratio of the performance in the worst equilibrium over the performance

in the centralized architecture. We showed that, when the system load is very close

to one, the performance of both systems is equal. This result is interesting since, in

classical queueing theory, the mean response time tends to infinity when the load is

almost one.

We investigated a server farm with servers of two different speeds. For a fixed values

of the capacities, we focused on the ratio of the performance in the equilibrium and the
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performance of the centralized architecture. We showed that this ratio is maximum

when the decentralized setting starts using the slow servers. Furthermore, we deter-

mined that the maximum value of this ratio depends only on the ratio of the number

of servers in each group and the ratio of the capacities. We also proved, for the case of

a server with two different speeds, that the Price of Anarchy is achieved when there is

one server that is infinitely faster than the rest of the servers. In the rest of the cases,

we observed that the performance of both settings is similar.

We also investigated the non-atomic case, as a particular case when the number

of dispatchers grows to infinity. For this instance, we proved that in heavy-traffic the

performance of both settings is not equal. For a fixed values of the capacities, we proved

the maximum of the ratio of the performance in the equilibrium and the performance

of the centralized architecture is given when the decentralized setting starts using the

slow servers. Besides, we presented that the value of the maximum can be written only

in terms of the ratio of the number of servers in each group and the ratio of the values

of the capacities. We gave the value of the of PoA for the non-atomic case, that is equal

to the number of servers, which coincides with the result given by [52]. Otherwise, we

saw that both settings have a similar performance.

The main limitation of this work is that most of the results are given for the case of

a server farm of two different speeds. As future work, we have the inefficiency analysis

of server farms for arbitrary values of the capacities. The study of the value of the PoA

in the general case is also considered an interesting issue.

We assumed that the servers are PS queues, that is, all the the jobs are served

simultaneously at equal rate. If we consider service differentiation in the servers, we

need to define a different game for the decentralized architecture. In the atomic case,

the jobs can choose their payment and the strategy of each dispatcher is the amount

of traffic they send to each server. The equilibrium in this case is the strategy where

no player (user or dispatcher) has incentive to change its strategy. In the non-atomic

game, we can also define a game that takes into account service differentiation of users.

For this case, each incoming job can choose the server where it gets service and the

payment it makes. In the equilibrium, the jobs has no incentive to change the payment

or the server where they get service.

6.3 Path Discovery Algorithms

We considered a complete undirected graph with n nodes where the values of the edges

are initially unknown, but can be discovered asking to an oracle. Given two nodes and a

function that applies to paths, we aim to find the best value path between these nodes,

uncovering the minimum number of edges. This problem is the OPD problem.

We claimed that the number queried edge values is not the correct measure of the

efficiency of algorithms that solve the OPD problem. Indeed, we showed that there exists
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an input such that any algorithm needs to query more than n2/4 edges, which is of the

order of the number of edges. Hence, we suggested the query ratio, the ratio between

the number of queried edge values and the least number of edge values required to solve

the problem, to measure the efficiency of algorithms that solve the OPD problem.

We presented lower and upper bounds on the query ratio. First, we proved that,

in a complete graph with n nodes, the query ratio of any algorithm is higher than

1 + 4/n − 8/n2. This result means that there is no algorithm that solves the OPD

problem optimally. We then presented an algorithm whose query ratio is less than

2− 1
n−1 . We also analyzed the query ratio of single search algorithms and we concluded

that its query ratio is of order of n.

Our work can be extended in divers directions. We note that there exists a gap

between the lower bound and upper bound on the query ratio. The question we need

to answer is whether there exists an algorithm, or on the contrary an adversary that

produces a bad instance for any algorithm, so that this gap is closed.

We note that the OPD problem is formulated for a general graph, but we analyze

the query ratio of algorithms that solve this problem in a complete graph. Hence, an

open problem is to extend our results to a not necessarily complete graph. Another

possibility is to show that, for a given algorithm, the minimum query ratio is given in

complete graphs.
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[87] C. Szepesvári. Shortest path discovery problems: A framework, algorithms and

experimental results. In AAAI, pages 550–555, 2004.



BIBLIOGRAPHY 127

[88] I. M. Verloop, U. Ayesta, and R. Núñez-Queija. Heavy-traffic analysis of a
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Résumé Étendu

Cette thèse porte sur l’analyse de l’efficacité des réseaux de télécommunications. Dans

les réseaux modernes, les ressources sont partagées entre les utilisateurs et la façon

de les partager influence les performance perçues par les utilisateurs. En effet, les

utilisateurs peuvent partager les ressources de manière à ce que la performance du

système de communication soit optimale, alors qu’un partage inapproprié peut con-

duire à des dégradations de performances significatives. L’objectif de cette thèse est

d’étudier l’efficacité du partage des ressources en comparant la performance obtenue à

la performance optimale du système.

Notre travail est à l’intersection des domaines de recherche suivants : la théorie

des files d’attente, la théorie des jeux et la théorie des graphes. La théorie des files

d’attente et la théorie des jeux sont les principaux outils que nous utilisons dans la

première partie de la thèse, dans laquelle nous analysons des jeux non-coopératifs dans

les réseaux de files d’attente. Dans ces jeux, les clients du réseau de files d’attente sont

supposés égöıstes et l’objectif est d’analyser les performances résultantes de la prise de

décision stratégique de ces agents égöıstes. Tout d’abord nous analysons la concurrence

entre les utilisateurs pour le partage de la capacité d’un seul serveur. Ensuite, nous

nous concentrons sur la performance obtenue lorsque des agents égöıstes partagent les

ressources d’un système multi-serveurs.

Dans la deuxième partie de la thèse, nous étudions le problème de la recherche d’un

chemin optimal dans un graphe dans lequel la valeur des arêtes est initialement inconnue.

Nous utilisons des techniques du domaine de la théorie de graphes afin d’analyser la

performance des algorithmes qui permettent de résoudre ce problème.

R.1 Préliminaires

Théorie des files d’attente

Dans cette thèse, nous nous intéressons à l’étude d’une file d’attente avec un seul serveur,

qui est un modèle de base de la théorie des files d’attente [46]. Dans le modèle de serveur

unique, les tâches arrivent dans le système et attendent, dans la file d’attente, jusqu’à

ce qu’elles puissent être exécutées. Une fois qu’une tâche a été trâıtée, elle quitte le

système.
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Quatre éléments caractérisent le comportement d’une file d’attente : le processus

d’arrivée des tâches, la distribution des temps de service, la taille du tampon et la

politique d’ordonnancement.

• Pour le processus d’arrivée des tâches, nous supposons que celui-ci est un proces-

sus de Poisson de paramètre λ, ce qui signifie que les intervales de temps entre

deux arrivées consécutives dans la file d’attente sont indépendants et suivent une

distribution exponentielle négative de paramètre λ.

• Le temps de service d’une tâche est le temps nécessaire pour trâıter celle-ci. Dans

nos travaux, les temps de service des tâches peuvent être distribués exponentielle-

ment ou bien suivre une distribution générale, mais nous les supposerons toujours

indépendants et identiquement distribués (i.i.d).

• La taille du tampon est définie comme le nombre maximum de tâches qui peuvent

être en attente dans la file d’attente.

• La politique d’ordonnancement caractérise la façon dont les tâches en attente sont

choisies pour accèder au service. La performance du traitement de la file d’attente

est donc influencée par le type de politique d’ordonnancement utilisée.

Un système multi-serveurs est composé d’un ensemble de serveurs. Chaque serveur

est modélisé comme une file d’attente et un agent de routage contrôle la façon dont

les tâches sont envoyées aux serveurs. Le rôle de cet agent est d’optimiser certains

paramètres du système comme par exemple le temps de réponse aux requêtes. Dans

les systèmes multi-serveurs que nous considerons les serveurs sont des files d’attente de

type Processeur partagé [6] et l’agent de routage utilise une politique de routage de type

Bernoulli pour envoyer les tâches aux serveurs [35].

Théorie des jeux non cooperatifs

Un jeu non coopératif [68] est caractérisé par les éléments suivants :

• Un ensemble de joueurs (ou agents),

• Un ensemble d’actions (ou stratégies) que les joueurs peuvent choisir,

• Un coût associé à chaque joueur qui dépend de l’action de tous les agents.

Une hypothèse forte de la théorie des jeux non coopératifs est que les joueurs sont

égöıstes et que chacun vise à minimiser son coût.

Un ensemble de stratégies est à équilibre si aucun joueur ne peut diminuer son coût

en changeant unilatéralement sa stratégie. Il est important de noter que l’équilibre

peut être différent de l’optimum social, qui est la stratégie qui minimise le coût total du
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système. Le Prix de l’Anarchie (PoA) est une mesure standard pour évaluer l’inéfficacité

de l’équilibre [62]. Il est défini comme le rapport entre le coût du pire équilibre de Nash

et celui de l’optimum social.

Théorie des graphes

Un graphe est défini par une paire G = (V,E), où V est l’ensemble des nœuds et E

l’ensemble des arêtes. Un graphe est composé de n nœuds si |V | = n. Un graphe est

complet si chaque paire de nœuds est connectée par une arête. Un graphe non orienté

est composé d’arêtes dont le sens n’est pas précisé. En conséquence, un arc de u à v est

équivalent à un arc de v à u. Dans cette thèse, nous nous concentrons sur les graphes

compléts et non orientés.

Un chemin entre deux nœuds u et v est denoté par P(u,v) et l’ensemble de tous

les chemins possibles de u à v par P(u,v). Pour tout ensemble d’arêtes H ⊆ E, nous

définissons la valeur de H comme F (H), où F : 2E → [0,∞). Un chemin optimal est

un chemin P ∗
(u,v) s’il optimise (maximise ou minimise) la valeur F (P ∗

(u,v)). Si la fonction

F est additive et que l’objectif est de minimiser la valeur associée par F à un chemin,

le chemin optimal P ∗
(u,v) correspond à un plus court chemin entre u et v.

L’algorithme A∗ [49] et l’algorithme de Dijkstra [30] sont deux algorithmes qui per-

mettent de trouver le plus court chemin entre deux nœuds donnés. Dans cette thèse,

nous analysons des graphes dans lesquels les valeurs des arêtes sont initialement incon-

nues, mais peuvent être connues en questionnant un oracle. Nous cherchons à découvrir

un chemin optimal en minimisant le nombre de questions posées à l’oracle. Nous com-

parons la performance des algorithmes qui permettent d’obtenir le chemin optimal dans

ce type de graphes avec la performance des algorithmes classiques cités ci-dessus.

R.2 Serveur Unique avec Priorités Relatives

Dans les services d’hébergement de fichiers, la bande passante disponible du fournisseur

est partagée entre les utilisateurs qui téléchargent simultanément des fichiers. Cette

situation peut être modélisé comme un jeu de partage de ressources, au sein duquel les

utilisateurs sont en concurrence pour partager la capacité de trâıtement du serveur.

Nous considérons un jeu dans lequel R joueurs partagent le capacité d’un serveur.

Soit C = {1, . . . , R} l’ensemble des joueurs. La variable aléatoire représentant le temps

de service des tâches du joueur i est Bi. Nous notons E(Bm
i ) le m-ème moment de

cette variable aléatoire. Pour clarifier la notation, nous écrivons E(B1
i ) = E(Bi) et,

dans le cas d’une durée de service exponentiellement distribuée, E(Bi) = 1/µi. Le taux

d’arrivée des tâches du joueur i est λi et la charge du joueur i est ρi = λiE(Bi). La

charge totale du système est ρ =
∑

i∈C ρi.

Nous supposons que chaque utilisateur peut choisir le prix à payer par unité de
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charge gi. Ce prix est proportionnel à sa priorité dans la file d’attente. Autrement dit,

un paiement plus élevé conduit à une vitesse de service plus élevée. L’objectif du joueur

i est de minimiser son paiement tout en s’assurant que le temps moyen de réponse de

ses travaux ne dépasse pas un délai donné, i.e., en s’assurant que T i(g; ρ) ≤ ci.

min
gi≥ǫ

ρigi

sous la contrainte T i(g; ρ) ≤ ci.

La valeur ǫ est le prix minimal qu’un utilisateur doit payer pour pouvoir être servi.

Le vecteur gNE est à l’équilibre de Nash si

gNE
i = argmin

{
gi ≥ ǫ : T i(gi,g

NE
−i ; ρ) ≤ ci

}
,

pour tout i ∈ C, où gNE
−i =

(
gNE
1 , . . . , gNE

i−1 , g
NE
i+1 , . . . , g

NE
R

)
.

Nous supposons que la capacité du serveur est partagée entre les utilisateurs en util-

isant le modèle Discriminatory Processor Sharing (DPS) [8] , qui est une généralisation

multi-classe de l’ordonnancement Processor Sharing (PS) [58]. Dans le modèle DPS,

toutes les tâches du système sont servies simultanément, mais la vitesse de service de

chaque utilisateur dépend de sa priorité relative. Ainsi, s’il y a Ni tâches de classe i à

un instant donné, une tâche de classe i est trâıtée au taux

ri(N1, . . . , NR) =
gi

∑R
j=1 gjNj

.

Le système DPS est très compliqué à analyser et le jeu que nous avons formulé ne

peut être résolu que pour des cas particuliers. En conséquence, nous proposons d’étudier

une approximation du jeu originel. En utilisant les résultat de [88], nous définissons le

jeu en régime de fort trafic de la façon suivante :

min
gi≥ǫ

ρigi

subject to T i(g; 1) ≤ c̃i.

où c̃i = (1 − ρ)ci et T i(g; 1) = E(Bi)
gi

∑

k λkE(B2
k)

∑

k λkE(B2
k)

1
gk

. Nous notons que ce problème est

valide pour le cas général et qu’il peut être utilisé comme approximation du jeu originel

car T i(g; ρ) ≈ T i(g;1)
1−ρ en régime du trafic fort.

Définition R.2.1. Le vecteur des temps de réponses t est réalisable s’il existe un

vecteur g > 0 tel que ti = T i(g; ρ), pour tout i ∈ C.

Nous dénotons par T = {t : t est réalisable} l’ensemble des vecteurs réalisables.

Définition R.2.2. Un vecteur c ∈ R
R
+ est faisable si et seulement si ∃t ∈ T tel que

t � c, où � est l’ordre composant par composant.
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Dans la suite, nous allons dire que le jeu est faisable si le vecteur c est faisable.

Définition R.2.3. Un joueur de classe i est consideré équitable si le temps de réponse

qu’il obtient avec des poids égaux, E(Bi)/(1− ρ), est plus petit que ci, i.e., si

E(Bi)/ci ≤ (1− ρ).

R.2.1 Travaux Connexes

Le temps de réponse de la file d’attente DPS pour le cas général n’a pas de forme

analytique simple. L’expression explicite de la réponse moyenne a été obtenue seule-

ment pour deux classes et pour les temps de service exponentiellement distribués. De

plus, le temps de réponse moyen de travaux est la solution d’un système d’équations

si les temps de service sont exponentiellement distribués [34]. Pour des temps des ser-

vices généraux, la dérivé du temps moyen de réponse conditionnel satisfait un système

d’équations intégro-différentielles. C’est pour cela qu’il n’y a pas beaucoup de résultats

sur les comportements stratégiques dans les systèmes à temps partagé. Dans [54] les

auteurs considèrent deux types d’applications dans une file d’attente DPS qui sont en

concurrence pour être servies et analysent comment le prix optimal peut être trouvé.

Dans [93], un travail de recherche plus récent, les auteurs définissent un jeu pour la file

d’attente DPS dans laquelle chaque utilisateur cherche à minimiser la somme du coût de

traitement prévu et de son paiement. Étant donnée la difficulté à analyser un tel modèle,

les auteurs proposent une approximation en régime de fort trafic, c’est à dire lorsque la

charge du système est proche de 1. Même si nous utilisons nous aussi le modèle DPS

pour le partage de la capacité, le problème que nous considérons est différent, puisque,

dans notre formulation, chaque utilisateur vise à minimiser son paiement en s’assurant

que ses tâches soient servis avant un certain temps.

R.2.2 Solution du Jeu

Tout d’abord, nous démontrons certaines propietés que le jeu satisfait quand il est

faisable.

Proposition R.2.1. Avec des temps de service généraux et un nombre de joueurs

arbitraire, si le jeu est faisable, nous savons que :

• Il existe un equilibre de Nash,

• Les dynamiques de l’algorithme du meilleur temps de réponse converge vers un

équilibre de Nash si le point initial g verifie que T i(g, ρ) ≤ ci pour tout i ∈ C.

Comme expliqué précédemment, le jeu que nous avons formulé ne peut pas être

résolu pour le cas général. Maintenant, nous présentons les conditions d’existence de

l’equilibre de Nash.
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Théorème R.2.1. Soit ρr =
∑

i∈r ρi, où r ⊆ R. Pour des temps de service exponen-

tiels, le jeu est faisable si et seulement si

∑

i∈r
ρici ≥ Wr, ∀r ∈ R,

où Wr =
1

1−ρr

∑

i∈r
ρi
µi
.

Le résultat suivant caractérise l’efficacité de l’équilibre.

Proposition R.2.2. Pour les temps de service généraux, nous savons que :

• Pour un nombre de classes arbitraire, si c ∈ T , PoA = ∞.

• Pour le jeu avec deux joueurs, tel que c /∈ T et l’equilibre de Nash existe, PoA = 1.

Nous caractérisons l’equilibre de Nash pour le jeu avec deux joueurs et des temps

de service exponentiellement distribués.

Proposition R.2.3. Pour le jeu de deux joueurs avec des temps de service exponentiels

et c1µ1 ≤ c2µ2, si le jeu est faisable et c /∈ T , l’unique equilibre est

• gNE = (ǫ, ǫ) si le joueur 1 est juste et

• sinon, gNE = (gNE
1 , ǫ), où

gNE
1 = ǫ

−µ1ρ2 + µ2(1− ρ2) [µ1c1(1− ρ)− 1]

−µ1ρ2 − µ1(1− ρ1) [µ1c1(1− ρ)− 1]
.

R.2.3 Le Jeu en Régime de Fort Trafic

Nous avons défini un jeu qui est valide dans un régime de fort trafic. Nous sommes

capables de résoudre ce jeu pour le cas général. D’abord, nous montrons les conditions

de faisabilité.

Proposition R.2.4. Le jeu en fort trafic est faisable si et seulement si

∑

i

λiE
(
B2

i

)
(

c̃i
E(Bi)

− 1

)

≥ 0.

Nous démontrons aussi que l’équilibre de Nash pour le jeu en régime de fort trafic

est unique et nous le caractérisons.

Théorème R.2.2. Si le jeu en régime de fort trafic est faisable et c /∈ T HT , l’unique

équilibre de Nash est

gNE
i = ǫ

t̃m/E(Bm)

c̃i/E(Bi)
, for all i < m,

gNE
i = ǫ, for all i ≥ m,
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DISPATCHER

DISPATCHER

DISPATCHER

Figure R.1: Architecture centralisée

DISPATCHER

DISPATCHER

DISPATCHER

Figure R.2: Architecture decentralisée

où m ∈ C est la valeur minimale telle qu’il existe t̃m ≤ c̃m qui vérifie

t̃m
E(Bm)

=

∑R
k=1 λkE

(
B2

k

)
−∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m λkE
(
B2

k

) .

R.3 Equilibrage de Charge Non Coopératif

Nous nous concentrons sur le problème de l’équilibrage de charge d’une ferme de serveurs.

Nous considerons une architecture centralisée au sein de laquelle il y a un agent de

routage responsable de l’équilibrage de charge, c’est-à-dire qu’il reçoit toutes les tâches

entrantes et les envoie aux serveurs, avec pour objectif de minimiser le temps de réponse

moyen des tâches. Nous analysons égalementi une architecture decentralisée où plusieurs

agents égöıstes font la répartition de charge. Dans l’architecture decentralisée, nous dis-

ons que les agents sont égöıstes car ils visent à minimiser le temps de réponse moyen de

leurs propres tâches. Ainsi, nous pouvons définir un jeu non-cooperatif entre les agents

de routage de l’architecture decentralisée.

Nous voulons comparer la performance de l’architecture decentralisée à l’équilibre

avec K agents de routage et la performance de l’architecture centralisée pour évaluer

l’efficacité de l’équilibrage de charge non-cooperatif. Soit DK(λ, r) la performance de

l’architecture decentralisée à l’équilibre avec K agents de routage et D1(λ̄, r) celle de

l’architecture centralisée. Nous définisons l’inefficacité de la façon suivante :

inefficacité ISK(r) = sup
λ∈Λ(λ̄),λ̄<R

DK(λ, r)

D1(λ̄, r)
.

où R est la somme des capacités des serveurs, λ̄ le trafic entrant total et Λ(λ̄) est

l’ensemble des vecteurs positifs (λ1, λ2, . . . , λK) tels que
∑

i λi = λ̄. Dans ce contexte,

λi représente l’intensité du trafic contrôlé par l’agent de routage i. Le Prix de l’Anarchie

pour ce système correspond alors à la configuration des capacités des serveurs ayant
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l’efficacité la moins bonne, autrement dit

PoA(K,S) = sup
r

ISK(r).

R.3.1 Travaux Connexes

L’efficacité de l’équilibrage de charge non-cooperatif a été étudiée auparavant avec le

Prix de l’Anarchie. Nous résumons maintenant les bornes superieures sur le PoA dans

les jeux d’équilibrage de charge non-cooperatif disponibles dans la littérature. Dans [52],

les auteurs montrent que pour le cas non atomique, i.e., quand il y a un nombre infini

de joueurs, le PoA est inférieur au nombre de serveurs. Au contraire, les auteurs de [14]

analysent le cas atomique et prouvent que le PoA est inférieur à la racine carrée du

nombre d’agents de routage. Selon ces résultats, la valeur du PoA est très grande, donc

l’équilibre de Nash peut être extrêmement inefficace. Nous prouvons ci-dessous que

l’équilibre de Nash est efficace dans la plupart des cas.

R.3.2 Pire Cas des Condition de Trafic

Tout d’abord, nous observons que, parmi tous les vecteurs de trafic avec une intensité

totale λ̄, le maximum deDK(λ, r) est obtenu quand tous les agents de routage contrôlent

la même quantité de trafic λ̄/K. Ainsi, pour analyser l’inefficacité nous avons seulement

besoin de regarder le trafic entrant total, i.e.

inefficacité ISK(r) = sup
λ̄<R

DK( λ
K e, r)

D1(λ̄, r)
,

où e = (1, . . . , 1).

Nous montrons également que la performance des deux architectures est la même

lorsque la charge du système est proche de 1.

Théorème R.3.1. Pour K < ∞ fixé,

lim
λ̄→R

DK( λ̄
K e, r)

D1(λ̄, r)
= 1.

R.3.3 Inefficacité pour Deux Classes de Serveurs

Nous nous concentrons sur l’inefficacité d’une ferme de serveurs avec S serveurs, en

supposant que S1 sont des serveurs rapides de capacité r1 et que S2 = S − S1 sont des

serveurs lents de capacité r2, avec r1 > r2. Nous conjecturons que, pour un nombre de

serveurs donné et pour chaque instance du problème avec des capacités de serveur arbi-

traires, nous pouvons construire un scénario avec le même nombre de serveurs rapides

et lents dont l’inefficacité est pire.
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Conjecture R.3.1. Pour une ferme de serveurs de S serveurs avec r1 > rS

ISK(r) ≥ ISK(r∗),

où r = (

m
︷ ︸︸ ︷
r1, . . . , r1,

S-m
︷ ︸︸ ︷
rS , . . . , rS) et r∗ = (

m
︷ ︸︸ ︷
r1, . . . , r1,

S-m
︷ ︸︸ ︷
rm+1, . . . , rS−1, rS), avec r1 > rm+1 ≥

· · · ≥ rS−1 ≥ rS et m ≥ 1.

Nous définisons λ̄NE = S1r1

(

1− 2
√

(K−1)2+4K
r1
r2

−(K−1)

)

.

Nous prouvons que l’inefficacité est atteinte quand λ̄ = λ̄NE , autrement dit, quand

l’architecture décentralisée commence à utiliser les serveurs lents.

Théorème R.3.2. Pour une ferme de serveurs de deux classes de serveurs,

ISK(r) =
DK( λ̄

NE

K e, r)

D1(λ̄NE , r)
.

En plus, nous montrons que l’inefficacité depend uniquement des ratios r1/r2 et

S1/S2.

Proposition R.3.1. Soit β = r1
r2

> 1 et α = S1
S2

> 0, nous avons que

ISK(r) =
1

2

√

(K − 1)2 + 4Kβ − (K + 1)
( 1
α
+
√
β)2

1
α
+ 2β√

(K−1)2+4Kβ−(K−1)

− ( 1α + 1)
.

Nous montrons également que le PoA d’une ferme de serveurs avec S serveurs et K

agents de routage est obtenu quand il y a un seul serveur rapide qui est infiniment plus

rapide que les serveurs lents, autrement dit

PoA(K,S) = lim
β→∞

IK(
1

S − 1
, β).

Nous pouvons observer sur les Figures R.3 and R.4 que le PoA est atteint pour

les conditions que nous avons définies précédemment et que la valeur de l’inefficacité

est proche de 1 pour le reste des cas. Selon ce résultat, nous pouvons conclure que

l’équilibre du jeu de répartition de charge est efficace pour la plupart des cas.

R.3.4 Inefficacité pour un Nombre Infini d’Agents de Routage

Nous comparons la performance des deux architectures lorsque le nombre d’agents de

routage tend vers l’infini. Nous montrons d’abord que, si la charge est proche de 1, la

performance des deux systèmes ne cöıncide pas.
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Figure R.3: Evolution de l’inefficacité en
fonction de α et β. K = 2 et S = 1000.

Figure R.4: Evolution de l’inefficacité en
fonction de α et β. K = 5 et S = 1000.

Proposition R.3.2. Pour une ferme de serveurs avec S serveurs,

lim
λ̄→R

lim
K→∞

DK( λ̄
K e, r)

D1(λ̄, r)
=

S R
(
∑S

i=1

√
ri

)2 .

Par rapport a l’inefficacité, nous nous concentrons sur les fermes de serveurs avec

deux types de serveurs. Nous montrons que, pour ce cas, l’inefficacité est atteinte

quand l’architecture decentralisé commence à utiliser les serveurs lents. La valeur de

l’inefficacité pour ce cas depend uniquement des ratios r1/r2 et S1/S2.

Corollary R.3.1. Soit α = r1
r2

et β = S1
S2
. Nous avons que

I∞(α, β) =
(β − 1)(1 + 1

α)

(
√
β + 1

α)
2 − ( 1α + 1)2

.

Nous obtenons aussi l’expression du PoA pour une ferme de serveurs avec deux types

de serveurs et un nombre infini d’agents de routage.

Proposition R.3.3.

PoA(∞, S) = S.

Nous observons que cette expression cöıncide avec celle donnée dans [52].

R.4 Algorithmes de Découverte de Chemin

Nous considérons un graphe complet non orienté G = (V,E), où V est l’ensemble des

nœuds et E est l’ensemble des arêtes, et le nombre de nœuds est n. La valeur des arêtes

est inconnue au début, mais peut être demandée. La performance d’un chemin P(s,t)

est donnée par sa valeur F (P(s,t)). Ainsi, pour une fonction donnée F , l’objectif est de

découvrir un chemin P ∗ entre s et t qui optimise la performance. Le problème réside
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dans le fait que les valeurs des arêtes ne sont pas connues. N’importe quel algorithme

qui vise à résoudre ce problème a besoin de découvrir la valeur de certaines arêtes pour

trouver le chemin donnant la performance optimale. L’objectif est alors de trouver un

chemin de performance optimale en découvrant le minimum d’arêtes. Ce problème est

connu comme le problem de Découverte de Chemin Optimal (OPD). Pour autant que

nous savons, ce problème a été étudié dans la littérature que pour des cas particuliers.

Un exemple est étudié dans [87], dans lequel les auteurs introduisent le problème de

découverte de plus court chemin et cherchent à trouver le chemin de moindre coût avec

le nombre minimum d’arêtes demandées.

Une instance du problème OPD I est défini par le graphe complet G, les valeurs

des arêtes et un facteur d’approximation requis α sur la performance de la solution par

rapport au chemin de performance optimale. Nous disons qu’un algorithme résout le

problème OPD pour l’instance I si la solution que l’algorithme donne satisfait ce niveau

de performance. Pour le cas α = 1, un algoritme trouve un chemin optimal.

Nous définisons le problème OPD pour le cas de minimisation et de maximisation

et pour une fonction générale. Par contre, pour analyser ce problème nous avons besoin

de certaines hypothèses sur la function F :

• si H ⊂ E, alors

F (H) = 0 ⇐⇒ H = {∅},

• si H,H ′, H ′′ ⊆ E tel que H ∩H ′′ = ∅ et H ∩H ′ = ∅, alors

if F (H ′) ≤ F (H ′′) ⇒ F (H ∪H ′) ≤ F (H ∪H ′′),

• si H,H ′ ⊆ E, où H ′ est un sous-ensemble particulier H, alors

F (H ′) < F (H), pour le cas de minimisation et

F (H ′) > F (H), pour le cas de maximisation.

De plus, nous supposons que les valeurs des arêtes sont entre deux valeurs positives a

et b. Dans la suite, nous nous concentrons sur le problème de minimisation. Cependant,

les preuves des résultats obtenus s’étendent sans difficulté au cas où l’objectif est de

maximiser la valeur du chemin.

Nombre de Requêtes comme Mesure de Performance

Soit U(A(I)) l’ensemble des arêtes découvertes par l’algorithme A quand il résout le

problème OPD pour une instance I. Pour estimer la performance des algorithmes qui

résolvent le problème OPD, une possibilité est d’utiliser le nombre de requêtes.
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Définition R.4.1. Le nombre de requêtes d’un algorithme qui résout le problème OPD

est βn si et seulement si

|U(A(I))| ≤ βn ∀ I such that |I| = n.

Nous montrons que le nombre de requêtes βn de tout algorithme est, au moins,

n2/4, ce qui est de l’ordre du nombre d’arêtes dans un graphe complet. Ainsi, selon ce

résultat, nous pouvons affirmer que le nombre de requêtes n’est pas une bonne mesure

de la performance des algorithmes qui résolvent le problème OPD.

Soit Cα
min(I) l’ensemble des arêtes de taille minimale qui peut résoudre le problème

OPD pour une instance I. Le ratio des requêtes d’un algorithme A est défini de la façon

suivante.

Définition R.4.2. Le ratio des requêtes d’un algorithme A qui résout le problème OPD

est defni comme suit:

max
I

|U(A(I))|
|Cα

min(I)|
.

Analyse du Ratio des Requêtes

Nous analysons le ratio des requêtes des algorithmes qui résolvent le problème OPD.

Tout d’abord, nous montrons une borne inférieure pour n’importe quel algorithme qui

résout le problème OPD.

Théorème R.4.1. Tout algorithme A qui résout le problème OPD satisfait

max
I

|U(A(I))|
|Cα

min(I)|
≥ 1 +

4

n
− 8

n2
.

Nous disons qu’un algorithme résout le problème OPD de façon optimale s’il a un

ratio des requêtes égal à 1. Selon cette définition et le résultat prśenté ci-dessus, nous

pouvons conclure qu’il n’y a pas d’algorithme qui résout le problème OPD en posant

systématiquement le nombre minimal de questions.

Nous présentons un algorithme et nous étudions la valeur du ratio des requêtes. Cet

algorithme est décrit dans l’Algorithme 1. Nous prouvons que le ratio de requêtes de

cet algorithme est plus petit que 2.

Théorème R.4.2. Soit AOPD l’algorithme décrit dans Algorithme 1. Donc, quand

AOPD trouve un chemin optimal, nous avons

max
I

|U(AOPD(I))|
|C1

min(I)|
≤ 2− 1

n− 1
.
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Algorithme 1 Algorithme pour le problème OPD

1: INITIALISER ensembles ms = {∅}, mt = {∅};
chemin PATHprop = ∅;
chemins PATH(s,u) = ∅, et PATH(u,t) = ∅ ∀u ∈ V/{s, t};
variable approx = ∞;
variables s∗ = s et t∗ = t;

2: tant que approx > α faire

3: ACTUALISER ms := ms ∪ s∗.
4: ACTUALISER mt := mt ∪ t∗.
5: DEMANDER {(s∗, t∗)}.
6: DEMANDER {(s∗, u) : ∀u ∈ V/{ms ∪mt}}.
7: DEMANDER {(u, t∗) : ∀v ∈ V/{ms ∪mt}}.
8: CALCULER le chemin optimal entre s et t qui contient uniquement des arêtes

connues.
9: ACTUALISER PATHprop au chemin optimal entre s et t qui contient uniquement

des arêtes connues.
10: CALCULER le chemin entre s et u optimal qui contient uniquement des arêtes

connus ∀ u ∈ V/{ms ∪mt}.
11: ACTUALISER PATH(s,u) au chemin optimal entre s et u qui contient unique-

ment des arêtes connues ∀ u ∈ V/{ms ∪mt}.
12: CALCULER le chemin optimal entre u et t qui contient uniquement des arêtes

connus ∀ u ∈ V/{ms ∪mt}.
13: ACTUALISER PATH(t,u) le chemin optimal entre u et t qui contient uniquement

des arêtes connues ∀ u ∈ V/{ms ∪mt}.
14: CALCULER s∗ := argminu∈V/{ms∪mt} F (PATH(s,u)).
15: CALCULER t∗ := argminu∈V/{ms∪mt} F (PATH(u,t)).

16: ACTUALISER approx :=
F (PATHprop)

F (PATH(s,s∗)∪PATH(t∗,t))
.

17: fin tant que

18: RETURNER P(s,t) := PATHprop.

Comparaison avec d’autres Algorithmes

Soit AGre
hom une modification de l’algorithme glouton présenté dans [87] pour résoudre le

problème OPD quand les estimations sont homogènes, i.e. les estimateurs initiaux sont

tous égaux à a. Nous étudions le ratio des requêtes de AGre
hom quand il trouve la solution

optimale et nous observons qu’il cöıncide avec celui de l’algorithme AOPD.

Theorem R.4.1. Pour l’algorithme AGre
hom, nous avons

max
I

|U(AGre
hom(I))|

|C1
min(I)|

≤ 2− 1

n− 1
.

Nous analysons maintenant la performance des algorithmes de recherche tel que

l’algorithme A∗. Nous montrons que le ratio des requêtes est de l’ordre de n pour ces
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algorithmes. Nous observons que cette valeur est beaucoup plus grande que la borne

supérieure du ratio des requêtes de l’algoritme AOPD.
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