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Abstract—We investigate the Age of Information (AoI) of
Jackson Networks with finite buffer size. We provide a closed
form expression of an upper bound of the average AoI by using
Stochastic Hybrid Systems (SHS) along with linear algebra tools.
Since the computation of the bound requires inverting a N ×N
matrix, where N is the number of queues in the network, we
provide a simple iterative algorithm and prove its convergence
with geometric convergence rate. Numerical results allow us to
assess the accuracy of our model in various settings.

Index Terms—Age of Information, Jackson networks.

I. INTRODUCTION

The notion of freshness of information is gaining interest in
many areas, e.g. control, communications networks, etc. This
is mainly motivated by the development of services in which
a monitor tracks fresh updates about a physical process. In
order to capture the timeliness of information, a relatively new
metric called Age of Information (AoI) has been introduced
in [1], [2].

AoI has attracted the attention of researchers in the past
few years. Most of the work has focused on the compu-
tation of the average AoI and its minimization in different
settings, where the medium (channel, network, etc.) between
the transmitter and the monitor is modeled as a queueing
system. For instance, M/M/1, M/D/1 and D/M/1 queue models
have been considered in [2]. Furthermore, the AoI has been
analyzed in [3], [4] by considering an M/M/2 queue model.
Other queueing models have also been studied in [5], [6], [7].
The aforementioned works focused on single hop networks
with predefined transmission/scheduling policy. The problem
of scheduling and access in single hop networks has also been
explored, and optimal and near-optimal policies have been
obtained in various scenarios [8], [9], [10], [11]. Unfortunately,
single hop and/or single server queueing models may not
be representative of the networks where packets can be sent
through multiple paths. Therefore, AoI has been also analyzed
in networks with parallel servers [12], [13], [14] as well as
in multi-hop systems [15], [16]. In [15], [16], the scheduling
in multi-hop queueing networks has been considered and it
was proved that Preemptive Last Generated First Served (P-
LGFS) policy is age-optimal for i.i.d. exponentially distributed
service times. The authors in [17], [18] characterized the
average AoI in a system of tandem queues without buffer.
In fact, [17] considered two non-preemptive queues, whereas
in [18], the author considered the preemptive case in a system

with n tandem queues without buffer. The authors in [19]
considered a specific multi-hop scenario in which each node
is both a source and a monitor, derived fundamental age limits
and developed near optimal scheduling policies. Note that the
multi-hop multi-cast setting has also been considered in [20].
The works in [17], [18] applied the Stochastic Hybrid Systems
(SHS) method, which was first used to analyze the average
AoI in in [21]. The SHS approach models the system as a
combination of continuous and discrete states; the former state
tracks the age evolution in the system while the latter one is
a discrete process that captures the evolution of the system
in question and is usually represented by a Markov Chain.
For more comprehensive review of recent work on AoI, one
can refer to [22]. In this paper, we study the AoI in Jackson
networks. A Jackson network models a network of queues
in which the packets are routed from one queue to another
which allows us to model the performance/behavior of packets
in complex networks. In Jackson networks, it is shown that
the steady-state distribution of packets in the queues admits
a product form solution [23], which is possibly one of the
most important results in queueing theory. Much research
has since been devoted to investigating queueing networks in
which product form solutions exist (see for instance [24]).
We provide a closed form expression of an upper bound on
the average AoI of Jackson networks with FIFO queues by
using the SHS technique. Since the closed form expression
requires inverting a matrix of size N × N (and has hence a
computational complexity of O(N3.5)), we provide a simple
iterative algorithm and prove that it converges with a geometric
convergence rate. We also provide numerical results that assess
the accuracy of the derived bound.

II. MODEL DESCRIPTION

We study the average AoI in a system formed by N queues.
Jobs arrive to queue i according to a Poisson process of
parameter λi and jobs in queue i are served with exponential
time of rate µi. We assume that the queues have a finite buffer
size. We denote by Mi ≥ 0 the buffer size of queue i. When
a job arrives to queue i and there are Mi jobs waiting for
service in that queue, the arriving job replaces the job in the
last position of the queue. When a job is served in queue i,
it leaves the system with probability pi,s and it is routed to
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Fig. 1: Example of a Jackson network with three nodes.

queue j with probability pi,j . Therefore,

pi,s +

N∑
j=1

pi,j = 1,

for all i. We consider that the jobs are served in the queues
according to the FIFO discipline. Although LIFO may provide
better age results, FIFO is more used in practice, especially
when the servers are usually used to deliver multiple services
and not only status updates. Analyzing the average AoI in the
network in question using the SHS method is very compli-
cated, since it requires tracking the state of each node, which
is the same as handling a Markov Chain where the number
of states is equal to

∏N
i=1(Mi + 1). We therefore provide a

modified system in the next section, allowing us to derive a
closed form expression of a bound of the average AoI.

III. MODIFIED SYSTEM

We consider a system where we use fake updates to simplify
the computation of the average AoI of the aforementioned
system. More precisely, we consider that the queues are full
of updates and, when a job is served, all the packets in the
queue are moved forward one position and, in the last position,
we put a fake update whose value is the same as the age of
the penultimate packet. By doing so, the Markov Chain to be
considered in the SHS method has a single state. 1

In this section, we characterize the average AoI for the
modified system with N nodes by using the SHS method.
A closed form expression of the average AoI is provided. We
then provide a simple iterative method in order to obtain the
average AoI with reduced computational complexity.

Remark 1: It is important to note that the average AoI of
the modified system provides an upper bound for that of the
original system. In fact, in the modified system, the buffer is
always full and contains fake packets while in the original
system the buffer may not be full all the time. In the modified
system, the incoming update/packet is always put in the last
position of the queue, which increases the sojourn time of the
packets in the queue and hence leads to a larger average AoI
as compared to the original system.

1It is implicitly assumed that, if there exists a queue which is not initially
full of packets, we put fake updates until the buffer is full.

A. Average AoI of the Modified System

We provide in this subsection a derivation of the average
AoI for the modified system by making use of SHS and linear
algebra tools.

Proposition 1: In the aforementioned system, the average
AoI is

∆ =
1∑N

j=1 µjpj,s

1 +

N∑
j=1

Mjpj,s +

N∑
j=1

pj,sµjyj

 , (1)

where y1, . . . , yN satisfy that

yi

λi +

N∑
j=0
j 6=i

µjpj,i

 = 1 +

N∑
j=1

Mjpj,i +

N∑
j=0
j 6=i

yjµjpj,i, (2)

with i = 1, . . . , n.

Proof: The proof is provided in Appendix A.
In the following, we provide a closed form expression of the

average AoI of the considered network. For that, we introduce
the following notations. Let F be a N × N matrix whose
element in the i-th row and j-th column is defined as follows:

Fi,j =


µjpj,i

λi+
∑N
j=0
j 6=i

µjpj,i
if i 6= j,

0 if i = j.

(3)

Furthermore, we define

bi =
1 +

∑N
j=1Mjpj,i

λi +
∑N
j=0
j 6=i

µjpj,i

for i ∈ {1, ..., N}. The system of equations in (2) can be
written in the following matrix form

(I− F)y = b

where y = [y1, ..., yN ]T and b = [b1, ..., bN ]T .
Proposition 2: The unique solution to the system of equa-

tions in (2) is given by

y∗ = (I− F)
−1

b (4)

Proof: The proof is provided in Appendix B.

Corollary 1: The average AoI of the modified system is
given by

∆ =
1∑N

j=1 µjpj,s

1 +

N∑
j=1

Mjpj,s + pµ
T (I− F)

−1
b

 ,

(5)
where pµ = [(pµ)1, . . . , (pµ)N ]T , where (pµ)i = pi,s · µi for
all i = 1, . . . , N .

Proof: The expression can obtained by replacing the
expression y∗ = (I− F)

−1
b in (1).
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B. Iterative Algorithm

The closed form expression of the average AoI requires the
computation of the inverse of matrix I − F (of dimension
N ×N ), which has a complexity of order O(N3.5). In order
to compute the average AoI ∆ with a reduced complexity, we
can use the following iterative algorithm

y(t+ 1) = Fy(t) + b (6)

where y(t) is y obtained at iteration t. This algorithm con-
verges to y∗ = (I− F)

−1
b with a geometric convergence

rate. This will be discussed and proved later on in this section.
Once the algorithm in (6) converges to y∗, the average AoI
can be computed using (1), i.e.

∆ =
1∑N

j=1 µjpj,s

1 +

N∑
j=1

Mjpj,s + pµ
Ty∗

 , (7)

Before showing the convergence of the aforementioned
iterative algorithm in (6), we provide the following definition.

Definition 1: The sequence {y(1),y(2), ...} is said to con-
verge geometrically to y∗ if ‖y(t) − y∗‖∞ ≤ Cαt, where
C > 0 and 0 < α < 1 are constant values and ‖.‖∞ is the
infinity norm.

Proposition 3: The sequence {y(1),y(2), ...} generated by
the algorithm in (6) converges geometrically to y∗ =
(I− F)

−1
b

Proof: The proof is provided in Appendix C.
This result implies that the iterative algorithm in (6) is

efficient and converges fast. In the simulations in section IV,
we have observed that it converges in a very small number of
iterations (5 to 10 iterations) in the considered cases.

IV. NUMERICAL EXPERIMENTS

We provide simulation results to study the accuracy of
the upper bound of the average AoI with respect to the real
average AoI, that is, the average AoI of the original system.
We consider a network with two queues. We set µ1 = µ2 = 1
as well as the following routing matrix: p1,1 = 0.2, p1,2 = 0.7,
p1,s = 0.1, p2,1 = 0 and p2,2 = 0.5 and p2,s = 0.5.

In Figure 2, we present the percentage relative error of the
upper bound w.r.t. the real age for M/M/1/1 queues. We
observe that the difference between the upper bound and the
real average AoI is very small (does not exceed 4%) and close
to zero for most of the considered values of λ1 and λ2. For
example, for two M/M/1/1 queues, when λ1 = λ2 = 2, the
real average AoI is 2.47 and the upper bound we provide
is 2.5, which results in a relative error of 1.1%. As it can be
seen in Figure 3, this phenomenon holds true as well when we
consider M/M/1/2* queues. We notice that the approximation
error is higher as compared to the previous case, however,
the gap between the bound and the real AoI is less than
5% for most of the considered arrival rates λ1 and λ2 and
can achieve 13% for very small values of arrival rates. This
gap/error occurs because, in the modified system, the incoming
updates find the system full (sometimes with fake packets in
the buffer) and are always put in the last position of the buffer,
which increases the sojourn time in the buffer. However, since
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Fig. 2: Tightness (in %) of the upper bound for two M/M/1/1
queues for different values of arrival rates. X-axis and Y-axis
in log scale.
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Fig. 3: Tightness (in %) of the upper bound for two M/M/1/2
queues for different values of arrival rates. X-axis and Y-axis
in log scale.

there is no fake packets in the original system, there will be in
general less packets in the buffer than in the modified system,
which leads to a better AoI.

V. CONCLUSION

In this paper, we provide an analysis of AoI in a Jack-
son network composed of N queues with finite buffer size.
We considered Poisson arrival and exponential service time
distributions and that a served packet is either routed to a
new queue or delivered to the monitor. By using SHS and
linear algebra tools, we provided a closed form expression
of an upper bound on the average AoI. Since computing this
bound requires inverting a N × N matrix, we provided an
iterative algorithm and proved its convergence with geometric
convergence rate. We also provided numerical results to asses
the accuracy of the proposed model in various settings.
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l λl x′0 x
′
i,0 x

′
i,1 . . . x′i,Mi−1 x

′
i,Mi

x′j,Mj

0 λi x0 xi,0 xi,1 . . . xi,Mi−1 0 xj,Mj

1 µjpj,i x0 xi,0 xi,1 . . . xi,Mi−1 xj,0 xj,Mj

2 µipi,s xi,0 xi,1 xi,2 . . . xi,Mi
xi,Mi

xj,Mj

3 µipi,j x0 xi,1 xi,2 . . . xi,Mi
xi,Mi

xi,0
4 µipi,i x0 xi,1 xi,2 . . . xi,Mi

xi,0 xj,Mj

TABLE I: Table of SHS transitions of Figure 4.

APPENDIX A
PROOF OF PROPOSITION 1

We use the SHS method to compute the average AoI of the
modified system. For this case, the discrete state is formed
by a single state since we have used fake updates and the
continuous state is defined as

x(t) = [x0(t) ~x1(t) ~x2(t) . . . ~xN (t)],

where ~xi(t) = [xi,0(t) xi,1(t) . . . xi,Mi(t)] for all i =
1, . . . , N . This notation means that the age of the update in
service in server i is xi,0, the age of the update in the position
j of queue i is xi,j (with j = 1, . . . ,Mi) and the age of the
monitor is x0.

Let us remark that, for an arrival or an update delivery after
being served in queue j, the age of the updates in the rest of the
queues is not modified. Besides, when an update is routed to
queue j, the update in the last position of the queue is the only
one whose age changes. This allows us to focus on the age of
the updates in queue i and of the update in the last position of
the rest of the queues to illustrate the Markov Chain and the
SHS transitions, which are presented respectively in Figure 4
and in Table I. We now explain each transition l:

l = 0 An update arrives from outside to queue i. For this case,
the value of xi,Mi is replaced by 0 and the other elements
of x do not change.

l = 1 An update arrives to queue i from queue j. For this
case, the value of xi,Mi

is replaced by xj,0 and the other
elements of x do not change.

l = 2 An update in queue i ends the service and it is delivered
to the monitor. For this case, the value of x0 is replaced
by xi,0 and xi,k by xi,k+1, with k = 0, . . . ,Mi− 1. The
other elements of x do not change.

l = 3 An update in queue i ends the service and it is routed to
queue j (with j 6= i). For this case, the value of xj,Mj is
replaced by xi,0 and xi,k by xi,k+1, with k = 0, . . . ,Mi−
1. The other elements of x do not change.

l = 4 An update in queue i ends the service and it is routed
to queue i. For this case, the value of xi,Mi

is replaced
by xi,0 and xi,k by xi,k+1, with k = 0, . . . ,Mi− 1. The
other elements of x do not change.

We have a trivial stationary distribution of the Markov Chain
since it is formed by a single state. We define also the vector
v = [v0 ~v1 ~v2 . . . ~vN ], where ~vi = [vi,0 vi,1 . . . vi,Mi ] for
all i = 1, . . . , N . From the result of Theorem 4 in [21], it
follows that the average AoI is equal to v0 and v satisfies
the following system of equations (the vector b in [21] is an
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all-ones vector of size N + 1 +
∑N
i=1Mi in our case):

v0
∑
j=1

(λj+µj) = 1+v0

N∑
j=1

(λj+µj(1−pj,s))+
N∑
i=1

vj,0µjpj,s

vi,kµi = 1 + vi,k

 N∑
j=1

λj +
∑
j 6=i

µj

 + vi,k+1µi, ∀k, i.

vi,Mi

N∑
j=1

(λj+µj) = 1+vi,Mi

∑
j 6=i

λj+vi,Mi

N∑
j=1

µj(1−pj,i)

+

N∑
j=1

vj,0µjpj,i, ∀i = 1, . . . , N

Simplifying the above expressions, it results that

v0
∑
j=1

µjpj,s = 1 +

N∑
j=1

vj,0µjpj,s

vi,kµi = 1 + vi,k+1µi, ∀k = 0, . . . ,Mi − 1,∀i = 1, . . . , N

vi,Mi

λi +

N∑
j=1

µjpj,i

 = 1 +

N∑
j=1

vj,0µjpj,i, ∀i = 1, . . . , N

Since vi,kµi = 1+vi,k+1µj , ∀k = 0, 1, . . . ,Mi−1, we derive
that for all i,

vi,0µi = Mi + vi,Mi
µi.

Therefore, the first equation of the above system of equations
can be written as,

v0
∑
j=1

µjpj,s = 1+

N∑
j=1

vj,0µjpj,s = 1+

N∑
j=1

(Mj+vj,Mjµj)pj,s

whereas the third equation:

vi,Mi

λi +

N∑
j=1

µjpj,i

 = 1 +

N∑
j=1

vj,0µjpj,i

= 1 +

N∑
j=1

(Mj + vj,Mj
µj)pj,i.

Let yi = vi,Mi
. Hence,

v0
∑
j=1

µjpj,s = 1 +

N∑
j=1

(Mj + yjµj)pj,s,

yi

λi +

N∑
j=1

µjpj,i

 = 1 +

N∑
j=1

(Mj + yjµj)pj,i,

for all i = 1, . . . , N . Or alternatively,

v0
∑
j=1

µjpj,s = 1 +

N∑
j=1

Mjpj,s +

N∑
j=1

yjµjpj,s

yi

λi +

N∑
j=0
j 6=i

µjpj,i

 = 1 +

N∑
j=1

Mjpj,i +

N∑
j=0
j 6=i

yjµjpj,i,

for all i = 1, . . . , N , and the desired result follows.

APPENDIX B
PROOF OF PROPOSITION 2

Solving linear systems of equations has been investigated in
the past in several areas. In particular, in the context of power
control in wireless networks, similar system of equations have
been analyzed in [25], [26]. It has been shown that, if matrix F
is irreducible, a system of equations of the form (I− F)y = b
has a unique solution y∗ = (I− F)

−1
b, if and only if the

spectral radius of F is ρ (F) < 1. One can refer to [25], [26]
for more details. Therefore, it is sufficient to show here that
F is irreducible and ρ (F) < 1 to prove the result. In our
context here, F has the following special structure: all off-
diagonal entries are strictly positive and Fi,i = 0 ∀ i. This
matrix can be shown to be irreducible: the proof is simple
and consists of showing that the corresponding graph to F
is strongly connected (i.e. F is the adjacency matrix of the
graph). In fact, one can construct a directed graph composed
of N vertices, in which the weight of the edge between two
vertices i and j is Fi,j . Since all Fi,j 6= 0 ∀ i 6= j, there is a
path from any vertex i to any other vertex j. In addition, there
is a path from a vertex i to itself : i→ j and then j → i (since
both Fi,j 6= 0 and Fj,i 6= 0). Therefore, the constructed graph
is strongly connected, which implies that the corresponding
adjacency matrix F of the graph is irreducible. The next step
is to show that the spectral radius of F is strictly less than 1.
This can be deduced from the fact that the sum of the elements
in each row is < 1. In fact,

N∑
j=1

Fi,j =

∑N
j=0
j 6=i

µjpj,i

λi +
∑N
j=0
j 6=i

µjpj,i
< 1 ∀i

Therefore, the following norm of F, ‖F‖∞ =
maxi

∑N
j=1 Fi,j < 1, and by using the inequality

ρ (F) ≤ ‖F‖∞ = we conclude that ρ (F) < 1. This
ends the proof.



6

APPENDIX C
PROOF OF PROPOSITION 3

Let y(t) be the obtained vector by the algorithm in (6) at
iteration t.

‖y(t)− y∗‖∞ = ‖Fy(t− 1) + b− y∗‖∞

Recall that y∗ is the unique solution to (1) and it is therefore
a fixed point of (6), that is y∗ = Fy∗+b. We have therefore,

‖y(t)− y∗‖∞ = ‖F (y(t− 1)− y∗) ‖∞
≤ ‖F‖∞‖y(t− 1)− y∗‖∞
≤ (‖F‖∞)

t ‖y(0)− y∗‖∞ (8)

We know from the definition of F that ‖F‖∞ =
maxi

∑N
j=1 Fi,j < 1 (since

∑N
j=1 Fi,j < 1 ∀ i). By denoting

C = ‖y(0)− y∗‖∞ and α = ‖F‖∞, we have,

‖y(t)− y∗‖∞ ≤ C (α)
t

We conclude that when t → ∞, ‖y(t) − y∗‖∞ → 0 and
in addition the sequence {y(1),y(2), ...} generated by the
algorithm in (6) converges geometrically to y∗.


