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Abstract—We investigate the performance of two size-based
routing policies: the Size Interval Task Assignment (SITA) and
Task Assignment based on Guessing Size (TAGS). We consider
a system with two servers and Bounded Pareto distributed job
sizes with tail parameter 1 where the difference between the size
of the largest and the smallest job is finite. We show that the ratio
between the mean waiting time of TAGS over the mean waiting
time of SITA is unbounded when the largest job size is large
and the arrival rate times the largest job size is less than one.
We provide numerical experiments that show that our theoretical
findings extend to Bounded Pareto distributed job sizes with tail
parameter different to 1.

Index Terms—Size-based Routing, Parallel Servers, Heavy-
tailed distributions.

I. INTRODUCTION

Many existing routing policies to parallel queues are in-
cluded in the SQ(d) framework, where for each incoming job,
d ≥ 2 servers are picked uniformly at random to observe
their states and the job is routed to the server in the best state
among the observed ones. It is known that the performance
of this kind of systems is very good (see [1], [2], [3], [4]),
however the author in [5] showed that when the variability
of the job size distribution is high this family of policies are
not optimal. This is, in fact, the regime where the size-based
routing policies outperform the routing policies that belong
the SQ(d) family of policies.

In this work, we study two size-based policies: the Size
Interval Task Assignment (SITA) [6] and the Task Assignment
with Guessing Size (TAGS) [7]. In the former policy, short jobs
and long jobs are executed in different servers and, therefore,
it is assumed that the size of incoming tasks is known. In the
latter policy, all the jobs are executed in one server and, if a job
does not end its service before a given deadline, it is stopped
and enqueued in the other server, where it starts service from
scratch. From the above definitions, it follows clearly that the
mean waiting time of jobs in the SITA system is smaller than
in the TAGS system. Recently, the authors in [8], [9] show for
Bounded Pareto distributed job sizes that, when the difference
between the smallest and the largest job size tends to infinity
and the total load of the system is less than one, the ratio of
the mean waiting time of TAGS over the mean waiting time
of SITA is upper bounded by 2.

We consider a system with two servers and we compare
the mean waiting time of both systems in a non-asymptotic
regime where the difference between the size of the largest
and the smallest job is finite. We show that the ratio of the
mean waiting time of the TAGS system over that of the SITA
system is unbounded for the Bounded Pareto distribution with
tail parameter 1 when the largest job size is large and the
arrival rate times the largest job size is less than one. Our
numerical experiments show that the performance ratio of both
systems is unbounded other values of the tail parameter of the
Bounded Pareto distribution and it can be large even if the
arrival rate is not small.

II. MODEL DESCRIPTION

A. Notation

We consider a system with two servers with equal capacity.
We assume that the servers are FCFS queues. Arriving jobs
follow a Poisson distribution with rate λ. The size of the jobs
is given by a sequence of i.i.d. random variables denoted by X .
We denote by F (s) = P[X < s] the cumulative distribution
function of the job size distribution. We assume F (·) to be
differentiable and we write f(s) = dF (s)

ds . We assume that the
size of the smallest job is one and the size of the largest job is
r > 1. The load of the system is denoted by ρ and to ensure
stability we assume that ρ < 1.

B. The TAGS System

We focus on the TAGS routing (see Figure 1). Let s ∈ [1, r].
In this policy, all incoming jobs are sent to Server 1. If a job
has been served before s units of time in Server 1, it leaves
the system; otherwise, when the execution time equals s, it is
stopped and sent to the end of the queue of Server 2, where
the execution starts from scratch. Jobs that are executed in
Server 2 are always executed until completion.

For a given value s, we denote by WTAGS(s) the random
variable of the waiting time of incoming jobs under TAGS
policy. We define as sT the value of s such that the mean
waiting time of the TAGS system is minimized, i.e.,

sT = argmin
s

E[WTAGS(s)].
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Fig. 1. A system operating under the TAGS policy
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Fig. 2. A system operating under the SITA policy

From the above description, it follows that

E[WTAGS(sT )] =E[WTAGS
1 (sT )]

+

(∫ r

sT

f(x)dx

)
sT

+

(∫ r

sT

f(x)dx

)
E[WTAGS

2 (sT )], (1)

where E[WTAGS
i (sT )] is the mean waiting time of jobs in

Server i when the threshold value is sT .

C. The SITA System

We focus on the SITA routing (see Figure 2). This policy
assumes that the size of incoming jobs is known [10], [11]. Let
s ∈ [1, r]. Under the SITA policy with cutoff s, jobs whose
size is smaller than s are sent to Server 1, whereas jobs whose
size is larger than s to Server 2. The random variable of the
waiting time of incoming jobs under the SITA policy with
cutoff s is denoted by WSITA(s). We define as s∗ the value
of s such that the mean waiting time of the SITA system is
minimized, i.e.,

s∗ = argmin
s

E[WSITA(s)].

The mean waiting time of jobs under the SITA policy with
cutoff s∗ is given by

E[WSITA(s∗)] =

(∫ s∗

1

f(x)dx

)
E[WSITA

1 (s∗)]

+

(∫ r

s∗
f(x)dx

)
E[WSITA

2 (s∗)], (2)

where E[WSITA
i (s∗)] is the mean waiting time of jobs in

Server i.

D. The Bounded Pareto Distribution

We now present the Bounded Pareto distribution. A distri-
bution X is said to be Bounded Pareto with parameters 1, r
and α if its density has the following form: if 1 ≤ x ≤ r, then

f(x) =
αx−α−1

(1− (1/r)α)
,

and f(x) = 0 otherwise. Besides, the cumulative distribution
function of the Bounded Pareto distribution is given by the
following expression:

F (x) =


0, x ≤ 1,
1−(1/x)α
1−(1/r)α , 1 ≤ x ≤ r,
1, x ≥ r.

Besides, when α 6= 1, we have that the mean of the distribution
is given by α

α−1
1−(1/r)α−1

1−(1/r)α whereas when α = 1 ln(r)

1− 1
r

.The
Bounded Pareto distribution with large range and 0 < α < 2
is know to be a good model for high variance job size distribu-
tions [12]. We also note that the Bounded Pareto distribution
with α = −1 coincides with the uniform distribution on the
interval [1, r]. Besides, the most favorable distribution of SITA
and TAGS is given when α = 1 [8]. This is, indeed, the case
we study in the next section.

III. BOUNDED PARETO DISTRIBUTION WITH α = 1

We consider the Bounded Pareto distribution with α = 1 and
we aim to compare the mean waiting time of a system with two
queues operating under the TAGS routing with that of a system
with two queues operating under the SITA routing. In the
following result, we provide a lower-bound of the performance
of the TAGS system.

Lemma 1. For the Bounded Pareto distribution with α = 1,
if λr < 1,

E[WTAGS(sT )] > λr.

Proof. We aim to study the optimal performance of the TAGS
system with two queues. It follows from (1) that

E[WTAGS(sT )] ≥E[WTAGS
1 (sT )]

+

(∫ r

sT

f(x)dx

)
sT .
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For the Bounded Pareto distribution with α = 1, we have that

E[WTAGS
1 (sT )] +

(∫ r

sT

f(x)dx

)
sT =

λ(sT − 1)

2(1− ρ)(1− 1
r )

+
1− sT

r

1− 1
r

≥

λ(sT − 1)

2(1− 1
r )

+
1− sT

r

1− 1
r

=
sT (λ− 1

r ) + 2− 2λ

2(1− 1
r )

.

If λr < 1, then
x(λ− 1

r )+2−2λ

2(1− 1
r )

decreases with x. Thus,

sT (λ− 1
r ) + 2− 2λ

2(1− 1
r )

≥
r(λ− 1

r ) + 2− 2λ

2(1− 1
r )

=
λ(r − 2) + 1

2(1− 1
r )

>
λ(r − 2) + λr

2(1− 1
r )

= λr.

It is important to note that, unlike in the previous work [8],
we do not need to assume Poisson arrivals to all the servers in
the above result. In the following result, we characterize the
mean waiting time of the SITA system.

Lemma 2. For the Bounded Pareto distribution with α = 1,
when λr < 1 and r is large,

E[WSITA(s∗)] ≤ λ(
√
r − 1)2

√
r(1− 1

r )
2
.

Proof. We first note that the load of each server is upper
bounded by ρ. Therefore, for the Bounded Pareto distribution
with α = 1, we have that

E[WSITA
1 (s∗)] ≤ λ(s∗ − 1)

2(1− ρ)(1− (1/r))

and

E[WSITA
2 (s∗)] ≤ λ(r − s∗)

2(1− ρ)(1− (1/r))
,

where ρ = λ ln(r). We now note that,

λr < 1 ⇐⇒ λ ln(r) <
ln(r)

r
.

Since when r is large, ln(r)
r tends to zero and ρ = λ ln(r), it

follows that ρ tends to zero when λr < 1. As a result,

E[WSITA
1 (s∗)] ≤ λ(s∗ − 1)

2(1− (1/r))

and

E[WSITA
2 (s∗)] ≤ λ(r − s∗)

2(1− (1/r))
.

We know from Section 3.2.4 of [13] that, for the Bounded
Pareto distribution with α = 1, s∗ balances the load of both
servers and, therefore, it can be obtained as follows:∫ s∗

1

f(x)dx =

∫ r

s∗
f(x)dx ⇐⇒ s∗ =

√
r.

As a result,

E[WSITA
1 (s∗)] ≤ λ(

√
r − 1)

2(1− (1/r))

and
E[WSITA

2 (s∗)] ≤ λ(r −
√
r)

2(1− (1/r))
.

Therefore, from (2), it follows that

E[WSITA(s∗)] ≤

(∫ s∗

1

f(x)dx

)
λ(
√
r − 1)

2(1− (1/r))

+

(∫ r

s∗
f(x)dx

)
λ(r −

√
r)

2(1− (1/r))

=

(∫ √r
1

f(x)dx

)
λ(
√
r − 1)

2(1− (1/r))

+

(∫ r

√
r

f(x)dx

)
λ(r −

√
r)

2(1− (1/r))

=
λ(1− 1√

r
)(
√
r − 1)

2(1− (1/r))2

+
λ( 1√

r
− 1

r )(r −
√
r)

2(1− (1/r))2

=
λ( 1√

r
− 1

r )(r −
√
r)

(1− (1/r))2

=
λ(
√
r − 1)2√

r(1− (1/r))2
.

From the above lemmas, we have that when λr < 1 and
r is large, the ratio between the mean waiting time of TAGS
over the mean waiting time of SITA is upper bounded by

λr
λ(
√
r−1)2√

r(1−(1/r))2
=

(
√
r + 1)2√
r

,

where the equality is obtained by simplifying the derived
expression. Interestingly, the last expression does not depend
on λ. Besides, we now show that it is increasing with r.

Lemma 3. The function (
√
r+1)2√
r

is increasing with r.

Proof. We aim to show that (
√
r+1)2√
r

is increasing with r,
which is true if and only if

((
√
r + 1)2)′

√
r − (

√
r)′(
√
r + 1)2 > 0 ⇐⇒

2(
√
r + 1)

2
√
r

√
r − 1

2
√
r
(
√
r + 1)2 > 0 ⇐⇒

√
r + 1− 1

2
√
r
(
√
r + 1)2 > 0 ⇐⇒

1− 1

2
√
r
(
√
r + 1) > 0 ⇐⇒

2
√
r − (

√
r + 1) > 0 ⇐⇒

√
r − 1 > 0
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Fig. 3. The ratio E[WTAGS(sT )]/E[WSITA(sT )] as a function of r for
different values of λ.

From the above results and using that (
√
r+1)2√
r

tends to
infinity when r → ∞, it follows that when λr < 1, the ratio
between the mean waiting time of the TAGS system and the
mean waiting time of the SITA system is lower bounded by a
function that is unbounded and the following result follows.

Theorem 4. The ratio of the mean waiting time of the TAGS
system and the mean waiting time of the SITA system is
unbonded.

IV. NUMERICAL EXPERIMENTS

We present our numerical work, which focuses on the ratio
between the mean waiting time of the TAGS system and the
mean waiting time of the SITA system for the Bounded Pareto
distribution. We investigate the evolution of this ratio when we
vary r from 10 to 1000 for different values of λ and different
values of α. In Figure 3, we consider that α = 1 and we
depict the ratio between the mean waiting time of the TAGS
system and the mean waiting time of the SITA system as a
function of r for different values of λ. We observe that the
maximum of this ratio is 4 when λ = 0.05, 8 when λ = 0.01,
11 when λ = 0.005 and when λ = 0.001 the performance
ratio is increasing with r for the considered values of r. This
illustration shows that the maximum over r of the performance
ratio under consideration increases when we decrease λ and
also that it can be large even if the value of the arrival rate
is not very small. In Figure 4, we consider an arrival rate of
0.001 and we study the evolution of the ratio between the
mean waiting time of the TAGS system and the mean waiting
time of the SITA system over r for several values of α larger
than one. We observe that the performance ratio under study is
increasing with r for the considered values of r. Similar results
have been obtained for this performance ratio for different
values of α which are smaller than one, that is, ratio between
the mean waiting time of TAGS and the mean waiting time of
SITA is also increasing with r when α is smaller than 1. We
omit this illustration due to lack of space.
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