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Abstract: Industrial processes generate a massive amount of monitoring data
that can be exploited to uncover hidden time losses in the system, leading to
enhanced accuracy of maintenance policies and, consequently, increasing the ef-
fectiveness of the equipment. In this work, we propose a method for one-step
probabilistic multivariate forecasting of time variables based on a Hidden Markov
Model with covariates (IO-HMM). These covariates account for the correlation
of the predicted variables with their past values and additional process measure-
ments by means of a discrete model and a continuous model. The probabilities of
the former are updated using Bayesian principles, while the parameter estimates
for the latter are recursively computed through an adaptive algorithm that also
admits a Bayesian interpretation. This approach permits the integration of new
samples into the estimation of unknown parameters, computationally improving
the efficiency of the process. We evaluate the performance of the method using
a real data set obtained from a company in the food sector; however, it is a ver-
satile technique applicable to any other data set. The results show a consistent
improvement over a persistence model, which assumes that future values are the
same as current values, and over univariate versions of our model.
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1 Background and objectives

In industrial settings, production processes often face inefficiencies that
lead to time losses. These time losses can be broadly classified into four
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categories (Muchiri and Pintelon, 2008): losses due to scheduled stops such
as maintenance or cleaning; losses due to unexpected stops such as setup,
adjustment, failure, or supply outage; losses due to low production speed
and micro-stoppages; and losses due to the production of defective units
and rework. One can also derive different production times by successively
subtracting each time loss from the total length of the observation period,
as well as some important efficiency indexes as ratios of these production
times.
In this work, we propose a novel approach to predict time losses by mod-
elling the production process carried out by the equipment as a multi-signal
process, where the signals characterize the equipment’s current operational
mode. Furthermore, the predictive model includes other process features
that can have an impact on the model parameters as covariates. To ensure
continuous parameter updating using the latest data, we use an adaptive
learning algorithm that admits a Bayesian interpretation. The forecasting
of time losses in production processes can help to enhance the maintenance
strategy’s accuracy by identifying areas for improvement.

2 The model

We use an Input-Output Hidden Markov Model (IO-HMM) to model the
production process, see (Bengio and Frasconi, 1996) for full details of
IO-HMMs. Figure ?? illustrates an IO-HMM diagram. The process goes
through K hidden states according to an initial state probability distribu-
tion and a transition probability distribution between states. The hidden
state of the n-th observation period is denoted by cn and represents the
condition of the production process during that period. Each state gives
rise to a different probability distribution of the continuous responses yn.
In an IO-HMM, the model’s probability distributions are affected by an
input stream of covariates, denoted by xn. These covariates may include,
among others, calendar variables or the reference produced, and charac-
terize the observation period that is about to begin. Further, we introduce
an autoregressive component into the model by allowing the covariates to
include past values of the response variables. The covariates that influ-
ence the probabilities in the discrete part of the model will be denoted by
zn ⊆ xn, while the ones that impact the responses’ joint density will be
denoted by wn ⊆ xn.

3 Parameter Estimates

We consider that the discrete process {cn}n≥1 is a Markov chain with K
different states, cn ∈ {1, . . . ,K} , n ≥ 1. The probability distributions for
the initial state and the transitions between states are dependent on the
covariates zn, which take values in a discrete and finite set of S symbols.
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FIGURE 1. Input-Output HMM. Covariates xn affect both discrete and contin-
uous processes. Probabilities in the discrete process {cn}n≥1 are dependent on
covariates zn ⊆ xn and probabilities in the continuous process {yn}n≥1 are de-
pendent on covariates wn ⊆ xn.

The unobserved next state cn is categorical with parameters π(s) if n = 1

and zn = s, or p
(s)
k when n > 1 and zn = s. In turn, π(s) and p

(s)
k are

Dirichlet with parameters - i.e., counts - updated every time an observation
period ends.
On the other hand, we split the responses’ joint density function into two
conditional Gaussian distributions, namely

yn|wn ∼ Nm(unHu,Σu) (1)

yn|cn ∼ Nm(vnHv,Σv), (2)

where un =
[
1 wT

n

]
, vn = v(cn) for a function v(·), Hu,Hv are coefficient

matrices and Σu,Σv are covariance matrices. As soon as a new sample yn

becomes available, the estimators (Hu,n−1,Σu,n−1,Hv,n−1,Σv,n−1) are up-
dated to (Hu,n,Σu,n,Hv,n,Σv,n) through an adaptive algorithm described
by the multivariate extension of the equations introduced by Alvarez et al.
(2021)

Hu,n = Hu,n−1 +
Pu,n−1u

T
n

λu + unPu,n−1uT
n

(yn − unHu,n−1)

Σu,n = Σu,n−1 −
1

γu,n

[
Σu,n−1 −

λ (yn − unHu,n−1)
T
(yn − unHu,n−1)

λ+ unPu,n−1uT
n

]

Pu,n =
1

λu

(
Pu,n−1 −

Pu,n−1u
T
nunPu,n−1

λu + unPu,n−1u,Tn

)
γu,n = 1 + λuγu,n−1,

where λu is a forgetting factor. The algorithm is initialized with Hu,0 =
0, Σu,0 = 0, Pu,0 = I and γu,0 = 0. The same updating equations are
applied to compute Hv,n and Σv,n with the vector vn and the forgetting
factor λv.
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4 Forecasting

At this stage each distribution produces a forecast of the responses, which
are then combined using a minimum-variance criterion to obtain the final
prediction. In particular, once the parameters are updated at the n-th time
step the model computes the final prediction and a measure of its accuracy
as

ŷn+1 = un+1Hu,nD+ vn+1Hv,n(I−D)

Σ̂n+1 = DΣu,nD+ (I−D)Σv,n(I−D),

where D = diag (δ1, . . . , δm), δj = σ2
v,j/

(
σ2
v,j + σ2

v,j

)
, j = 1, . . . ,m, and

σ2
v,j (respectively σ2

u,j) is the j-th element in the diagonal of Σv,n (respec-
tively Σu,n).

5 Real case study

The proposed model has been employed to predict time losses in the pro-
duction process of a company that operates in the food industry. To mea-
sure the predictions’ quality we use the well-known metrics Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). The multivariate
predictive model with an autoregressive component in the covariates wn

shows a consistent improvement in the predictions’ quality against some
benchmark models, including the persistence model, which assumes that
future values are the same as current values (i.e., ŷn+1 = yn), the model
with no autoregressive component and the respective univariate versions of
our model.
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