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ABSTRACT
Energy Packet Network (EPN) consists of a queueing network

formed by n blocks, where each of them is formed by one data

queue, that handles the workload, and one energy queue, that han-

dles packets of energy.

We study an EPN model where the energy packets start the

transfer. In this model, energy packets are sent to the data queue of

the same block. An energy packet routes one workload packet to

the next block if the data queue is not empty, and it is lost otherwise.

We assume that the energy queues have a finite buffer size and

if an energy packet arrives to the system when the buffer is full,

jump-over blocking (JOB) is performed, and therefore with some

probability it is sent to the data queue and it is lost otherwise.

We first provide a value of this probability such that the steady-

state probability distribution of packets in the queues admits a

product form solution. Moreover, in the case of a single block, we

show that the number of data packets in the system decreases as

the JOB probability increases.

CCS CONCEPTS
•Mathematics of computing→Markov processes;Queueing
theory.
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1 INTRODUCTION
In the era of Internet of Things, Information and Communications

Technology systems are growing at a very fast rate and, as a conse-

quence, the performance analysis of such a huge network is a very

challenging problem. Moreover, the source of energy that feeds

this network includes an increasing amount of different types of

renewable energies. The volatility of this kind of energy sources
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introduces clearly uncertainty in the amount of energy that is avail-

able in the future and, therefore, increases the difficulty of the

optimal design of current communication systems.

Current technology allows energy to be harvested. This means

that energy can be stored in batteries or other devices so as to

be used later. As a consequence, many researchers in the field

of Computer Science have considered recently models where the

energy is harvested. An example is the Energy Packet Network

(EPN) model. This model has been introduced by Gelenbe and his

colleagues [9] as a particular case of G-networks (we discuss in the

related work section the literature in this topic). It considers that

energy is represented by packets of discrete units of energy (Joules

for instance) and, since its source is intermittent, it is assumed that

arrivals to the system are given according to a random process.

Therefore, in the EPN model, two types of packets are considered:

on the one hand, the data packets that model the workload and

are stored in the data queues; and on the other hand, the energy

packets that are stored in the energy queues.

In this article, we study the EPNmodel where the energy packets

start the transfer. This means that the energy packets are sent to

the data queue and if, upon arrival, there is no data packet in the

data queue, the energy packet is lost. However, if there are data

packets available when the energy packet arrives, one data packet

is sent to the next station and the energy packet disappears. This

model captures well the performance of a system where tasks can

only be executed when there is energy to feed the system. Sensor

nodes and data centers are examples of these systems.

In the performance analysis literature, assumptions are some-

times considered that allow to get analytical results, but that are

unrealistic from the practical point of view. This is the case, in fact,

for most of the EPN models where the energy packet initiates the

transfer, where it is considered that the energy queues (batteries)

have a buffer of infinite size. In this article, we relax this assumption

and we consider that the energy queues have a finite buffer size. We

further assume that, if an energy packet arrives when the energy

packet is full, there is a jump-over blocking (JOB), which means

that it is sent to the data queue with some probability and it is lost

otherwise.

The main contributions of this article are summarized as follows:

• We analyze the stationary distribution of packets in the

queues and we show that it admits a product form solution

for a given value of the probability at which an energy packet

is sent to the data queue in case of jump-over blocking, i.e.,

in case of the energy queue is full.

https://doi.org/10.1145/3388831.3388841
https://doi.org/10.1145/3388831.3388841
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Figure 1: Block i and block j of the Energy Packet Network with energy queues with finite buffer size.

• For one block, we show that there exists a stochastic ordering

according to the probability at which an energy packet is

sent to the data queue in case of jump-over blocking. From

this result, we conclude that the number of data packets of

the system decreases with this probability.

We remark that we consider a very general model where some

of the rates are a function of the number of energy packets in the

system and, therefore, the results of this article cover a wide range

of interesting cases such as energy queues that are single server

and multiserver.

The remainder of the article is organized as follows. In Section 2,

we put our work in the context of the existing literature. In Section

3, we describe the model we study in this article. We present the

product form result in Section 4 and the stochastic ordering result

in Section 5. Finally, we provide the main conclusions of our work

in Section 6.

2 RELATEDWORK
The Energy Packet Networks (EPNs) were introduced in [8–10] to

represent the interaction of intermittent sources of energy from

batteries or renewal energy such as solar or wind with Informa-

tion Technology devices that consume energy. Since then, the EPN

model has been successfully applied to analyse wireless sensors

[12], mobile networks [11], computer systems design [13], data

centers [4] and optimization of power distribution policies [14].

Most of the EPNmodels are particular cases of G-networks [5–7].

Therefore, the existence result of a product form of the steady-state

distribution of packets in the queues of the latter model applies to

the EPN model, which allows to investigate optimization problems

as well as to design networks with energy harvesting. However,

we observe that EPN models are not always related to G-networks,

see for instance, the model in [1] where the authors use a diffusion

approximation to solve the interactions between IT and energy.

All the EPNmodels that have been presented in the literature can

be divided in two types depending on the initiator of the transfer.

On the one hand, there are the models where the energy packets

initiate the transfer (see for instance [13]). For this case, when the

energy packets are sent to the data queue and are lost if there is

no data packet. On the other hand, the data packets can start the

transfer (see for example [3, 16]), in which case the data packets

are sent to the energy queue and are routed to the next data queue

if there are energy packets and lost otherwise. We note that, in

both cases, when a successful transfer occurs, the energy packet is

removed from the system, whereas the data packet is sent to the

next station or leaves the system.

In this work, we study EPNs in a network where the energy

queue has a finite buffer size, hence we extend the result of [15]

where EPN models with a single node are considered. Since our

model considers jump-over blocking in the energy queues, it is

also clearly related to the set of queueing-theory papers where this

technique is used, see for instance [17, 20] for its application to

Jackson Networks. We refer to [2] for full details about product-

form results of queueing-theoretical models with finite buffer size.

3 MODEL DESCRIPTION
In this section, we present the model of Energy Packet Network

that we study. The network consists of n stations or blocks, each of

them formed by a data queue and an energy queue. The arrivals

to the data queue of block i follow a Poisson process with rate λi .
The arrivals to the energy queue of the data queue of block i are
also Poisson and its rate is denoted by αi . A leakage of an energy

packet occurs with exponential time. We consider that the rate at

which leakage of an energy packet of block i occurs is a function
of the number of energy packets in that block, i.e., if there are yi
energy packets in block i , the leakage rate is denoted by βi (yi ).

In our model, energy packets start the transfer. This means that

an energy packet is sent to the data queue. We assume that the time

required by an energy packet to reach the data queue is exponen-

tially distributed with a rate that depends on the number of energy

packets present in block i , that is, if there are yi energy packets in

the block i , this rate is denoted by µi (yi ). When an energy packet

finds a data packet, the data packet is transmitted to the data queue

of block j with probability pi, j and leaves the system with proba-

bility pi,s . However, when the data queue is empty upon arrival of

an energy packet, this energy is lost.

We consider that the energy queue of block i has a finite buffer
size, which we denote by Bi . If an energy packet arrives to block
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i when the energy queue of this block is full, jump-over blocking

occurs. In other words, if the energy packet cannot be enqueued,

it is either sent immediately to the data queue with jump-over

blocking (JOB) probability qi (where it transfers a data packet if
the data queue is not empty and is lost otherwise) or lost with

probability 1 − qi . We observe that, in both cases, the number of

packets of the energy queue of block i does not change after the
arrival of this energy packet, i.e., it remains full.

Two blocks of our EPN model are represented in Figure 1.

Throughout this article, we denote by Ja,bK the set of all the
integer values between a and b (where a < b). Besides, we denote
by ej the vector with the component in the position j equal to 1

and all other components equal to zero. Finally, we also denote by

1A the indicator function of the event A.

4 PRODUCT FORM OF THE DISTRIBUTION
OF PACKETS

In this section, we investigate the distribution of packets of the sys-

tem described in the previous section. Themain result of this section

is that the distribution of packets in the queues has a product-form

expression.

Let x be a vector that indicates the number of data packets in

each block and y a vector of the number of energy packets in each

block, i.e., x = (x1, . . . ,xn ) and y = (y1, . . . ,yn ) where xi and yi
are respectively the number of data packets and of energy packets in

block i . We denote by π (x ,y) the stationary distribution of packets

in the queues. We now present the global balance equations:

π (x ,y) *
,

n∑
i=1

(
λi + αi1[yi<Bi ] + βi (yi )1[yi>0] + µi (yi )1[yi>0]

+αiqi1[yi=Bi ,xi>0]
))
=

n∑
i=1

(
λiπ (x − ei ,y)1[xi>0]

+αiπ (x ,y − ei )1[yi>0]
)
+

n∑
i=1

(
βi (yi + 1)π (x ,y + ei )1[yi<Bi ]

)
+

n∑
i=1

(
µi (yi + 1)π (x ,y + ei )1[xi=0,yi<Bi ]

)
+

n∑
i=1

(
µi (yi + 1)pi,sπ (x + ei ,y + ei )1[yi<Bi ]

)
+

n∑
i=1

n∑
j=1

(
µi (yi + 1)pi, jπ (x + ei − ej ,y + ei )1[yi<Bi ,x j>0]

)
+

n∑
i=1

(
αiqipi,sπ (x + ei ,y)1[yi=Bi ]

)
+

n∑
i=1

*.
,

n∑
j=1

αiqipi, jπ (x + ei − ej ,y)1[yi=Bi ,x j>0]
+/
-
. (1)

In the LHS of the above expression, we represent the total flow

out from state (x ,y). The RHS consists of 7 sums and it is formed

by the total flow into (x,y). In the first sum, we represent the flow

due to an arriving data packet and energy packet. In the second

sum, we represent the flow due to the leakage of an energy packet.

In the third sum, we represent the flow of an energy packet going

to an empty data queue. In the next two sums, we represent the

flow of an energy packet going to a non-empty data queue: in

the first one the data packet served leaves the system and in the

second one it is routed to another block. Finally, the last two sums

show the flow into the state (x ,y) in the case of the jump-over

blocking, that is, when the energy queue is full. The penultimate

sum represents the flow when an energy packet is sent to the data

queue and finds a data packet, which leaves the system, whereas

the last sum represents the case where the data packet does not

leave the system and is sent to the next station.

In the following result, we show that when the rate of leakage

and of travel time are equal (up to a constant factor), there exists

a value of qi such that the distribution of packets in the queues is

given by a product form expression.

Theorem 4.1. Let fi : J0,Bi K→ J1,Bi K and bi andmi a pair of
constants (i.e., they do not depend on the state yi ) such that βi (yi ) =
bi fi (yi ) and µi (yi ) =mi fi (yi ). We write qi =

mi
mi+bi

. Then

π (x ,y) = *.
,

n∏
i=1

Ci (1 − ρi )ρ
xi
i

yi∏
j=1

γi (j )
+/
-

(2)

where for all i ∈ J1,nK

γi (yi ) =
αi

(bi +mi ) fi (yi )
, yi ∈ J1,Bi K, (3)

and

ρi =
λi +

∑n
j=1 α jqjρ jpj,i

αiqi
, (4)

if ρi < 1 for all i .
Furthermore, the normalization constant is given by

Ci =
1∑Bi

j=0
∏j

k=1 γi (k )
.

for all i ∈ J1,nK.

Proof. We first check that π is a probability distribution as

follows:∑
x ∈J0,BKn

∑
y∈Nn

π (x ,y) =
∑

x ∈J0,BKn

∑
y∈Nn

*.
,

n∏
i=1

Ci (1 − ρi )ρ
xi
i

yi∏
j=1

γi (j )
+/
-

=
*.
,

∑
x ∈J0,BKn

n∏
i=1

(1 − ρi )ρ
xi
i
+/
-

*.
,

B∑
yi=0

n∏
i=1

*.
,
Ci

yi∏
j=1

γi (j )
+/
-

+/
-

=
*.
,

n∏
i=1

*.
,

∑
xi ∈N

(1 − ρi )ρ
xi
i
+/
-

+/
-

*.
,

n∏
i=1

*.
,

B∑
yi=0

*.
,
Ci

yi∏
j=1

γi (j )
+/
-

+/
-

+/
-

=

n∏
i=1

*.
,

B∑
yi=0

Ci
*.
,

yi∏
j=1

γi (j )
+/
-

+/
-
=

n∏
i=1

*.
,
Ci

*.
,

B∑
yi=0

yi∏
j=1

γi (j )
+/
-

+/
-

=

n∏
i=1

*.
,

∑B
yi=0

∏yi
j=1 γi (j )∑B

yi=0
∏yi

j=1 γi (j )

+/
-
= 1

We now show that when qi =
mi

mi+bi
, the stationary distribution

is equal to π given by the theorem. For this purpose, we show that
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it verifies the equation (1). We first notice that our product form is

geometric and therefore the following properties follow directly:

•
π (x−ei ,y )
π (x,y ) =

1

ρi ,

•
π (x,y−ei )
π (x,y ) =

1

γi (yi )
,

•
π (x+ei ,y )
π (x,y ) = ρi ,

•
π (x,y+ei )
π (x,y ) = γi (yi + 1),

•
π (x+ei ,y+ei )

π (x,y ) = ρiγi (yi + 1),

•
π (x+ei−ej ,y+ei )

π (x,y ) =
ρiγi (yi+1)

ρ j ,

•
π (x+ei−ej ,y )

π (x,y ) =
ρi
ρ j .

We divide the expression in (1) by π (x ,y) and, using the list of
identities above, we obtain the following equation:

n∑
i=1

(
λi + αi1[yi<Bi ] + βi (yi )1[yi>0]

)
=

+

n∑
i=1

(
µi (yi )1[yi>0] + αiqi1[yi=Bi ,xi>0]

)
=

n∑
i=1

(
λi
ρi

1
[xi>0] +

αi
γi (yi )

1
[yi>0] + βi (yi + 1)γi (yi + 1)1[yi<Bi ]

)

+

n∑
i=1

(
µi (yi + 1)γi (yi + 1)1[xi=0,yi<Bi ]

)
+

n∑
i=1

(
µi (yi + 1)pi,sρiγi (yi + 1)1[yi<Bi ]

)
+

n∑
i=1

*.
,

n∑
j=1

µi (yi + 1)pi, j
ρiγi (yi + 1)

ρ j
1
[yi<Bi ,x j>0]

+/
-

+

n∑
i=1

*.
,
αiqiρipi,s1[yi=Bi ] +

n∑
j=1

αiqipi, j
ρi
ρ j

1
[yi=Bi ,x j>0]

+/
-
.

Using the expression (3), the following properties follow directly:

• αiqi = µi (yi + 1)γi (yi + 1)

•
αi

γi (yi )
1
[yi>0] = βi (yi )1[yi>0] + µi (yi )1[yi>0]

• βi (yi + 1)γi (yi + 1) = αi (1 − qi )

Therefore,

n∑
i=1

(
λi + αi1[yi<Bi ] + αiqi1[yi=Bi ,xi>0]

)
(5)

=

n∑
i=1

(
λi
ρi

1
[xi>0] + (1 − qi )αi1[yi<Bi ]

)
(6)

+

n∑
i=1

(
αiqi1[xi=0,yi<Bi ] + αiqiρipi,s

)
(7)

+

n∑
i=1

n∑
j=1

αiqipi, j
ρi
ρ j

1
[x j>0] (8)

We now present the following equalities:

n∑
i=1

n∑
j=1

αiqipi, j
ρi
ρ j

1
[x j>0] =

n∑
j=1

n∑
i=1

αiqipi, j
ρi
ρ j

1
[x j>0]

=

n∑
i=1

n∑
j=1

α jqjpj,i
ρ j

ρi
1
[xi>0]

=

n∑
i=1

*.
,

n∑
j=1

α jqjpj,i
ρ j

ρi

+/
-
1
[xi>0], (9)

where the first equality follows from a change in the order of the

summations, the second equality follows from relabeling i and j
and in the third equality follows from gathering terms.

Besides, we know from (4) that αiqi =
λi+

∑
j αiqj ρ jpj,i
ρi . There-

fore, using this and also the equality of (9), the expression (5)-(8) is

equivalent to:

n∑
i=1

(
λi + αi1[yi<Bi ] + αiqi1[yi=Bi ,xi>0]

)
(10)

=

n∑
i=1

(
αiqi1[xi>0] + (1 − qi )αi1[yi<Bi ]

)
(11)

+

n∑
i=1

(
αiqi1[xi=0,yi<Bi ] + αiqiρipi,s

)
(12)

We now show that the terms that are not multiplied by an indi-

cator function are equal, i.e.

n∑
i=1

λi =
n∑
i=1

αiqiρipi,s . (13)

We prove this in the following way:

n∑
i=1

αiqiρipi,sγi =
n∑
i=1

αiqiρi
*.
,
1 −

n∑
j=1

pi, j
+/
-

=

n∑
i=1

αiqiρi −
n∑
i=1

αiqiρi
*.
,

n∑
j=1

pi, j
+/
-

=

n∑
i=1

αiqiρi −
n∑
i=1

n∑
j=1

αiqiρipi, j

=

n∑
i=1

αiqiρi −
n∑
j=1

n∑
i=1

αiqiρipi, j

=

n∑
i=1

αiqiρi −
n∑
i=1

n∑
j=1

α jqjρ jpj,i

=

n∑
i=1

λi ,

where the last equation follows from (4).
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We now prove that the equality for the rest of the terms is also

verified in the following way:

αi1[yi<Bi ] + αiqi1[yi=Bi ,xi>0]

= αi1[yi<Bi ] + αiqi1[xi>0] − αiqi1[xi>0,yi<Bi ]

= αi1[yi<Bi ] + αiqi1[xi>0] − αiqi1[yi<Bi ] + αiqi1[xi=0,yi<Bi ]

= αiqi1[xi>0] + (1 − qi )αi1[yi<Bi ] + αiqi1[xi=0,yi<Bi ]

And, therefore, the desired result follows. □

We remark that our result covers a wide range of cases of interest.

For instance, we can conclude the existence of a product-formwhen

the energy queues are M/M/1/Bi queues since, for this case, we
have that µi (yi ) = µi and βi (yi ) = βi , which satisfy the condition

of our theorem. Furthermore, the existence of the product form for

energy queues that are M/M/Bi /Bi queues also follows from the

above result since for that case µi (yi ) = yi µi and βi (yi ) = yiβi .

We also remark that the value of ρi obtained in the result above

does not depend on the value of the buffer size Bi and coincides

with that of the corresponding EPN model with infinite capacity.

The main reason for this is the way that the jump-over blocking

is performed in our model. Besides, this property means that the

model with infinite capacity and our model coincide in performance

metrics of interest such as the mean number of data packets. How-

ever, we remark that, in our model, the stability of energy packets

is not an issue, whereas in the infinite capacity packets it must be

satisfied that γi (yi ) < 1.

Another interesting property we derive from the result above

concerns the computation of the performance of the system. Indeed,

since the steady-state distribution of packets has a product-form

expression, one can calculate the mean number of data packets

in the system as the sum of the mean number in each block of a

network composed of independent queues but with the arrival rates

equal to the effective arrival rates in our model. This is presented

in the following result.

Corollary 4.2. The mean number of data packets in the EPN
model under consideration is given by

n∑
i=1

ρi
1 − ρi

,

where ρi is given in (4).

5 STOCHASTIC ORDERING
In this section, we focus on a single block andwe study the influence

of the probability that an energy packet is sent to the data queue

when the jump-over blocking occurs (i.e., when the energy queue

is full). Since we consider a single block, we drop the subindex i of
the parameters of the system in this part of the article.

We first define a partial order ⪯S on the state space S of our

model. We say that (x1,y1) ⪯S (x2,y2) if x1 ≤ x2 and y1 ≥ y2. The
intuitive idea of this ordering is that it is preferable to have (i) less

data packets and (ii) more energy packets to be sent to the data

queue and to route them to the next station. In other words, the

energy packets play the role of the servers for the data queues.

We wish to compare the continuous time Markov chains (CTMC)

corresponding to two single blocks with different values of JOB

probabilities q according to the strong stochastic order; we first

recall what is strong stochastic order for a pair of random variables:

Definition 5.1. Let (S, ⪯S ) be a partially ordered space and X
and Y two random variables on S . X is smaller than Y in a strong

stochastic sense, noted X ⪯st Y , if

E[f (X )] ≤ E[f (Y )] for all increasing functions f ,

provided that the expectations exist.

Strong stochastic comparison of random variables on a partially

ordered set can be characterized by means of increasing sets. A

subset Γ ⊆ S is called an increasing set if its indicator function 1Γ is

increasing. It follows that Γ is an increasing set if and only if x ∈ Γ
and x ⪯S y imply y ∈ Γ. The following characterization is often

used as definition of st-order on a partially ordered space [18]. The

proof can be found in [19].

Lemma 5.2. X ⪯st Y if and only if P (X ∈ Γ) ≤ P (Y ∈ Γ), for all
increasing sets Γ ⊆ S .

We now define strong stochastic order for two processes:

Definition 5.3. Let (S, ⪯S ) be a partially ordered space andX and

Y two processes on S indexed by R+.X is smaller thanY in a strong

stochastic sense, noted X ⪯st Y iff ∀t ∈ R+,Xt ⪯st Yt .

We now come to the main result of this section:

Theorem 5.4. Consider an EPN network with a single block, when
the energy queue is a M/M/1/B queue or a M/M/B/B queue; if X is a
CTMC of this model with JOB probability q′ and Y is a CTMC of this
model with JOB probability q ≤ q′, then

Xt ⪯st Yt .

and its corollary:

Corollary 5.5. The model with full rejection of the energy packet
(i.e. q = 0) is greater (strong stochastic sense) than the model with
jump-over blocking (q > 0).

We now turn to the proof of theorem 5.4. We know that for

CTMCs, the following characterization of strong stochastic order

holds:

Theorem 5.6. [18, Thm 5.3] Let X = {Xt }t ≥0 and Y = {Yt }t ≥0
be two CTMC with infinitesimal generators Q and R. Then Xt ⪯st
Yt , ∀t ≥ 0 if and only if:

• X0 ⪯st Y0,
• for all u,v ∈ S such that u ⪯S v and for all increasing sets
Γ ⊆ S such that u ∈ Γ or v < Γ we have:∑

w ∈Γ
Q (u,w ) ≤

∑
w ∈Γ

R (v,w ).

However, the conditions stated in the previous theorem may

be difficult to check. Hence, we present a sufficient condition in

corollary 5.10, which is easier to verify:



VALUETOOLS, May 2020, Tsukuba, Japan Sébastien Samain, Josu Doncel, Ana Busic, and Jean-Michel Fourneau

Definition 5.7. A CTMC X = {Xt }t ≥0 is monotone if for any two

initial distributions µ and ν of X0 such that µ ⪯st ν we have:

∀t > 0,X
µ
t ⪯st X

ν
t ,

where X
µ
t denotes that the initial distribution of X0 is µ.

Theorem 5.8. [18, Thm 5.2] A CTMC X = {Xt }t ≥0 with an in-
finitesimal generator Q is st-monotone if and only if for all u,v ∈ S
such that u ⪯S v and for all increasing sets Γ ⊆ S such that u ∈ Γ or
v < Γ: ∑

w ∈Γ
Q (u,w ) ≤

∑
z∈Γ

Q (v,w ).

Definition 5.9. Let Q and R be two generators. Then Q ⪯st R if

for any u ∈ S and for all increasing sets Γ ⊆ S we have:∑
w ∈Γ

Q (u,w ) ≤
∑
w ∈Γ

R (u,w ).

We have the following sufficient condition:

Corollary 5.10. LetX = {Xt }t ≥0 andY = {Yt }t ≥0 be two CTMC
with infinitesimal generators Q and R. Then Xt ⪯st Yt , ∀t ≥ 0 if

• X0 ⪯st Y0,
• there is an st-monotone generator A such that

Q ⪯st A ⪯st R.

We prove that this corollary holds for one-block EPN by using

the following event representation (below, z = (x ,y)):

• a1: arrival of an energy packet of type 1 (jump-over blocking

performed when the energy queue is full) with rate τa1 (z) =
qα ;
• a2: arrival of an energy packet of type 2 (jump-over blocking

not performed when the energy queue is full) with rate

τa2 (z) = (1 − q)α ;
• d : arrival of a data packet with rate τd (z) = λ;
• b: leakage of an energy packet with rate τb (z) = β (y);
• s : service of a data packet, triggered by an energy packet with
rate τs (z) = µ (y).

The reason behind splitting arrivals of energy packets into two

types of events is purely to be able to describe the effect of the

event by deterministic functions. To each event e , we associate a
function te : S → S defined as follows:

• a1: ta1 (x ,y) = (x ,y + 1)1
[y<B] + ((x − 1)+,y)1

[y=B];

• a2: ta2 (x ,y) = (x ,y + 1)1
[y<B] + (x ,y)1

[y=B];

• d : td (x ,y) = (x + 1,y);
• b: tb (x ,y) = (x , (y − 1)+);
• s: ts (x ,y) = ((x − 1)+,y − 1)1

[y>0] + (x ,y)1
[y=0],

and a generator Qe = ∆(τe ) (E (te ) − I ), with ∆(τe ) the diagonal

matrix of rates and E (te ) = (1
[t (z1 )=z2])(z1,z2 )∈S×S . Let q ∈ [0, 1]

and Qa,q = Qa1 + Qa2 where the rate function for the events a1
and a2 are respectively αq and α (1 − q). If Q is the generator of

the CTMC associated to the one-block EPN with JOB probability q,
then we have Q = Qd +Qa,q +Qb +Qs .

An event e is said to be st-monotone if its generator Qe is st-
monotone. If the generator Q of a CTMC can be written Q =∑
e ∈E Qe such that every e ∈ E is st-monotone, thenQ st-monotone

[18]. Hence, we want to prove that every e ∈ {a1,a2,d,b, s} is st-
monotone. To this aim, we will use the following result from [18]

that characterizes the st-monotonicity of an event:

Theorem 5.11 ([18, Thm 5.4]). Let e be an event with destination
t : S → S and rate τ : S → R+. Event e is st-monotone if and only if
the following conditions are verified for all z1 = (x1,y1), z2 = (x2,y2)
such that z1 ⪯S z2:

1) If τ (z1) and τ (z2) are nonzero, then at least one of the condi-
tions must hold:
a) t (z1) ⪯S t (z2),
b) z1 ⪯S t (z2) and t (z1) ⪯S z2.

2) If τ (z1) < τ (z2), then z1 ⪯S t (z2).
3) If τ (z1) > τ (z2), then t (z1) ⪯S z2.

In the two following lemmas, we show that all the events e ∈
{a1,a2,d,b, s} are st-monotone for the cases where energy queue

is a M/M/1/B queue or a M/M/B/B queue. We deal first with the

M/M/1/B case:

Lemma 5.12. Let e ∈ {a1,a2,b,d, s} in a EPN with a single block,
when the energy queue is an M/M/1/B queue. Then, e is st-monotone.

Proof. All the rates are state-independent, i.e., τe (z) is a con-
stant that only depends on e ∈ {a1,a2,b,d, s}. Therefore, conditions
2) and 3) of Theorem 5.11 are never verified and, as a consequence,

to show that an event e is st-monotone, it is enough to show that

condition 1) a) of Theorem 5.11 is satisfied.

To show this condition, for each event e , we partition the state

space S into "types" of states such that te is a translation with

respect to ⪯S on each "type set" (a subset of states of one given

type), that is, if (a) is a type of states for e and A(a) is the subset

of states of type (a), then ∀z ∈ A(a) , te (z) = z + v(a) , with v(a) a
vector which depends only on the type (a); hence, on each of type

sets, condition 1) a) will hold; moreover, when considering couples

(z1, z2) ∈ S2 such that z1 ⪯ z2 and the pair (z1, z2) covers two
different types (that is, z1 is not of the same type as z2), some cases

will be forbidden; for instance, if a type (a) requires z = (x ,y) to be

such that x = 0 and a type (b) requires z = (x ,y) to be such that

x > 0, then we can have z1 of type (a) and z2 of type (b), but not the
converse; similarly, if a type (a) requires z = (x ,y) to be such that

y = B and a type (b) requires z = (x ,y) to be such that y < B, then
we can have z1 of type (a) and z2 of type (b), but not the converse;
finally, if a type (a) requires z = (x ,y) to be such that y > 0 and a

type (b) requires z = (x ,y) to be such that y = 0, then we can have

z1 of type (a) and z2 of type (b), but not the converse.

In the following, it will be assumed that the states z, z1 and z2
can be written as (x ,y), (x1,y1) and (x2,y2) respectively.

We first show thatd is st-monotone. If z1 ⪯S z2, we have td (z1) =
(x1 + 1,y1) ⪯S (x2 + 1,y2) = td (z2). Hence, condition 1) a) holds.

We now show that b is st-monotone. For z ∈ S , we distinguish
two types: (i) y > 0 and (ii) y = 0. Let (z1, z2) ∈ S2 such that

z1 ⪯S z2. If z1 and z2 have same type then as tb is a translation by

(0,−1) on A(i ) and by (0, 0) on A(ii ) , condition 1) a) holds when z1
and z2 have the same type. If z1 and z2 cover types (i) and (ii), then

z1 is of type (i) and z2 is of type (ii), and tb (z1) = (x1,y1 − 1) ⪯S
(x2, 0) = tb (z2). Hence, condition 1) a) holds.
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We now show that s is st-monotone. For z ∈ S , we distinguish
three types: (i) y > 0,x > 0, (ii) y > 0,x = 0 and (iii) y = 0. Let

(z1, z2) ∈ S
2
such that z1 ⪯S z2. As ts is a translation by (−1,−1)

on A(i ) , by (0,−1) on A(ii ) and by (0, 0) on A(iii ) , condition 1)

a) holds when z1 and z2 have the same type. If z1 and z2 cover

types (i) and (ii), then z1 is of type (ii), z2 is of type (i) and we

have ts (z1) = (0,y1 − 1) ⪯S (x2 − 1,y2 − 1) = ts (z2). If z1 and z2
cover types (i) and (iii), then z1 is of type (i), z2 is of type (iii) and
ts (z1) = (x1 − 1,y1 − 1) ⪯S (x2 − 1, 0) ⪯S (x2, 0) = ts (z2). Finally,
if z1 and z2 cover types (ii) and (iii) then z1 is of type (ii) and z2
is of type (iii), and ts (z1) = (0,y1 − 1) ⪯S (x2, 0) = t (z2). Hence,
condition 1) a) holds.

We now show that a2 is st-monotone. For z ∈ S , we distinguish
two types: (i) y < B and (ii) y = B. Let (z1, z2) ∈ S2 such that

z1 ⪯S z2. As ta2 is a translation by (0, 1) on A(i ) and by (0, 0) on
A(ii ) , condition 1) a) holds when z1 and z2 have the same type. If z1
and z2 cover types (i) and (ii), then z1 is of type (ii), z2 is of type (i)
and ta2 (z1) = (x1,B) ⪯S (x2,y2 + 1) = ta2 (z2). Hence, condition 1)

a) holds.

We now show that a1 is st-monotone. For z ∈ S , we distinguish
three types: (i) y < B, (ii) y = B,x > 0 and (iii) y = B,x = 0. Let

(z1, z2) ∈ S2 such that z1 ⪯S z2; as ta1 is a translation by (0, 1)
on A(i ) , by (−1,−1) on A(ii ) and by (0, 0) on A(iii ) , condition 1)

a) holds when z1 and z2 have the same type. If z1 and z2 cover

types (i) and (ii), then z1 is of type (ii), z2 is of type (i) and ta1 (z1) =
(x1 − 1,B) ⪯S (x1,B) ⪯S (x2,B) ⪯ (x2,y2 + 1) = ta1 (z2). If z1 and
z2 cover types (i) and (iii), then z1 is of type (iii), z2 is of type (i)
and ta1 (z1) = (0,B) ⪯S (x2,y2 + 1) = ta2 (z2). Finally, if z1 and z2
cover types (ii) and type (iii), then z1 is of type (iii), z2 is of type (ii)
and ta1 (z1) ⪯S (0,B) ⪯S (x2 − 1,B) = ta1 (z2). Hence, condition 1)

a) holds. □

We now consider that the energy queues are M/M/B/B queues.

Lemma 5.13. Let e ∈ {a1,a2,b,d, s} in a EPN with a single block,
when the energy queue is an M/M/B/B queue. Then, e is st-monotone.

Proof. Using the same arguments as in the energy queue that

is a M/M/1/B queue, we can easily show that events a1, a2 and d
are st-monotone for this case as well.

The case of eventsb and s is different, because we have β (y) = yβ
and µ (y) = yµ; hence, in addition to condition 1) a), we must also

verify condition 3) for these events. Condition 1) a) as in the proof

of lemma 5.9. Hence, we focus only on condition 3).

We show that the event b is st-monotone. For z ∈ S , we dis-

tinguish two types: (i )y > 0 and (ii )y = 0 Let z1 = (x1,y1), z2 =
(x2,y2) ∈ S such that z1 ⪯S z2. If y1 = y2, then β (y1) = β (y2) and
we need not to verify condition 3). If y1 > y2, then β (y1) > β (y2)
and therefore, we need to verify that condition 3) of Theorem 5.11

is satisfied. In this case, z1 must be of type (i ) and z2 can be either

of type (i ) or (ii ). In both cases, we have tb (z1) = (x1,y1 − 1) =
(x1,y2) ⪯S z2, and hence, condition 3) holds.

We now show that the event s is st-monotone. For z ∈ S , we
distinguish three types:

• (i) states z for which y > 0,x > 0

• (ii) states z for which y > 0,x = 0

• (iii) states z for which y = 0

Let z1 = (x1,y1), z2 = (x2,y2) ∈ S such that z1 ⪯S z2. If y1 = y2,
then µ (y1) = µ (y2) andwe need not to verify condition 3). Ify1 > y2,
then µ (y1) > µ (y2) and therefore, we need to verify that condition

3) of Theorem 5.11 is satisfied. We distinguish the following cases:

• z1 and z2 are both of type (i): in this case, we have ts (z1) =
(x1 − 1,y2) ⪯S (x2,y2) = z2, and hence condition 3) holds.

• z1 and z2 are both of type (ii): in this case, we have ts (z1) =
(0,y1) ⪯S (0,y2) = z2, and hence condition 3) holds.

• z1 and z2 are of type (iii): in this case, the leakage rate is

zero for both z1 and z2, and hence we do not need to prove

condition 3).

• one of is of type (i) and the other is of type (ii): then z1 is
of type (ii) and z2 is of type (i), and hence, we have ts (z1) =
(0,y1) ⪯S (0,y2) ⪯S z2, and hence condition 3) holds.

• one is of type (i) and the other is of type (iii): then z1 is of
type (i) and z2 is of type (iii), and hence, we have ts (z1) =
(x1 − 1,y1 − 1) ⪯S (x2, 0) = z2, and hence condition 3) holds.

• one is of type (ii) and the other is of type (iii): then z1 is of type
(ii) and z2 is of type (iii), and hence, ts (z1) = (0,y1 − 1) ⪯S
(x2, 0) = z2, and hence condition 3) holds.

Hence, condition 3) holds for the event s .

□

We thus have proved, by summing the generators of the events,

that the generator Qq of the CTMC associated with the one-block

EPN model with JOB probability q is st-monotone. We now want

to show that when (q,q′) ∈ [0, 1]2 are such that q′ ≥ q, then
Qq′ ⪯st Qq . Again, our event representation is will help us, due to

the following lemma:

Lemma 5.14. Let E be a set of events and for any e ∈ E, let Qe
and Re be generators with Re ⪯st -monotone such that Qe ⪯st Re ,
then

∑
e ∈E Qe ⪯st

∑
e ∈E Re .

As Qe is independent of the JOB probability for any e ∈ {d,b, s},
and Qe is st-monotone for any e ∈ {a1,a2,d,b, s} when the energy

queue is either M/M/1/B or M/M/B/B, we only need to show the

following lemma:

Lemma 5.15. If q′ > q, then Qa,q′ ⪯st Qa,q .

Proof. By definition 5.9, we need to show that for any z =
(x ,y) ∈ S and any increasing set Γ ⊆ S , we have

∑
w ∈Γ Qa,q′ (z,w ) ≤∑

w ∈Γ Qa,q (z,w ). To this aim, we distinguish two cases:

• y < B or z = (0,B): in this case, we have that Qa,q (z, .) =
Qa,q′ (z, .), and we immediately have

∑
w ∈Γ Qa,q′ (z,w ) ≤∑

w ∈Γ Qa,q (z,w ).

• y = B and x > 0: in this case, as we have ta1 (z) ⪯S z and Γ
is an increasing set, we only need to distinguish three cases:

– z < Γ: in this case, ta1 (z) < Γ and we necessarily have∑
w ∈Γ Qa,q′ (z,w ) = 0 and

∑
w ∈Γ Qa,q (z,w ) = 0.

– z ∈ Γ, ta1 (z) < Γ: in this case, we have
∑
w ∈Γ Qa,q′ (z,w ) =

−αq′ ≤ −αq =
∑
w ∈Γ Qa,q (z,w ).
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– z ∈ Γ, ta1 (z) < Γ: in this case, we have
∑
w ∈Γ Qa,q′ (z,w ) =

Qa,q′ (z, z) + Qa,q′ (z, ta1 (z)) = −αq
′ + αq′ = 0 = −αq +

αq = Qa,q (z, z) +Qa,q (z, ta1 (z)) =
∑
w ∈Γ Qa,q (z,w ).

Hence, in every case, we have

∑
w ∈Γ Qa,q′ (z,w ) ≤

∑
w ∈Γ Qa,q (z,w );

the lemma is thus proved □

Hence, we have proved theorem 5.4.

When we aim to extend the result of this section to a general

network, we note that the problem is not easy. In fact, even though

there are some properties that can be shown directly. For instance,

the st-monotonicity of the events corresponding to the external

arrivals of data packets can be shown using the same arguments as

above. However, there is a difference when data packets can route

from one block to the other. In that case, the routing events are not

monotone for the partial order obtained as the product order of

partial orders on single blocks as defined in this section. The order

that one should define remains an open question.

6 CONCLUSION
In this paper, we study the EPN model where the capacity of the

energy queues is finite and the energy packets start the transfer.

This means that energy packets are sent to the data queue and, if the

data queue is not empty, the data packet is sent to the next block

(or leaves the system) and it is lost otherwise. When an energy

packet arrives to block i where the energy queue is full, jump-over

blocking occurs, i.e., either the energy packets is sent to the data

queue, which occurs with probability qi , or it is lost.

In a system with n blocks, we show that there exists a family of

JOB probabilities q1, . . . ,qn such that the steady-state probability

distribution of packets in the queues has a product-form expression.

The cases that are covered by our result include that the energy

queue of block i is an M/M/1/Bi queue and an M/M/Bi /Bi queue.

For one block, we show that there exists a stochastic ordering

according to the probability q. As a consequence, if we start two
systems with different values of q from the same initial state, then

the queue length at any time instant t (and at the steady-state)

for the data queue is stochastically smaller in the st-sense for the
system with higher value of q. At the same time, the number of

energy packets at any time instant t (and in steady state) is bigger

in the st-sense for the higher value of q. Note that this stochastic
ordering does not use the product form property of the steady state

distributions so it allows comparison of systems with values of

q for which we do not have a product form result. In particular,

the system in which all energy packets are lost when the energy

queue is full is lower bounded by the system with the value of q
that admits a product form.

In future work, we aim to generalize the stochastic ordering

result to a network with more than one queue and extend our

results to the EPN model where the data packets start the transfer.

ACKNOWLEDGMENTS
Sébastien Samain has received funding from INRIA, from ANR

grant Pari 11457. Josu Doncel has received funding from the De-

partment of Education of the Basque Government through the

Consolidated Research Group MATHMODE (IT1294-19), from the

Marie Sklodowska-Curie grant agreement No 777778 and from

the Spanish Ministry of Economy and Competitiveness project

MTM2016-76329-R.

REFERENCES
[1] Omer H Abdelrahman and Erol Gelenbe. 2016. A diffusion model for energy

harvesting sensor nodes. In 2016 IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, Piscataway, NJ, USA, 154–158. https://doi.org/10.1109/MASCOTS.2016.74

[2] Simonetta Balsamo. 1993. Properties and analysis of queueing network models

with finite capacities. In Performance Evaluation of Computer and Communication
Systems. Joint Tutorial Papers of Performance ’93 and Sigmetrics ’93. (Lecture
Notes in Computer Science). Springer Nature, Berlin, Germany, 21–52. https:

//doi.org/10.1007/BFb0013848

[3] Josu Doncel and Jean-Michel Fourneau. 2019. Energy Packet NetworkswithMulti-

ple Energy Packet Requirements. Probability in the Engineering and Informational
Sciences 13, 1 (June 2019), 1–19. https://doi.org/10.1017/S0269964819000226

[4] Jean-Michel Fourneau. 2019. Modeling Green Data-Centers and Jobs Balancing

with Energy Packet Networks and Interrupted Poisson Energy Arrivals. SN
Computer Science 1, 1, Article 28 (Oct. 2019), 28 pages. https://doi.org/10.1007/

s42979-019-0029-5

[5] Erol Gelenbe. 1991. Product-form queueing networks with negative and positive

customers. Journal of Applied Probability 28, 3 (Sept. 1991), 656–663. https:

//doi.org/10.2307/3214499

[6] Erol Gelenbe. 1993. G-networks by triggered customer movement. Journal of
Applied Probability 30, 3 (Sept. 1993), 742–748. https://doi.org/10.2307/3214781

[7] Erol Gelenbe. 1993. G-networks with signals and batch removal. Probability
in the Engineering and Informational Sciences 7, 3 (July 1993), 335–342. https:

//doi.org/10.1017/S0269964800002953

[8] Erol Gelenbe. 2011. Energy Packet Networks: ICT Based Energy Allocation and

Storage. In Green Communications and Networking. First International Conference,
GreeNets 2011 (Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering). Springer Nature, Berlin, Germany,

186–195. https://doi.org/10.1007/978-3-642-33368-2_16

[9] Erol Gelenbe. 2012. Energy packet networks: smart electricity storage to meet

surges in demand. In Proceedings of the 5th International ICST Conference on
Simulation Tools and Techniques. IEEE, Piscataway, NJ, USA, 1–7. https://doi.org/

10.4108/icst.simutools.2012.247805

[10] Erol Gelenbe. 2014. A sensor node with energy harvesting. ACM SIGMETRICS
Performance Evaluation Review 42, 2 (Sept. 2014), 37–39. https://doi.org/10.1145/

2667522.2667534

[11] Erol Gelenbe and Omer H. Abdelrahman. 2018. An Energy Packet Network for

mobile networks with Energy Harvesting. Nonlinear Theory and Its Applications
9, 3 (July 2018), 322–336. https://doi.org/10.1587/nolta.9.322

[12] Erol Gelenbe and Andrea Marin. 2015. Interconnected Wireless Sensors with

Energy Harvesting. (2015), 87–89. https://doi.org/10.1007/978-3-319-18579-8_7

[13] Erol Gelenbe and Elif Tugce Ceran. 2015. Central or Distributed Energy Storage

for Processors with Energy Harvesting. In 2015 Sustainable Internet and ICT for
Sustainability (SustainIT). IEEE, Piscataway, NJ, USA, 1–3. https://doi.org/10.

1109/SustainIT.2015.7101380

[14] Erol Gelenbe and Elif Tugce Ceran. 2016. Energy Packet Network with Energy

Harvesting. IEEE Access 4 (March 2016), 1321–1331. https://doi.org/10.1109/

ACCESS.2016.2545340

[15] Yasin Murat Kadioglu. 2017. Finite Capacity Energy Packet Networks. Probability
in the Engineering and Informational Sciences 31, 4 (April 2017), 477–504. https:

//doi.org/10.1017/S0269964817000080

[16] Yasin Murat Kadioglu and Erol Gelenbe. 2019. Product-form solution for cascade

networks with intermittent energy. IEEE Systems Journal 13, 1 (Aug. 2019),

918–927. https://doi.org/10.1109/JSYST.2018.2854838

[17] William A. Massey. 1984. An operator-analytic approach to the Jackson network.

Journal of Applied Probability 21, 2 (June 1984), 379–393. https://doi.org/10.2307/

3213647

[18] William A Massey. 1987. Stochastic orderings for Markov processes on partially

ordered spaces. Mathematics of operations research 12, 2 (May 1987), 350–367.

https://www.jstor.org/stable/3689696

[19] Alfred Müller and Dietriech Stoyan. 2002. Comparison Methods for Stochastic
Models and Risks. Wiley, New York, NY, USA.

[20] Nico M Van Dijk. 1988. On Jackson’s product form with’jump-over’blocking.

Operations Research Letters 7, 5 (Oct. 1988), 233–235. https://doi.org/10.1016/0167-

6377(88)90037-5

https://doi.org/10.1109/MASCOTS.2016.74
https://doi.org/10.1007/BFb0013848
https://doi.org/10.1007/BFb0013848
https://doi.org/10.1017/S0269964819000226
https://doi.org/10.1007/s42979-019-0029-5
https://doi.org/10.1007/s42979-019-0029-5
https://doi.org/10.2307/3214499
https://doi.org/10.2307/3214499
https://doi.org/10.2307/3214781
https://doi.org/10.1017/S0269964800002953
https://doi.org/10.1017/S0269964800002953
https://doi.org/10.1007/978-3-642-33368-2_16
https://doi.org/10.4108/icst.simutools.2012.247805
https://doi.org/10.4108/icst.simutools.2012.247805
https://doi.org/10.1145/2667522.2667534
https://doi.org/10.1145/2667522.2667534
https://doi.org/10.1587/nolta.9.322
https://doi.org/10.1007/978-3-319-18579-8_7
https://doi.org/10.1109/SustainIT.2015.7101380
https://doi.org/10.1109/SustainIT.2015.7101380
https://doi.org/10.1109/ACCESS.2016.2545340
https://doi.org/10.1109/ACCESS.2016.2545340
https://doi.org/10.1017/S0269964817000080
https://doi.org/10.1017/S0269964817000080
https://doi.org/10.1109/JSYST.2018.2854838
https://doi.org/10.2307/3213647
https://doi.org/10.2307/3213647
https://www.jstor.org/stable/3689696
https://doi.org/10.1016/0167-6377(88)90037-5
https://doi.org/10.1016/0167-6377(88)90037-5

	Abstract
	1 Introduction
	2 Related Work
	3 Model Description
	4 Product Form of the Distribution of Packets
	5 Stochastic ordering
	6 Conclusion
	Acknowledgments
	References

