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Abstract—In a system formed by parallel servers and one
dispatcher, we study the Task Assignment based on Guessing Size
(TAGS) policy, an open loop task assignment policy where jobs
are non-preemptive, servers are First-Come-First-Served and the
size of incoming jobs is not known. This policy works as follows:
all the incoming jobs are routed to the first server and jobs
that complete service before s1 units of time leave the system,
but jobs that do not complete service before s1 are killed and
they are routed to the second server, where the service starts
from scratch. Likewise, jobs that are executed in server i, if
they complete service before si units of time, leave the system,
whereas jobs that do not complete service before si units of time
are killed and routed to the next server. For an arbitrary job size
distribution, we provide a necessary and sufficient condition for
the stability of a system operating under the TAGS policy. We
also analyze the performance of the optimal TAGS policy, i.e.,
when the cutoffs s1, s2, . . . are chosen to minimize the waiting
time of jobs for an arbitrary job size distribution and we show
that it is lower bounded by the performance of the TAGS policy
where the maximum queue length is minimized divided by the
number of servers minus one. For Bounded Pareto distributed
job sizes, we consider the asymptotic regime where the largest
job size tends to infinity and we show that, when the system
load is less than one, the performance of the optimal TAGS
policy is, at most, two times worst than the performance of the
optimal SITA policy, which a routing policy where the size of
jobs is known. This result shows that the penalty caused by
not knowing the size of incoming jobs is upper bounded by a
factor of 2. For a higher system load, we show that the order
of magnitude of the performance of the optimal TAGS policy in
the asymptotic regime depends on the number of spare servers,
i.e., the difference between the number of servers in the system
and the minimum number of servers to stabilize the system.
According to our numerical experiments, when the largest job
size is finite, the difference on the performance between the TAGS
policy and the SITA policy can be extremely large when the
system load is higher than one, whereas it is small when the
system load is less than one.

Index Terms—Queueing theory, Parallel Servers, Heavy-tailed
distributions.

I. INTRODUCTION

We consider a system formed by parallel servers and a single
dispatcher that handles all the incoming traffic to the system.
The performance of this kind of systems is clearly affected
by the routing policy that is implemented, i.e., how incoming
jobs are routed to the servers. The challenge for the designers

of these systems is to perform this routing optimally, that is,
to assign tasks to the servers in order to optimize a given
performance function, such as the mean waiting time or the
mean number of customers in the system. The question of
which routing policy is optimal is still open for many models.

We study a system with h servers operating under the Task
Assignment based on Guessing Size (TAGS) routing policy
[13]. In this policy, service time distribution is divided in
intervals determined by h−1 cutoffs s1, s2, . . . , sh−1. Hence,
all the incoming jobs are routed to the first server and jobs
that complete service before s1 units of time leave the system.
On the other hand, jobs that do not complete service before s1
units are killed and they are routed to the second server, where
the service starts from scratch. In server i, jobs that complete
service before si units of time leave the system, whereas jobs
that do not complete service before si units of time are killed
and routed to the next server. An illustration of a system with
4 servers operating under the TAGS policy is presented in
Figure 1.

We note that, in the system that operates under the
TAGS policy, jobs are non-preemptive, i.e., jobs are run-
to-completion. In fact, in distributed data centers, jobs are
submitted to a single server and, since the memory requirement
of jobs is so huge, that run-to-completion is preferable to time-
sharing [9]. Examples of distributed server system in which
jobs are non-preemptive are given in Table 1 of [13]. Besides,
the servers are First-Come-First-Served (FCFS), which is a
common model, for example, in super-computing systems
[20].

A system operating under the TAGS policy has several
advantages with respect to other policies of the literature. First,
the service time requirement of incoming tasks is not known
for TAGS. This is an important difference with respect to the
SITA policies [15], where the jobs of incoming tasks is known.
Besides, the TAGS policy is an open-loop policy, i.e., it does
not require to know the state of the servers to route jobs
and, therefore, communication between the servers and the
dispatcher is not needed. We remark that this is an important
advantage with respect to very popular policies such as Join-
the-Shortest-Queue or Power-of-Two. Lastly, it is known that
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Fig. 1. A system with 4 servers operating under the TAGS policy

the job sizes distribution in data-centers is heavy-tailed, i.e.,
a small fraction of jobs consists of the half of the load [23].
Indeed, the author in [13] shows that the improvement of the
performance of a system operating under the TAGS policies
with respect to the performance of a system operating under
other policies such as the Least-Work-Left is larger when the
job size distribution is more heavy-tailed.

The main contributions of this work are the following:

• We first analyze the stability of a system operating under
the TAGS policy. For a given job size distribution, we
show that a necessary and sufficient condition for the
stability is that the system load is smaller than a critical
value. We show that there is an upper-bound for the
critical value for any job size distribution and we present
the expression of the critical value for the Bounded Pareto
job size distribution. Besides, we provide a job size
distribution where the critical value coincides with the
upper-bound.

• We study the performance of the optimal TAGS policy,
that is, the performance when the cutoffs s1, . . . , sh−1
are chosen so as to minimize the mean waiting time of
jobs in the system. We show that the optimal performance
and the performance obtained when the maximum mean
queue length of the servers is minimized are related. From
the obtained expression, we conclude that the former is
lower bounded by the latter divided by the number of
servers minus one. We also show that these results do
not require to assume Poisson arrivals from outside.

• We consider the asymptotic regime where the largest job
size tends to infinity and we assume that the job size
distribution is Bounded Pareto. For this instance, we first
compare the performance of a system operating under the
TAGS policy with the performance of a system operating
under the SITA policy where the cutoffs minimize the
mean waiting time of jobs. We show that the performance
of the TAGS policy is at most two times the performance
of the SITA in the asymptotic regime and the load of the
system is less than one. This implies that, for that case,
the penalty for not knowing the sizes of the incoming
tasks is upper bounded by 2. For higher loads, it is known

from [13] that a system operating under the TAGS policy
performs poorly. Besides, there are instances where the
stability condition is not satisfied for TAGS and, as a
result, the performance comparison between SITA and
TAGS cannot be done for a general case. However,
we provide an expression of the order of magnitude of
performance of a system operating under the TAGS policy
in the asymptotic regime which depends on the number
of spare servers, i.e., the difference between the number
of servers in the system and the minimum number of
servers to stabilize the system. We also study several
extensions of these asymptotic results. First, we show that
they can be extended to heterogeneous servers and for a
variant of the TAGS policy where jobs do not start from
scratch when they are routed to the next server. Finally,
we present a policy, that we call T+W, where some of
the servers operate under the TAGS policy and the others
under a work-conserving policy such as Least-Work-Left
or random assignment.

• We analyze numerically the approximation proposed in
[13], where it is assumed that the arrivals to all the servers
are Poisson. Our experiments validate the accuracy of
this approximation and also show that the approximation
over-estimates the mean waiting time of jobs. We also
study the minimium number of server required by a
system operating under the TAGS policy to be stable and
we present instances where it can be very high or, even
worse, there are instances where the TAGS policy can not
be stable for any number of servers.

• We also compare numerically the performance of the
TAGS policy with the performance of SITA when r is
finite. For two servers, we show that there are instances
where the performance of the TAGS policy is more than
two times the performance of SITA when the load of the
system is small. For higher loads, we present instances
where the performance the TAGS policy is extremely bad
comparing to that of the SITA policy. As a consequence,
the penalty for not knowing the sizes of the incoming
tasks can be very high when the system load is larger
than one, whereas when the load is smaller than one the
performance of a system operating under the TAGS policy
is, at most, 3 times more than the performance of a system
operating under the SITA policy.

The rest of the article is organized as follows. In Section II,
we put our work in the context of the existing literature. In
Section III, we describe the model we study in this article
and, in Section IV, we analyze the stability of a system that
operates under the TAGS policy. We study the performance
of the optimal TAGS policy in Section V. In Section VI we
assume that the job size distribution is Bounded Pareto and
we explore the asymptotic regime where the maximum job
size tends to infinity. We present the numerical experiments
we have performed in Section VII and we give the main
conclusions of our work in Section VIII.
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II. RELATED WORK

The analytical study of how to balance the load in a system
with parallel queues optimally has been of great interest for
researchers in Computer Science, see [14] for a recent book
in this topic. Many existing routing policies are included in
the SQ(d) framework, where for each incoming job, d ≥ 2
servers are picked uniformly at random to observe their states
and the job is routed to the server in the best observed state
(the least number of customers or least workload, for instance).
In terms of performance optimality, it is know that this kind of
systems are very good [11], [12], [21], [19], [24], however the
author in [22] showed that when the variability of the job size
distribution is high this family of policies are not optimal. This
is, in fact, the regime where TAGS outperforms the routing
policies that belong the SQ(d) family of policies [13].

A related routing policy to TAGS is the Size Interval Task
Assignment (SITA) policy. For this policy, each host serves
jobs whose service demand is in a designated range [5]. Thus,
the variance of the job executed in the servers decreases, which
leads to a performance improvement when the number of
servers increases [6]. The authors in [10] show that the SITA
policy with optimal cutoffs minimizes mean response time,
when the servers are non-observable and FCFS and the size
of all the tasks is known. When the number of servers tends to
infinity, the authors in [1] show that the optimal SITA policy
equalizes the loads of the servers. The author in [3] introduces
a task assignment policy where the size of incoming tasks
is required, but the goal is to maximize the probability of
satisfying the utilization requirements of incoming tasks. The
main difference of the TAGS policy this respect to the latter
policy and SITA is that the TAGS policy does not require to
know the size of the incoming jobs.

III. MODEL DESCRIPTION

We consider a system formed by h servers with equal
capacity modeled by FCFS queues and an input stream of
jobs that follows a Poisson distribution with rate λ.1 The
size of the incoming tasks is given by a sequence of i.i.d.
random variables denoted by X . Let F (s) = P(X < s) be
the cumulative distribution function of the job size distribution,
E[X] its mean and E[Xm] its m-th moment. We assume F (·)
to be differentiable and we write f(s) = dF (s)

ds . Thus, the load
of the system is defined as ρ = λE(X).

Without loss of generality, we assume that the size of the
smallest job is one and the size of the largest job is r > 1.
The range of the job size distribution is defined as the ratio
between the largest and the smallest job size, which in our
case is r. Since X is a non-negative random variable such

1We remark that, as we will see later, some of the results hold also without
assuming Poisson arrivals.

that f(s)=0 if s < 1 or s > r, it follows that

E[X] =

∫ ∞
0

(1− F (s))ds

=

∫ 1

0

1ds+

∫ r

1

(1− F (s))ds+

∫ ∞
r

0ds

= 1 +

∫ r

1

(1− F (s))ds.

We consider a multi-server assignment policy called TAGS.
Let s0 = 1 and sh = r. In the policy TAGS, the servers
are numbered 1, . . . , h and there is a vector of h − 1 cutoff
values s = (s1, s2, . . . , sh−1) verifying that s0 < s1 < s2 <
· · · < sh−1 < sh. All incoming jobs are sent to server 1. If
a job has been served before s1 units of time in server 1, it
leaves the system; otherwise, when the execution time equals
s1, it is stopped and sent to the end of the queue of server
2, where the execution starts from scratch. Thus, jobs that are
executed in server i have been previously executed in servers
1, 2, . . . , i−2 and i−1, respectively, s1, s2, . . . , si−2 and si−1
units of time. Besides, if a job is being processed by the ith
server and its execution time less than si time units, it leaves
the system and, if not, it is stopped and put at the end of the
queue of the next server. Jobs at the last server always run to
completion.

For a given vector of cutoffs s, we denote by W (s) the
random variable of the waiting time of incoming jobs. For a
given vector of cutoffs s, we will be interested in analyzing
the normalized mean waiting time, which is given by

E[W̄ (s)] =
E[W (s)]

E[X]
,

where E[W (s)] is the mean waiting time of jobs in the system.
Let sopt = (sopt1 , ..., sopth−1) be a vector of cutoffs that

minimizes the mean waiting time of jobs among all possible
cutoffs, i.e.,

sopt ∈ arg min
s

E[W (s)].

To simplify notation, we write E[W̄ (sopt)] = E[W̄ ∗] for
the optimal normalized mean waiting time and E[W (sopt)] =
E[W ∗] for the mean waiting time.

The size of the jobs executed in server i is denoted by
Xi. The probability that a job size belongs to the interval
[si−1, si] is given by pi. Likewise, the probability for a job to
be executed in server i is denoted by p̄i. From the definition
of the TAGS policy, it follows that pi = F (si)−F (si−1) and
p̄i = 1− F (si−1). The waiting time in server i is denoted by
Wi(s) and the load in server i by ρi.

Throughout the paper, we will use the notation f ∼ g to
denote two quantities f, g whose ratio tends to 1 as r tends to
infinity. We also use the notation bxc for the floor of x.

A. Bounded Pareto distribution

A distribution X is said to be Bounded Pareto with pa-
rameters 1, r and α if its density has the form of the Pareto
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distribution with parameter α, but is restricted to a bounded
domain 1 ≤ s ≤ r. Let a = 1

r . If 1 ≤ s ≤ r, then

f(s) =
αs−α−1

(1− aα)
,

and f(s) = 0 otherwise. Besides, the cumulative distribution
function of the Bounded Pareto distribution is given by the
following expression:

F (s) =


0, s ≤ 1,
1−(1/s)α
1−aα , 1 ≤ s ≤ r,

1, s ≥ r.

Besides, when α 6= 1, we have that

E[X] =
α

α− 1

1− aα−1

1− aα
(1)

whereas when α = 1

E[X] =
ln(r)

1− 1
r

. (2)

We note that the Bounded Pareto distribution with α = −1
coincides with the uniform distribution on the interval [1, r].

The Bounded Pareto distribution with large range and 0 <
α < 2 is know to be a good model for high variance job size
distributions [16].

IV. STABILITY ANALYSIS

In this section, we analyze the load that ensures the stability
of the system. A system operating under the TAGS policy
satisfies that jobs never reenter the same server and therefore
it can be described as a multi-class feed forward network,
where jobs of class i correspond to the jobs which terminate
service at server i. For such systems it is known, see [7], that
stability is equivalent to the condition that each server in the
network is sub-critical. The following result characterizes the
conditions for the stability of the system.

Proposition 1. Let M(X) = sups s(1− F (s)). Given a load
ρ, there exists a number of servers h and a vector of cutoffs
s = (s1, ..., sh−1) such that the system is stable if and only if

ρ <
E[X]

M(X)
. (3)

Proof. We first assume that the system with h servers is stable.
Let s be the value at which M(X) is achieved for a given job
size distribution. Thus, we have that si−1 ≤ s ≤ si for server
i. All jobs of size s or more will be executed in server i and,
as a result, the server will spend at least s time units on each
such job. Since the rate of jobs of size at least s is λ(1−F (s)),
the system is stable if

λs(1− F (s)) < 1.

Using that ρ = λE[X], it results that (3) holds.
Conversely, we assume that (3) holds. Since jobs in server

i spend at most si time units, the load of server i is upper

bounded by λ(1− F (si−1))si. Furthermore, using the defini-
tion of M(X) and also that ρ = λE[X]

λ(1− F (si−1))si ≤ λM(X)si/si−1 =

ρM(X)/E[X](si/si−1).

Fix any t > 1 such that tρM(X)/E(X) < 1 and let si = ti,
then by the above inequality shows that the load of server i
is less than one. Finally, since for server h we have r = th,
it follows that h = blogt(p)c + 1 servers are enough to be a
stable system.

This result says that, for a given job size distribution X ,
there is a critical load ρcrit(X) = E[X]

M(X) , that is, the system
can be stable only when its load is smaller than ρcrit(X).

In the remainder of the article, we assume that the system
operating under the TAGS policy is stable, that is, the load of
the system is below the value of the critical load.

The following theorem provides an upper bound on the
critical load when the job size distribution has range r.

Proposition 2. For a job size distribution X with range r, we
have that ρcrit(X) ≤ 1 + ln(r).

Proof. See Appendix B.

We now study the value of the critical load for particular job
size distributions. We focus on the Bounded Pareto distribution
in the next section.

A. Bounded Pareto distribution

We now assume that the job size distribution is Bounded
Pareto with parameters 1, r and α. In the following result, we
characterize the critical load for this distribution.

Proposition 3. For the Bounded Pareto distribution with
parameters 1, r and α,
• if α 6= 1, then ρcrit = (1− a1−α)(1− α)−1/α,
• if α = 1, then ρcrit = r ln(r)

r−1 .

Proof. For the Bounded Pareto distribution with α 6= 1, the
supremum of s(1 − F (s)) is achieved when s = r(1 − α)α

and therefore

M(X) = r1−α
(1− α)1/α

1− aα
α

1− α
.

Dividing (1) by the above expression, it results that

ρcrit = (1− a1−α)(1− α)−1/α.

For α = 1, since s(1−F (s)) is a decreasing function of s, the
supremum of s(1−F (s)) is given when s = 1 and, therefore,
M(X) = 1. As a result, we have that ρcrit = E[X] and using
(2) the desired result follows.

We have the following corollary that characterizes the
critical load for fixed α as r tends to infinity.

Corollary 4. For the Bounded Pareto distribution with pa-
rameters 1, r and α, when r →∞,
• if α 6= 1, then ρcrit → (1− α)−1/α,

4



• if α = 1, then ρcrit
ln(r) → 1.

In Proposition 3, we show that, when α = 1, the critical load
is r

r−1 ln(r), which is very close to the upper bound given in
Proposition 2. Besides, from Corollary 4, it follows that the
critical load when α = 1 coincides with the upper bound of
Proposition 2 when r → ∞. We now present a distribution
where the value of ρcrit(X) is equal to 1 + ln(r), that is, the
upper bound of the critical load is tight.

B. A distribution with a tight upper-bound for the critical load

We consider a job size distribution X with a probability
mass function defined as follows:

f(x) =


1
x2 , if x ∈ [1, r),
1
r , if x = r,

0, otherwise.
(4)

Interestingly, for this distribution, we have that x(1 −
F (x)) = 1, for all x ∈ [1, r] and, as a result, M(X) = 1.
Furthermore, for the mean job size, it results that

E[X] = 1 +

∫ r

1

xf(x)dx = 1 +

∫ r

1

x
1

x2
dx = 1 + ln(r).

As a consequence of this reasoning and using that
ρcrit(X) = E[X]/M(X), the following result follows.

Proposition 5. If X is the job size distribution defined in (4),
then ρcrit(X) = 1 + ln(r).

V. BOUNDS ON THE NORMALIZED MEAN WAITING TIME

In this section, we are interested in the performance
achieved when the vector of cutoffs is sopt, that is, when the
cutoffs are chosen so as to minimize the mean waiting time of
jobs in the system. In the following result, we show how the
normalized mean waiting when the vector of cutoffs is sopt

and when the vector of cutoffs minimizes the maximum mean
queue length among servers are related.

Proposition 6. Let sque be the vector of cutoffs that minimizes
the maximum mean queue length of the servers. Then,

E[W̄ (sque)] ≤ hE[W̄ ∗] + h− 1. (5)

Proof. See Appendix A.

This result gives an upper bound for the performance of a
system where the vector of cutoffs minimizes the maximum
mean queue length. Moreover, from this result, we can easily
derive a lower-bound for the optimal normalized mean waiting
time that depends on the number of servers and the normalized
mean waiting time when the vector of cutoffs minimizes the
maximum mean queue length, i.e.,

E[W̄ ∗] ≥ E[W̄ (sque)]

h
− h− 1

h
,

and using that h−1
h ≤ 1, we get the following result.

Corollary 7.

E[W̄ ∗] ≥ E[W̄ (sque)]

h
− 1.

Using that, for all s, E[W̄ (s)] = E[W (s)]
E[X] , an analogous result

of Proposition 6 is obtained for the mean waiting time of jobs,
i.e.,

E[W (sque)] ≤ hE[W ∗] + E[X](h− 1).

We remark that the result of Proposition 6 holds for an
arbitrary arrival process, i.e., a sequence of i.i.d. random
variables with common distribution, not necessarily Poisson.
The only requirement for this result to hold is that it is satisfied
the Little’s Law.

We now present that a similar result to that of Proposition 6
is given for SITA policies, a size-aware policy where the
service times are divided into intervals and all the jobs with
size in a given interval are dispatched to the same queue. The
proof is identical to that of Proposition 6 and therefore we
omit it.

Remark 8. Consider a system operating under the SITA
policy. Then,

E[W̄ (sque)] ≤ hE[W̄ ∗],

where sque is the vector of cutoffs that minimizes the maximum
mean queue length of the servers.

VI. ASYMPTOTIC ANALYSIS FOR BOUNDED PARETO
DISTRIBUTION

In this section, we analyze the normalized mean waiting
time of jobs when the job size distribution is Bounded Pareto
with parameters 1, r and α, where α ∈ (0, 2) and r tends
to infinity. As in [13], we assume Poisson arrivals to all the
servers for analytical tractability. As we will see in section
VII, the performance of the system under this assumption is
very accurate. We first focus on the case where ρ < 1 and
then we analyze the performance of a system operating under
the TAGS policy when the load is larger than 1. Finally, we
present some extensions of the results obtained in this section.

A. The case ρ < 1

We first consider that the total system utilization satisfies
that ρ < 1. In the following result, we compare the optimal
mean waiting time of a system operating under the TAGS
policy and of a system operating under the SITA policy.

Theorem 9. Let ρ < 1. For Bounded Pareto distributed job
sizes with r → ∞, the mean waiting time in a TAGS system
with optimal cutoffs is at most two times larger than the mean
waiting time of a SITA system with optimal cutoffs.

Proof. See Appendix C.

We know that the SITA policy requires the knowledge
of the size of incoming tasks, whereas the TAGS policy
it does not. Therefore, a system operating under the SITA
policy always outperforms a system operating under the TAGS
policy. However, an important conclusion from the result of
Theorem 9 is that, in the asymptotic regime, the penalty for
not knowing job sizes is upper bounded by a factor of 2, for
any value of α and any number of servers.
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From the result of Theorem 9 and taking into account that
the vector of cutoffs that minimizes the mean waiting time also
minimizes the normalized mean waiting time, we conclude that
when r tends to infinity, the normalized mean waiting time in
a TAGS system with optimal cutoffs is at most two times
larger the normalized mean waiting time of a SITA system
with optimal cutoffs.

B. The case ρ > 1

We now study the performance of a system when the load is
higher than one. First, we define the number of spare servers
as h̃ = h− i+ 1, where i is the minimum number of servers
to be stable the system. We present a procedure to obtain this
value next.

Remark 10. Given ρ < E[X]
M(X) we can determine the exact

number of servers needed for constructing a stable system
with load ρ by the following procedure. Let

ρi = λpiE[Xi] + λsi(1− F (si)).

Fixing si−1 it is easy to see that ρi is a non decreasing function
in si. Let s̃1 be such that ρ1 = 1. More generally, for a given
s̃i−1, we compute s̃i to satisfy that ρi = 1. If there is no value
for which ρi = 1, it is enough to consider a system formed by
i servers to ensure stability.

We know, see the numerical section, that for higher loads,
the difference on the performance between SITA and TAGS
can be extremely large. Therefore, we focus on the TAGS
policy to study the optimal normalized mean waiting time in
the asymptotic regime.

In the following result we give an expression of the order
of magnitude of the ratio of the performance of a system
operating under the TAGS policy for ρ > 1.

Proposition 11. When ρ > 1,

E[W̄ ∗] = Θ(r
|2α−2|
qh̃−1 ), (6)

where q = α
2−α if α > 1, q = 2−α

α if α < 1 and q = 1 if
α = 1.

Proof. See Appendix D.

We observe that the order of magnitude of the performance
of a system operating under the TAGS policy depends on the
number of servers and the minimum number of servers to
stabilize the system only through h̃, i.e., the number of spare
servers.

C. Extensions

1) Heterogeneous servers: We now present how the results
of Theorem 9 and of Proposition 11 extend to a system with
heterogeneous servers. For this case, the job size distribution is
given with respect to some reference server. Each server in the
system, say server i, has an associated power coefficient ci. A
job which takes t units of time on the reference server, takes
t/ci units of time on server i. In this setting, the optimization
is performed in two stages: on the one hand, one must choose

the vector of cutoffs s and, on the other hand, which server
gives service to jobs whose size is at least si−1. Moreover, the
low load condition (ρ < 1) is replaced by the condition that
the strongest server (largest ci) can handle the entire load.

The proof of Theorem 9 does not require the assumption
that the servers are homogeneous. To generalize the proof of
Proposition 11 to heterogeneous servers, we need to redefine
the number of spare servers. For α < 1 this is done by ordering
the servers in increasing order of the capacities and checking
how many servers are in a low load system. When α > 1,
we proceed in an analogous manner, but ordering the servers
in decreasing order of the capacities. In fact, the load burden
in the case α < 1 falls on the large job servers, whereas for
α > 1 the opposite is true.

2) Variants of the TAGS policy: We now study the perfor-
mance of a variant of the policy TAGS where jobs are resumed
on the next server from the point in which they were stopped
in the previous server [8], [4].

This assumption clearly improves the stability of the TAGS
policy. However, when the job size distribution is Bounded
Pareto and ρ < 1, the asymptotic performance of both policies
coincide. To see this, we consider that si/si−1 → ∞ and
define s̃i−1 = (1 + ε)si−1, where ε > 0. We consider a server
in a system operating under the TAGS policy which handles
jobs in the range [s̃i−1, si] and from each job whose original
size was s ≥ si−i we subtracted s̃i−1 work. Hence, the traffic
of server i for the latter system is smaller than that of server
i in a system implementing the TAGS policy where work is
resumed. Using the same arguments as in Theorem 9, we can
show that, in the asymptotic regime, the contribution to the
waiting time of server i when handles jobs ranging in size
between s̃i−1 and si is the same as the original TAGS policy
and, therefore, our conclusion follows.

3) The T+W policy: The numerical experiments performed
in section VII-C suggest that the value of h̃ can be substantially
improved at higher loads. For this purpose, we present a policy
that combines TAGS with work preserving policies like LWL
or random assignment, which are better at consuming load
than TAGS. We call this policy T+W. The basic idea is to
divide the set of servers in two types: in the first group of
servers, jobs are routed according to a work preserving policy
and handles jobs whose size s satisfies that s(1−F (s)) is large;
and in the second group of servers, the remaining jobs are
routed according to TAGS assignment. We now present how
this policy can be implemented for Bounded Pareto distributed
job sizes.

We first assume α < 1. Let s̃ be such that the load of jobs
whose size is greater than s̃ is 1. All the jobs are routed to
bρc+ 1 servers according to a work conserving policy. If the
execution of a job exceeds s̃+ε unit (for ε > 0) time units, it is
killed and sent to the remaining servers where it is processed
according to the TAGS policy.

Similarly, when α > 1, we define s̃ to be such that the
load of a server in a TAGS system serving jobs ranging in
size in the interval [1, s̃] is precisely 1. The remaining load,
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which is formed by jobs whose size is in the interval [s̃, p],
is routed to the LWL or random assignment system, which
requires ρ] + 1 servers to be stable. The remaining servers
manage all incoming jobs using the TAGS policy, where the
last cutoff is s̃− ε. Jobs which are of size greater than s̃− ε
are sent to begin service from scratch in the work preserving
system.

It is easy to see that the stability of the improvement of the
stability T+W policy with respect to TAGS is huge and the
main reason for this is that jobs are routed to ρ̃ + 1 servers
work preserving policies like LWL or random assignment.

VII. NUMERICAL EXPERIMENTS

A. The approximation equations

The mean waiting time of jobs in a system operating under
the TAGS policy with Poisson arrivals has no exact analytical
formula. The reason for this is that the input stream to the
second server and beyond is not Poisson. We analyze the
approximation suggested in [13] that consists of assuming
Poisson arrivals to all servers. Indeed, under this assumption,
an approximation to the average waiting time can be computed
using the Pollaczek-Khinchine equation for an M/G/1 queue.
The author in [13] also suggested that the approximation will
over-estimate the average waiting time since the input streams,
to all but the first server, tend to be more regular than Poisson,
having near constant inter-arrivals.

To analyze the true performance of TAGS and to compare it
with the approximation equations, we developed a simulation
of a system operating under the TAGS policy. For each run, we
consider an arrival traffic of 108 jobs and the Bounded Pareto
job size distributions with different values of α, varying from
0 to 2, and different numbers of servers. The total load of
the system is ρ = h/2, where h is the number of servers.
The smallest job size was of size 1 and the largest job size
was r = 104. This value was chosen because for α = 2, the
probability of a job of size greater than s is about s2, hence the
probability for a job of size greater than 104 is approximately
10−8. This means that for α close to 2, and 108 jobs in a
simulation run we would not get jobs substantially greater
than 104, therefore, there was no point in choosing a larger
value for r. The values of s1, . . . , sh−1 for the system were
chosen to be close to optimal for minimizing average waiting
time in the approximate equations.

The results of Table VII-A show that the average wait-
ing time value which is computed using the approximation
equations is always close to the value computed from the
simulations. Moreover, as conjectured in [13], the computed
value always over-estimates the actual average waiting time.
As expected, the computed values are closest to the simulation
results when the number of servers is small. The computed
values for h = 2 are essentially identical to the simulated
values, except for the case α = 1.8 where there was a 10%
difference. For larger values of h the error can be as large as
20%, a value which we still consider to be very reasonable.

TABLE I
COMPARISON OF ACTUAL WAITING TIME FROM SIMULATIONS OF TAGS

SYSTEMS, WITH THE ESTIMATE FROM THE APPROXIMATION FORMULAS,
WHICH ASSUME POISSON ARRIVALS AT ALL SERVERS.

h α Simulated E[W ∗] Calculated E[W ∗]
2 0.2 1368.72 1408.87
2 0.4 577.91 583.34
2 0.6 214.06 215.64
2 0.8 79.60 79.86
2 1 33.83 34.02
2 1.2 18.07 17.99
2 1.4 11.38 11.38
2 1.6 7.83 7.88
2 1.8 5.25 5.73
3 0.2 2323.63 2657.09
3 0.4 704.26 769.79
3 0.6 185.89 197.60
3 0.8 52.70 54.32
3 1 19.89 20.35
3 1.2 11.76 12.03
3 1.4 9.74 10.12
3 1.6 9.09 10.20
3 1.8 9.59 11.14
4 0.2 11180.74 13982.31
4 0.4 1468.58 1789.23
4 0.6 255.05 287.54
4 0.8 54.47 58.84
4 1 18.82 19.72
4 1.2 12.17 13.01
4 1.4 13.28 15.15
4 1.6 22.72 28.05
4 1.8 143.89 181.70
5 0.6 484.40 597.45
5 0.8 68.04 77.26
5 1 21.04 22.81
5 1.2 15.24 17.31
5 1.4 28.93 36.34
6 0.8 98.86 117.45
6 1 25.71 29.04
6 1.2 22.46 27.19
7 0.8 173.79 221.62
7 1 33.70 39.98
7 1.2 43.60 55.88
8 1 50.17 60.72

The largest errors occur for the extreme values of α, away
from the central value α = 1, where the errors are smallest.

We have also performed experiments with the larger value
of the maximum job size and we have observed that, in all
the cases, the obtained results follow the pattern presented
in Table VII-A, and therefore we can conclude that the
approximate equations are fairly accurate and conservative.

B. The minimum number of servers to stabilize the system

We consider a system operating under the TAGS policy
when the job size distribution is Bounded Pareto. In Ta-
ble VII-B, we represent the minimum number of servers
needed to stabilize this system for different values of α, from
0 to 2, and different values of ρ higher than one. The symbol
NA, denotes the case where ρ ≥ ρcrit and hence, a system
operating under the TAGS policy cannot be stable regardless
of the number of servers.

As it can be observed in Table VII-B, when the load is
equal to one, the minimum number of servers to stabilize the
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TABLE II
THE VALUES OF THE MINIMUM NUMBER OF SERVERS TO STABILIZE A
SYSTEM, WITH THE JOB SIZE DISTRIBUTION BOUNDED PARETO WITH
r = 104 AND α VARYING FROM 0 TO 2 AND DIFFERENT VALUES OF ρ

FROM 1 TO 4.

α ρ = 1 ρ = 1.5 ρ = 2 ρ = 2.5 ρ = 3 ρ = 3.5 ρ = 4
0.1 2 3 4 9 NA NA NA
0.2 2 2 4 7 34 NA NA
0.3 2 2 4 6 14 NA NA
0.4 2 2 4 5 9 33 NA
0.5 2 2 3 5 7 13 NA
0.6 2 2 3 4 6 9 14
0.7 2 2 3 4 5 7 9
0.8 2 2 3 4 5 6 7
0.9 2 2 3 3 4 5 6
1.0 2 2 3 3 4 5 6
1.1 2 2 3 3 4 5 6
1.2 2 2 3 4 4 6 7
1.3 2 2 3 4 5 7 11
1.4 2 2 3 4 6 NA NA
1.5 2 2 3 5 NA NA NA
1.6 2 2 3 6 NA NA NA
1.7 2 2 4 NA NA NA NA
1.8 2 2 4 NA NA NA NA
1.9 2 2 5 NA NA NA NA

system is always 2. However, when the load of the system
increases, the situation changes and the minimum number of
servers to stabilize the system changes with α. For instance,
when ρ = 2, the minimum number of servers is 4 for α = 0.1,
3 for α = 1 and 5 for α = 1.9.

We see in Table VII-B that there are instances where the
minimum number of servers to stabilize the system is very
high. For example, when ρ = 3 and α = 0.2, the obtained
value is 34 and when ρ = 3.5 and α = 0.4, it is 33.

We show in Table VII-B that, for some instances, the load
is larger than ρcrit(X) and, therefore, the system operating
under the TAGS policy can not be stable. For instance, when
ρ is equal to 3.5 and 4 and α is larger or equal than 1.4, a
system operating under the TAGS policy can not be stable. The
author in [13] has also observed that the TAGS policy performs
poorly when the load of the system is higher than one and they
study the server expansion of the TAGS system, that is, the
number of servers to be added in a system to stabilize the
system. In our illustration, we show that there are instances
where the system cannot be stabilize by increasing the number
of servers.

From the results shown in Table VII-B, one can conclude
that the performance comparison that has been carried out in
Theorem 9 cannot be done for any value of ρ > 1. Therefore,
if we aim to study the performance of a system operating
under the TAGS system, we need to check that the stability
condition ρ < ρcrit(X) is satisfied.

C. Performance comparison with SITA for r <∞

In Theorem 9, we have shown that the ratio of the perfor-
mance of a system operating under the optimal TAGS policy
over the performance of a system operating under the optimal

Fig. 2. The ratio of the mean waiting time of TAGS over the mean waiting
time of SITA when r varies from 100 to 5000 for different values of α. h = 2
and ρ = 0.5.

SITA in the asymptotic regime is upper bounded by two, i.e,

E[W ∗]

mins E[WSITA(s)
] ≤ 2.

In this section, we focus on the above ratio of performances
when r is finite. First, we consider a system with ρ < 1. In
Figure 2, we consider a system with two servers and ρ = 0.5.
We study the performance ratio when r varies from 100 to
5000 and different values of α. We observe that when r is
100 or 200 and α is equal to 0.1 or 0.2, the performance
ratio is higher than two. Hence, this illustration thus shows
that the result of Theorem 9 does not hold for a finite r. We
have performed further numerical experiments to explore the
upper bound of this performance ratio and the performance
ratio seems to be upper bounded by 3 for two hosts when
ρ is less than one and r is finite. Unfortunately, we have not
succeeded in showing this upper bound and thus we conjecture
that the performance ratio in a system with two servers is
upper bounded by 3 when ρ is less than one and r is finite.
Hence, proving this conjecture, at least until now, remains as
an unsolved problem.

We also study this performance ratio when ρ > 1. We have
computed the mean waiting time of jobs in a system operating
under the SITA-E policy (i.e, the SITA policy where the load
of the servers is equalized) for the parameters considered
in Table VII-A. We know from [18] that the optimal SITA
balances the load of the servers for the Bounded Pareto
distribution with α = 1. Therefore, the performance ratio we
present in Table VII-C coincides with E[W∗]

mins E[WSITA(s)
] for

this case. For the rest of the cases, since E[WSITA−E ] ≥
mins E[WSITA(s)], it follows that the values we show in
Table VII-C are lower bounds of the values of the performance
ratio we are investigating in this section.

As it can be seen in Table VII-C, for α = 1, the difference
on the performance of TAGS and SITA increases with the
number of servers. In fact, when the number of servers is 7
and 8, the performance ratio is, respectively, 60.72 and 114.15.
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TABLE III
MEAN WAITING TIME OF THE SITA-E POLICY AND THE PERFORMANCE
OF TAGS OVER THE PERFORMANCE OF SITA-E FOR THE PARAMETERS

CONSIDERED IN TABLE VII-A.

h α E[WSITA−E ] E[W ∗]/E[WSITA−E ]
2 0.2 91.66 14.93
2 0.4 38.56 14.98
2 0.6 16.31 13.12
2 0.8 9.11 8.73
2 1 10.507 3.21
2 1.2 17.59 1.03
2 1.4 16.266 0.69
2 1.6 9.0235 0.86
2 1.8 4.15 1.26
3 0.2 37.618 61.76
3 0.4 16.733 42.09
3 0.6 7.33 25.36
3 0.8 3.738 14.12
3 1 3.042 6.54
3 1.2 4.88 2.41
3 1.4 6.335 1.53
3 1.6 4.557 1.99
3 1.8 2.432 3.95
4 0.2 20.358 549.21
4 0.4 9.272 158.39
4 0.6 4.195 60.79
4 0.8 2.174 25.05
4 1 1.586 12.06
4 1.2 2.209 5.51
4 1.4 3.301 4.02
4 1.6 2.806 8.09
4 1.8 1.659 86.73
5 0.6 2.715 178.42
5 0.8 1.442 47.25
5 1 1.0274 20.49
5 1.2 1.273 12
5 1.4 3.013 9.61
6 0.8 1.03 95.98
6 1 0.731 35.17
6 1.2 0.843 26.64
7 0.8 0.775 224.24
7 1 0.555 60.72
7 1.2 0.608 71.71
8 1 0.4395 114.15

For α 6= 1, we have found instances where the performance
ratio is extremely high. For instance, when α = 0.2 and
the number of servers is 4, the ratio E[W ∗]/E[WSITA−E ]
is 549.21, which means that the performance of a system
operating under the optimal TAGS policy is more than 549.21
times the performance of a system operating under the optimal
SITA policy.

VIII. CONCLUSION

We have studied the performance of a system operating
under the TAGS policy. For a given system load and any job
size distribution, we have shown a necessary and sufficient
condition for the stability of the system. The main conclusion
of this result is that, for a given job size distribution X , there
exists a critical load ρcrit(X), i.e. , the system is stable if
and only if ρ < ρcrit(X). We have shown that ρcrit(X)
is upper bounded by one plus the logarithm of the largest
job size. Besides, we have computed the value of ρcrit(X)
for the Bounded Pareto distribution and we have provided

a distribution where the upper bound is attained. We have
studied the performance of the optimal TAGS policy, i.e.,
when the cutoffs s1, s2, . . . minimize the mean waiting time
of jobs, and we have compared it with the performance of the
TAGS policy when the cutoffs minimize the maximum queue
length of the serves. We have shown the relation between the
performance of both systems, which allows us to provide a
lower bound of the former and an upper bound of the latter. We
have analyzed the performance of a system operating under the
TAGS policy when the job size distribution is Bounded Pareto
in the asymptotic regime where the maximum job size tends
to finite (and the smallest job size is equal to one). First, we
have shown that, when the system load is smaller than one, the
performance of the optimal TAGS policy is, at most, two times
worst than the performance of the optimal SITA policy. The
main conclusion of this result is that the price of not knowing
the job sizes of incoming jobs is upper bounded by 2 when the
load is small. However, when the system load is higher than
one, the performance of the TAGS policy is large comparing
with that of the SITA policy. However, we have proved that
the order of magnitude the performance of the TAGS policy in
the asymptotic regime and we present a routing policy, that we
call T+W, that implements the TAGS policy in some servers
and a work conserving policy, such as Least-Work-Left, in the
remaining ones. We have also compared the performance of
SITA and TAGS when the largest job size is finite and the
numerical experiments we have performed hat confirm that,
when the system load is low, the difference on the performance
of both systems is small, whereas when the system load is
larger than one it is extremely large.

For future work, it would be interesting to perform an ana-
lytical study of the performance of TAGS policy for Bounded
Pareto job size distribution when the largest job size is finite.
Another possible future research is to analyze the routing
policy T+W for an arbitrary job size distribution as well as to
compute the difference on the performance of implementing
this policy with respect to the TAGS policy. Finally, we would
like to investigate the influence on the performance of the
system operarting under the TAGS policy when we increase
proportionately the number of servers and the arrival rate.
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APPENDIX

A. Proof of Proposition 6

For a job that finishes service in server i and a vector of
cutoffs s, we define Ti(s) as the sum of the the execution times
in the first i− 1 servers. Hence, Ti(s) =

∑i−1
j=1 sj . Moreover,

for a job of size s such that si−1 ≤ s ≤ si,

Ti(s) ≤ (i− 1)si−1 ≤ (i− 1)s ≤ (h− 1)s,

and therefore
h∑
i=1

piTi(s) ≤ (h− 1)E[X]. (7)

Let bi(s) = p̄iWi(s), for i = 1, . . . , h. For a vector of
cutoffs s, the mean waiting time of jobs in the system is

E[W (s)] =

h∑
i=1

bi(s) +

h∑
i=1

piTi(s).

For the optimal mean waiting time, we have that

E[W ∗] ≥ max{b1(sopt), . . . , bh(sopt)}

Now, we notice that, for a given vector of cutoffs s, the
queue length of server i is given by λbi(s). As a result, by
definition of sque,

max{b1(sque), . . . , bh(sque)} ≥
max{b1(sque), . . . , bh(sque)}.

Furthermore, we have that

max{b1(sque), . . . , bh(sque)} ≥ 1

h

h∑
i=1

bi(s
que).

Therefore, we have shown that hE[W ∗] ≥
∑h
i=1 bi(s

que).
Taking into account that

h∑
i=1

bi(s
que) = E[W (sque)]−

h∑
i=1

piTi(s
que),

and also the property of (7), if we divide both side of the
above expression by E[X], the desired result follows.

B. Proof of Proposition 2

Prior to prove the result of Proposition 2, we present the
following lemmas:

Lemma 12. For any job size distribution X of range r, there
exists a continuous distribution Y of the same range such that
|ρcrit(X)− ρcrit(Y )| < ε, for all ε > 0.

Proof. Let X be a bounded distribution of range r with
distribution F . We aim to show that for any ε > 0, it can
be approximated by a continuous distribution Y of range r
satisfying that |ρcrit(X)− ρcrit(Y )| < ε.

First, we decompose the range interval [1, r] into n equal
sub-intervals, with endpoints 1 = x0, x1, ..., xn = r. Consider
the distribution Yn which linearly extrapolates X between

its endpoint values on each sub-interval [xi, xi+1]. Since X
and Yn are both monotone non decreasing functions they are
Riemann integrable and it follows from the definition that
limn E[Yn] = E[X]. We claim that limn M(Yn) = M(X)
as well.

Since the probability distribution of Yn is given by FYn , for
any s ∈ [xi, xi+1], it follows that

s(1− F (s)) ≤ s(1− F (xi))

= (s− xi)(1− F (xi)) + xi(1− F (xi))

≤ r

n
+ xi(1− FYn(xi))

≤ r

n
+M(Yn).

As a result, we have that M(X) ≤ r
n +M(Yn). Applying

the same argument to Yn instead of X and noting that xi(1−
Yn(xi)) = xi(1− F (xi)) ≤M(X), it follows that M(Yn) ≤
r
n +M(X) and both inequalities together yield the claim for
n large enough.

Lemma 13. For any continuous job size distribution X with
range r, there exists a continuous job size distribution Y of
the same range such that

1) ρcrit(X) ≤ ρcrit(Y ),
2) Y is also supported on [1, r],
3) M(Y ) = 1.

Proof. Let X be a continuous job size distribution of range
r with probability distribution F. We first note that M(X) ≥
1(1−X(1)) = 1. If M(X) = 1 then X and Y coincide and
the desired result follows. Therefore, we focus on the case
where M(X) > 1. Let s̃ > 1 be the value at which M(X) is
achieved, i.e., s̃(1 − F (s̃)) = M(X). We know that s̃ exists
by continuity of X . Consider a job size distribution Y which
is supported on the interval [M(X), r] whose probability
distribution FY defined as follows: for s ≥ s̃,

FY (s) = F (s),

whereas for M(X) ≤ s ≤ s̃,

1− FY (s) = M(X)/s.

We first note that, by construction, M(X) = M(Y ).
Besides, from the definition of M(X) and the construction
of Ỹ , it follows that for all s,

1− FY (s) ≥ 1− F (s).

As a result,

E[X] =

∫ r

1

(1− F (s)) ds ≤
∫ p

1

(1− FY (s)) ds = E[Y ].

Therefore, from the above expression and using that
M(X) = M(Y ), it follows that

ρcrit(X) =
E[X]

M(X)
≤ E[Y ]

M(Y )
= ρcrit(Ỹ ).

Finally we define Ỹ to be a rescaling of Y whose probability
distribution is defined as FỸ (s) = FY (M(X)s). For this
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rescaling, it is easy to see that ρcrit(Ỹ ) = ρcrit(Y ). Moreover,
the support of Ỹ is in [1, r/M(X)], which is contained in
[1, r], and M(Ỹ ) = 1.

We now present the proof of the result of Proposition 2.

Proof. We first note that, from the arguments of the above two
lemmas, it is sufficient to prove the bound for a continuous
distribution which satisfies M(X) = 1, in which case we
have that ρcrit(X) = E(X). As a result, our goal is to bound
E(X). Since M(X) = 1 we have for any s,

s(1− F (s)) ≤ 1 ⇐⇒ 1− F (s) ≤ 1/s.

As a result,

E[X] = 1 +

∫ r

1

(1− F (s))ds

≤ 1 +

∫ r

1

(1/s) ds = 1 + ln(r).

And the desired result follows.

C. Proof of Theorem 9

We now from [2] that, when r is large, the normalized mean
waiting time of a system that operates under the SITA policy
is given by

E[W̄SITA(s)] ≈
h∑
i=1

fSITAi s−αi−1s
2−α
i , (8)

where fSITAi is given in Lemma 6.1 of [2]. We now provide
an analogous result for the normalized mean waiting time of
a system that operates under the TAGS policy.

Lemma 14. When r is large,

E[W ∗] ≈
h∑
i=1

fis
−α
i−1s

2−α
i , (9)

where for i < h

fi =
2

α
fSITAi (10)

and
fh = fSITAh . (11)

Proof. We first show different properties that the SITA system
and the TAGS system verify when they have the same cutoffs
and when r is large:

• We compute the portion of jobs executed in server i in
a SITA system, i.e., the probability of a job ranging in
size between si−1 and si, that for the Bounded Pareto
distribution results

pSITAi =
1

1− ( 1
p )α

(sαi−1 − sαi ). (12)

We also compute the portion of jobs which pass through
server i in a TAGS system and it results that p̄i =

1
1−( 1

p )
α (sαi−1 − pα).

p̄i =
1

1− ( 1
p )α

(sαi−1 − pα) (13)

By (12-13) and since si/si−1 → ∞ when r → ∞,
we get pSITAi ∼ p̄i and pSITAh = p̄h. From the above
expressions, it follows that, when r tends to infinity,

1− psitai

p̄i
→ sαi−1s

−α
i .

• For the arrival rate, it follows from the above reasoning
that λSITAi , which is the arrival rate to server i of the
SITA system, and λi, which is the arrival rate of server
i of the TAGS system, satisfy the following property:
λSITAi ≈ λi.

• The j-th moment of the distribution of the service time of
jobs in server i of the TAGS system, that is Xj

i , satisfies
that

E[Xj
i ] =

pSITAi

p̄i
E[Xj

i,SITA] + (1− pSITAi

p̄i
)sji , (14)

where E[Xj
i,SITA] is the j-th moment of the service time

of jobs in server i of the SITA system. The reason for this
is that, in the TAGS system, the jobs which pass through
server i consist of those which do not pass onto server
i + 1 (since the job size is less than si) and those who
do (and in this case the service time in server i is si).
Besides, since the distribution of jobs size is Bounded
Pareto, it follows that, if α 6= 1 and j 6= 1,

E[Xj
i,SITA] =

αsαi−1
1− ( si−1

si
)α
sj−αi−1 − s

j−α
i

α− j
(15)

and if j = 1 and α = 1, it follows that

E[Xj
i,SITA] =

si−1
1− ( si−1

si
)

ln
si
si−1

(16)

• We now shown that the load of the servers for SITA
and TAGS coincides in the asympototic regime. From
(12),(13), (14) and (15) and the above formula, it follows
that the mean service time of jobs in server i satisfies
that E[X1

i ] ≈ E[X1
i,SITA] for α < 1 and i = h or

for α > 1 and any i, whereas for α < 1 and i < h,
E[X1

i ] ≈ 1
αE[X1

i,SITA]. Besides, using that (12),(13),
(14) and (16), it follows that E[X1

i ] ≈ E[X1
i,SITA] for

α = 1. Therefore, since λSITAi ≈ λi, the load of server i
of the SITA system, that is ρSITAi , and the load of server
i of the TAGS system, ρi, satisfy that ρi ≈ ρSITAi in the
following instances: (i) α < 1 and i = h, (ii) α > 1 and
any i and (iii) α = 1. On the other hand, for i < h and
α < 1, we we have that ρi ≈ 1

αρ
SITA
i . We know from

(59) of [2] that ρSITAi tends to zero when α > 1 for
all i > 1 and, by the duality result of Lema 4.1 of [2],
it follows that ρSITAi tends to zero when α < 1 for all
i < h. Thus, since ρi ≈ 1

αρ
SITA
i , ρi also tends to zero
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when α < 1 for all i < h. And this implies that ρi and
ρSITAi coincide when r tends to infinity.

• For the second moment of the service time of jobs in
server i, we have that E[X2

i ] ≈ 2
αE[X2

i,SITA] for i < h
and E[X2

i ] ≈ E[X2
i,SITA].

• Since the arrivals in both systems are Poisson, we have
compute the mean waiting time of jobs in server i using
the Pollaczek-Kinchine formula. Let WSITA

i be the mean
waiting time of jobs in the SITA system. Using the above
formulas, it follows that, for i < h,

E[Wi] ≈
2

α
E[WSITA

i ],

and for i = h,

E[Wi] ≈ E[WSITA
i ].

We recall that, in a TAGS system, a job that finishes service
at server i spends an additional time of

Ti(s) =

i−1∑
j=1

sj ≤ (h− 1)si−1,

being serviced at servers 1, 2, . . . , i − 1 and that the average
excess service time satisfies that

E[T (s)] =

h∑
i=1

piTi(s) ≤ (h− 1)E[X]

or equivalently

E[T (s)]/E[X] ≤ h− 1 (17)

Let WSITA(s) be the mean waiting time of jobs in a SITA
system. For any vector of cutoffs s, we know that

E[W̄ (s)] ≥ E[W̄ ∗] ≥ minsE[W̄SITA(s)].

By the asymptotic result in [17], it follows that the last term
of the above inequality tends to infinity when r is large. This
implies that E[W̄ (s)] tends to infinity when r is large, i.e.,
E[W (s)]/E[X] is unbounded when r is large. Hence, in the
asymptotic regime E[W (s)]/E[X] is unbounded and by (17),
we know that E[T (s)]/E[X] is bounded. As a result, it follows
that E[T (s)] is asymptotically negligible. Therefore, the mean
waiting time of jobs for the TAGS system satisfies that

E[W ] ∼
h∑
i=1

p̄iE[Wi], (18)

whereas for the SITA system

E[WSITA] ∼
h∑
i=1

pSITAi E[WSITA
i ]. (19)

Finally, given the asymptotic relation given above between
pSITAi and p̄i and between E[Wi] and E[WSITA

i ], using (8)
as well as (18) and (19), the desired result follows.

We now provide the proof of Theorem 9.

Proof. Using (8) and (9), the ratio between the mean waiting
time of a system that operates under the TAGS policy and of
a system that operates under the SITA policy is given by

mins E[W̄SITA(s)]

E[W̄ ∗]
, (20)

when r is large. A simple scaling argument shows that the
ratio is independent of r and depends only on the ratios
fTAGSi /fSITAi , which as we have shown in the previous
lemma it is 2/α for i < h and one for i = h. Therefore, we
apply the result of Lemma 5.3 of [2] with ci = fTAGSi /fSITAi

and it results that (20) is equal to
(
2
α

)µ
, where µ = (qh−1−1)q

qh−1
and q = α

2−α .
We still need to show that

(
2
α

)µ ≤ 2. If α ≥ 1, then µ ≤ 1

and, therefore, it is clear that
(
2
α

)µ ≤ 2. If α < 1, then we
have that q < 1. This implies that

µ =
(qh−1 − 1)q

qh − 1
< q =

α

2− α
.

Differentiating ( 2
α )

α
2−α it is easy to verify that it is an

increasing function in the interval (0, 1] with value 2 at α = 1
and the desired result follows.

D. Proof of Proposition 11

We first study the case α > 1. For this instance, we denote
by i the minimal number of servers needed for a system
operating under the TAGS policy to be stable. Thus, there
exist i cutoffs s̃0, s̃1, . . . , s̃i−1, s̃i such that the load of the
first i-1 servers is equal to one. The load of jobs whose size
is larger than s̃i−1 is less than one. Let si−1 < s̃i−1 such
the load of jobs whose size is larger than si−1 is also less
than one. We choose s1, s2, . . . , si−2 such that the load of
the first i − 1 servers is the same. Since si−1 < s̃i−1, the
first i − 1 servers are stable. The remaining load is handled
by h̃ = h − i + 1 servers and, since it is less than 1 and up
to scaling the job size distribution is Bounded Pareto, from
the result of Theorem 11, we have that the normalized mean
waiting time of jobs whose size is larger than si−1, in the
asymptotic regime where r → ∞, is of the same order of
magnitude of that of a system operating under the SITA policy,
which, according to (67) of [2], is given by (6).

We now focus on the order of magnitud of the first i − 1
servers for α > 1. We observe that s̃i−1 is increasing with r
and, since the value of s̃i−1 is bounded by the value s̃i−1 for
the (unbounded) Pareto distribution, which is finite. Therefore,
the order of magnitude of the first i− 1 servers is negligible
in the asymptotic regime.

For α < 1, we use a similar strategy, but we start from the
last server. Hence, we define s̃h−1 to be such that the load on
the last server is precisely 1. Inductively, given s̃h−j we define
s̃h−j−1 to be such that the load on the h− j server is equal to
1. We can proceed this way to define s̃h̃, s̃h̃+1, ..., s̃h−1 such
that the load of jobs whose size is in the interval [1, s̃h̃] is less
than one. And using the same arguments as in the case α > 1,
the desired result follows.

12
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