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Abstract—The COVID-19 pandemic exposed the importance
of research on the spread of epidemic diseases. In the case of
COVID-19, official data about infection prevalence was based
on PCR and antigen tests reports, which can be unreliable. In
our work, we construct prediction models based on Genetic
Programming to estimate the SARS-CoV-2 seroprevalence of
a given population from multiple estimates of the COVID-
19 prevalence (official prevalence data, estimates derived from
wastewater data, and estimates obtained from massive surveys
with different rules and ML methods). To do that, we propose
the use of stacking techniques based on Genetic Programming
to obtain Machine Learning Ensemble Methods. Our approach
produces more accurate prediction models than conventional
stacking techniques based on Linear Regression.

I. INTRODUCTION

The Coronavirus disease 2019 (COVID-19), caused by the
severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-
2) [1], has raised public interest in epidemics. During the
pandemic, media outlets mainly reported daily updates on
the number of COVID-19 infections, hospitalisations, and
deaths to provide information about the spread of the disease.
COVID-19 estimated number of cases was primarily obtained
from large-scale screening using PCR and antigen tests [2].
However, this method may not be the most reliable source
of information when attempting to understand the full scope
of the pandemic and accurately determine the percentage of
the population affected, since the accuracy of the information
obtained from test screening is affected by various factors such
as the limited availability of test kits [3] (especially at the
beginning of the pandemic), the time between infection and the
test timing [4], and the high number of asymptomatic infected
individuals [5].

The traditional approach for estimating the proportion of
previously infected individuals within a population relies on
the measurement of seroprevalence. Specifically, seropreva-
lence refers to the proportion of individuals who test posi-
tive for a specific antibody in their blood [6]. In the case
of COVID-19, a seropositive individual is a person who
has SARS-CoV-2 antibodies in their blood. The presence
of antibodies is considered sufficient evidence to confirm

past infection, even without a positive test result. Multiple
seroprevalence studies were conducted during the COVID-19
pandemic in different countries, which required blood analyses
of thousands of individuals along multiple rounds [7], [8].
These campaigns required substantial resources for logistical
and organisational purposes.

On the other hand, many approaches have been proposed
during the COVID-19 pandemic that rely on data analysis and
artificial intelligence to estimate the number of daily cases
accurately [3], [9], [10]. These methods exploit the ability of
online tools to track health indicators in almost real-time by
collecting vast amounts of data from self-reported information.
Estimating the seroprevalence from this data type is required
to provide healthcare systems with a less expensive method
for tracking the spread of diseases. In this context, it is
necessary to analyse Ensemble Methods that allow combining
the different estimation approaches (regardless of whether
they are based on machine learning techniques or not). In
particular, we are interested in stacking techniques as an
ensemble learning strategy, since it allows learning how to
combine the estimates of numerous machine learning models
to obtain a final estimate [11], [12].

Although the COVID-19 pandemic is losing its relevance,
it has revived the fear of the spread of infectious diseases
and made the population aware of the threat that pandemics
can pose. Therefore, even though COVID-19 may not be as
important anymore, our work can provide a general framework
based on data for tracking viral spread. Furthermore, this work
is not confined to epidemic tracking or even medical applica-
tions. The methods and procedures used for this problem can
be applied to any data-set to predict or estimate other aspects
of a population. An example of an application in other areas
is to use surveys and assemble different models and data to
evaluate the voting intention in future elections.

A. State of the Art

Many approaches have been proposed that rely on data
analysis and artificial intelligence to estimate the number of
COVID-19 cases [3], [10], [13]. In particular, we are interested



in stacking techniques as an ensemble learning strategy, since
they allow learning to combine the estimates from numerous
machine learning models to obtain a final estimate [11], [12].

There have been extensive studies carried on the spread
of the COVID-19 pandemic from a statistical point of view,
as can be seen from works on literature reviews on the
subject [14], [15], [16]. These studies have mainly focused
in implementing machine learning-based models, as seen in
[17], [18], [19]; and ensemble approaches have been widely
studied, like those of [20], [21], [22], [23]. Most of these works
have taken COVID-19 test positives as reference, although
there are some interesting works that have tried to predict
other metrics, such as COVID-19 mortality in [24]. Overall,
not a lot of research has been conducted around SARS-
CoV-2 seroprevalence, which is the metric we focus on with
our models. There has also been some work on the use of
Genetic Programming to estimate COVID-19 prevalence in
the United States, like [25]; but there is very little research
on the application of ensemble approaches using non-machine
learning-based models.

B. Contributions

In our work, we use Genetic Programming (GP) to estimate
the seroprevalence of SARS-CoV-2 in the United States of
America (USA) based on data of daily infections obtained
from multiple sources. Notice that our approach does not result
from mass screenings using PCR or antigen tests. Specifically,
we use GP as a stacking machine learning strategy which
learns to combine the estimations of several base models to
obtain a final prediction. GP was chosen because the models
it constructs explicitly show how the different explanatory
variables are combined to calculate the seroprevalence rate,
so the explainability of the model is high. We consider as a
performance metric the mean absolute relative error (MARE)
and we use GP to find the model that best combines the estima-
tions of seroprevalence rates, i.e., that minimises the MARE.
We consider two different settings: state by state (statewide
models), where data from a single state is considered for the
model; and the whole USA (nationwide models), where the
data from all states is considered for a single model.

We also present two approaches to dealing with the available
data: cumulative and non-cumulative aggregation. Cumulative
aggregation uses the first available seropositivity data value
as a reference, while non-cumulative aggregation uses the
latest available seropositivity data value. We conclude that
cumulative aggregation is better when working with individual
states within the USA, but non-cumulative aggregation more
accurately fits the data when multiple states are considered to-
gether. We find that GP obtains much more accurate prediction
estimations than those yielded by a simple Linear Regression
(LR) least-square model on average and that, as expected,
the complexity of the models obtained using GP is usually
inversely correlated with its MARE.

Figure 1: Diagram showing our stacking machine learning
strategy.

II. OUR APPROACH

We have access to multiple data sources that provide us
with useful information with respect to the epidemic, including
estimated COVID-19 prevalence rates via different prediction
methods based on COVID-19 prevalence surveys. To reduce
the biases each method may have, we will use all of them to
construct an ensemble model that will use the estimations of
all those methods, as well as some extra explanatory variables
(mainly, official prevalence data and estimates from wastewa-
ter SARS-CoV-2 concentration studies). Our problem consists
of finding an appropriate prediction model that combines said
estimations and variables to predict the seropositivity of a
certain population on a given date.

A. Our Ensemble Method

We require a stacking machine learning strategy, which
learns to combine the estimates from these methods with the
extra explanatory variables, to obtain a final estimate. The
seropositivity values we use as ground truth for our work
are the seroprevalence measurements made by the Centers for
Disease Control and Prevention (CDC), the national public
health agency of the USA [26].

In Figure 1, a diagram schematically explains our stacking
machine learning strategy to obtain the seroprevalence rate
estimations. As the figure shows, we have various input
variables from multiple data sources that need to be aggregated
before we can use them to build our GP-based models. It
is important to note that the values of these variables come
from estimation/prediction methods based on machine learning
techniques (Random Forest - RF, Extreme Gradient-Boosting
- XGB, etc.) or are extra explanatory variables (New reported
cases - NRC, Wastewater cases - WWC, etc.).

On the other hand, the aggregation is necessary because
there is an inconsistency between the number of input data
points and the ground truth (seropositivity). The latter com-
prises at most 30 measurements per US state, while most input
variables have daily values. Therefore, we aggregate the input
data into the same number of data points as the ground truth.

After aggregation, the variables are combined into a predic-
tion model using GP as the stacking ensemble strategy that
outputs estimated seroprevalence rates. We then compare the
output of the models with the seroprevalence ground truth to
evaluate the accuracy of the constructed model.



(a) Cumulative aggregation

(b) Non-cumulative aggregation

Figure 2: Diagrams showing how daily data points are aggre-
gated to transform daily data into sporadic data.

In order to have a baseline model to compare our results
to, we also build another stacking ensemble strategy based
on a least-square Linear Regression (LR) model. Least-square
regression is the most widely used type of regression [27]. It
minimises Sum of Squared Residuals (SSR) to find the best
linear model to fit the data.

B. Aggregation

The data can be classified into two groups based on its
frequency: sporadic and daily data. The ground truth has one
measurement per seropositivity survey round for a total of
at most 30 data points per state (sporadic data), while every
explanatory variable we are going to use has daily values (daily
data). Note that each seropositivity survey round spans several
days of data collection. Therefore, we need to establish some
criteria for how we are going to unify these two types of data.
We have to choose how to aggregate daily data so that it aligns
with the sporadic ground truth.

We have defined two different approaches to this aggre-
gation problem, namely, “cumulative” and “non-cumulative”
aggregation, both of which add the daily values of the explana-
tory variables. A graphical representation of how the daily data
is aggregated with each approach can be seen in Figure 2.
The cumulative aggregation approach (Figure 2a) adds up the
daily data into Aggregate Round n, for the n-th survey round,
starting at the end-date of the first round, up to the end of the
current n-th round, so that the data aggregated for each round
is a subset of the data aggregated for the next round. On the
other hand, the non-cumulative approach (Figure 2b) adds up
the daily data into Aggregate Round n from the end-date of
the round n − 1 up to the end-date of round n, so that the
aggregates of each round are disjoint.

C. Dataset

1) Input: Our main source of data has been the US COVID-
19 Trends and Impact Survey (CTIS). This project, operated
by the Delphi Group at Carnegie Mellon University in col-
laboration with Facebook, has continuously operated surveys
between the 6th of April 2020 and the 25th of June 2022, and
has collected over 20 million responses [28], [9]. Every day for

the duration of the project, a random sample of Facebook users
were invited to complete a questionnaire about the COVID-
19 pandemic: symptoms, COVID testing, social distancing,
vaccination, mental health and economic security.

In this work, we have not used directly the raw data obtained
by the CTIS. Instead, we have used daily prevalence estimates
obtained from the responses to the CTIS using various meth-
ods and individual features, as described in [29]. Moreover,
in addition to the estimates obtained from the CTIS, we have
also chosen four other input variables for our models, from
three different sources: official daily reported new COVID
cases, wastewater SARS-CoV-2 concentration [30], previous
seroprevalence measurement, and normalised time since the
previous seroprevalence measurement.

In summary, our models consist of eight explanatory vari-
ables, of which three are predicted by machine learning or
statistical models. Those eight variables are the following:

• COVID-like illness (CLI). Daily rates for reported
COVID compatible symptoms, from the CTIS, aggre-
gated to 30 data points by addition.

• Random Forest (RF). Daily estimated prevalence rate
via a RF model from CTIS data, aggregated to 30 data
points by addition.

• Extreme Gradient-Boosting (XGB). Daily estimated
prevalence rate via an XGB model from CTIS data,
aggregated to 30 data points by addition.

• Generalised Linear Model (GLM). Daily estimated
prevalence rate via a Generalised Linear Model from
CTIS data, aggregated to 30 data points by addition.

• New reported cases (NRC). Official total number of
daily reported SARS-CoV-2 test positives, aggregated to
30 data points by addition. The resulting data has been
divided by its maximum value so that the scale lines up
with the other variables.

• Wastewater cases (WWC). Daily estimated total active
COVID-19 cases via wastewater virus concentrations,
aggregated to 30 data points by addition. The resulting
data is divided by its maximum value so that the scale
lines up with the other variables.

• Time between rounds (TBR). Number of days of the
time interval we are aggregating (days from the end of the
reference value’s round). The resulting number is divided
by the maximum value of the variable so that the scale
lines up with the other variables.

• Reference value (REF). The official rate of seropositivity
in the round from which we are aggregating the daily
data (the first round for cumulative and previous round
for non-cumulative).

2) Output and Ground Truth: We have chosen to work with
seroprevalence data from the United States of America (USA),
because data is available for each one of its states. The US
CDC has collected extensive data with respect to SARS-CoV-
2 seroprevalence in their Nationwide Commercial Laboratory
Seroprevalence Survey, which can be found in [26]. For that
survey, the CDC conducted 30 rounds of seroprevalence test-



ing among the population of separate states within the USA,
between July 2020 and February 2022. Unfortunately, even
though the CDC conducted 30 rounds in most of the US states,
there are 13 states with less than 30 rounds: Arizona, Indiana,
Maryland, Montana, Nevada, New Hampshire, New Jersey,
Utah and Virginia have 29 rounds; Hawaii has 27 rounds;
Wyoming has 26 rounds; South Dakota has 21 rounds; and
North Dakota has 4 rounds. Note that the 10 most populous
states all have had 30 rounds conducted in them.

Therefore, the CDC seroprevalence measurements are the
ground truth of this problem, and our models’ output will be
predictions of these values. In order to measure the accuracy
of our prediction models, we are going to use their MARE
when compared to the ground truth. The formula for a data-
set of n observations is presented in Eq. (1), where yi is the
real rate for the i-th observation and ŷi is its predicted value.

MARE(ŷ) =
1

n

n∑
i=1

|yi − ŷi|
yi

(1)

D. Genetic Programming

GP is a method inspired by natural genetic processes that
tries to find the best solution to a problem by evolving a set
of equations. In our specific case, the GP-based models are
mathematical formulas that combine the eight input variables
presented above, and its output is a value that represents the
estimation of the seroprevalence rate. The aim is to minimise
the error between the values provided by these equations
considering the available data set and the ground truth.

In our work, when building the prediction models, we
minimise the SSR, which reduces the variance of the resultant
residuals. Its formula is shown in 2, where yi is the real rate
for the i-th observation and ŷi is its predicted value.

SSR(ŷ) =
n∑

i=1

(yi − ŷi)
2, (2)

We minimise SSR because we compare the GP-based mod-
els to the baseline least-square LR models, which minimise the
SSR. Therefore, we minimise the same error in both cases.
However, as the SSR is a relatively abstract measurement
of error, we use the MARE as the error metric to compare
the models. The MARE represents the relative deviation from
the observed data on average and is more explicit and easily
interpretable than the SSR. This error metric allows for a more
comprehensible reading of the accuracy of the models.

GP uses operations based on natural genetic evolution
to evolve and update a set of given equations (prediction
models) so that they get better over time. GP works with
tree structures to manipulate the equations. This tree structure
allows the algorithm to change and swap parts of an equation
by manipulating nodes or subtrees in a given tree.

For our work, we use the following operators: addition,
subtraction, multiplication, division, negative sign, exponen-
tial, and natural logarithm. We have also added a set of
constants to the algorithm’s pool of resources to make it easier
to get constant terms and factors in the equations. The set

of chosen constants is the following set of powers of ten:
{10−2, 10−1, 100, 101, 102}.

The GP algorithm can be considered to have three phases:
initialisation, selection, and reproduction. The algorithm starts
by generating a random initial population of trees of a prede-
termined size using the available operators and variables. The
randomness of the initial population allows the algorithm to
start with a wide range of possibilities to cover enough of the
search space.

Once the population is initialised, the algorithm uses a
selection method to pick several individuals. In our case, the
evaluation criteria for selection is SSR. Therefore, our algo-
rithm uses SSR to select a population subset, using tournament
selection of size three, which consist on randomly taking
three individuals to then pick the best individual among those
three, and repeating until the desired number of individuals
are selected. Then, the algorithm manipulates the selected
individuals (“parents”) to create a new generation (“children”).
For the reproduction of the parents, our algorithm uses three
operations:

• Crossover, which picks pairs of parents and uses one-
point crossover to generate one or two children.

• Mutation, which picks a single child and use subtree
replacement mutation to randomly change it.

• Replication, when the child is just a copy of its parent.
Crossover is usually applied before mutation, and in our

algorithm both operations have assigned probabilities and are
applied to the parents based on those probabilities: pc, pm.

After the children have been created, a new selection takes
place to form the new generation of the same size, which in
our case includes the parent population.

With the new generation, the algorithm repeats the process
of selection and reproduction, until the stopping criteria is
met. As stopping criteria, we have set a maximum number of
generations, but if the fitness (SSR) of the best individual in
each generation does not improve beyond a specified threshold
δ for a total of ms generations, the algorithm is stopped. δ and
ms are predefined hyper-parameters.

Another hyper-parameter of the algorithm is the maximum
depth of the GP-based models. This hyper-parameter prevents
the model’s complexity to grow too much, and we do not need
an excessive complexity to obtain good prediction models, as
we see below.

In summary, the pseudo-code of the constructed GP algo-
rithm for our problem is presented below on Algorithm 1. The
variables introduced to the algorithm are as follows:

• P the initial population, a set of models.
• pc ∈ [0, 1] the probability of crossover.
• pm ∈ [0, 1] the probability of mutation.
• δ ∈ R+ and ms ∈ N, the previously mentioned hyper-

parameters for the stopping criteria.
• gmax ∈ N the maximum number generations of the

algorithm.
• dmax ∈ N the maximum allowed depth of the model.
After a hyper-parameter optimisation process, the final

values for the hyper-parameters were: a population size of



Algorithm 1 The GP algorithm created
Require: P , pc ∈ [0, 1], pm ∈ [0, 1], δ ∈ R+, ms ∈ N, gmax ∈ N
best← argminf∈P {Eval(f)}
locked eval ← Eval(best)
m← 0
p∗m ← min{1, 2pm}
for g = 1, . . . , gmax do

C ← Select(P, |P |)
if g = 100 then

p∗m ← pm
end if
Crossover(C, pc)
Mutate(C, p∗m)
P ← BestOf(P ∪ C, |P |)
best← argminf∈P {Eval(f)}
if locked eval − Eval(best) ≤ δ then

m← m+ 1
if m = ms then

break for
end if

else
locked eval ← Eval(best)
m← 0

end if
end for
return (best, g)

|P | = 300, crossover and mutation probabilities of pc = 0.8
and pm = 0.3, the stopping parameters δ = 0.005 and ms =
100, a maximum number of generations of gmax = 1000, and
maximum depths dmax ∈ {4, 6, 8, 10}.

We want to analyse the performance of GP-based models
with this particular problem. The GP-based models are known
to provide a more general framework than LR. Therefore, one
of the objectives of this work is to investigate the performance
improvement of GP-based models with respect to the LR
models.

The GP algorithm is stochastic: it has an element of
randomness that can cause the results of each iteration to
be different from each other. Therefore, one execution is not
enough to see how good the GP algorithm is at finding accurate
prediction models. For that reason, we will test the algorithm
by executing it 20 times for each combination of state,
aggregation, and maximum depth. After those 20 executions,
we average the MARE of all the resultant prediction models,
in order to have a better approximation of the accuracy of our
GP algorithm.

III. RESULT ANALYSIS

A. Results by state

First, we build a model for each state and aggregation
method. All hyper-parameters are fixed, except dmax, the
maximum depth of the GP algorithm. Therefore, for each
state-aggregation combination, we obtain multiple models
depending on the maximum depth picked.

In particular, we use four maximum depths: 4, 6, 8 and 10.
We observe that a tree with less than 4 levels is too simple
to represent the observed data accurately, and as we will see
below, and that 10 levels are enough to get a relatively low
MARE (higher values may result in over-fitting the data). In

By maximum depth
4 6 8 10

California Non-cum. 0.109 0.100 0.078 0.083
Cum. 0.097 0.086 0.077 0.067

Texas Non-cum. 0.122 0.108 0.097 0.087
Cum. 0.090 0.083 0.076 0.067

Pennsylvania Non-cum. 0.103 0.090 0.077 0.065
Cum. 0.103 0.083 0.063 0.056

Table I: Table with the mean MARE of 20 executions of the
GP algorithm for different maximum tree depths.

Table I, we display the mean MARE of three example states
per maximum depth for both aggregation methods and the
MARE obtained with the LR models. These three examples are
representative of most statewide models. On the other hand,
the box plots of the MARE per maximum depth for each state
aggregation are also displayed in Figure 3.

As we can see in the box plots, the larger depth they are
allowed to have, the more precise GP-based models get (Texas,
Pennsylvania, and cumulative California), even though there
are a few cases where more depth beyond a certain point is
shown to produce higher MARE (non-cumulative California).

When observing the behaviour of the MARE, the cumulative
approach results in lower MARE than the non-cumulative on
average for the GP statewide models, as seen in all three
examples. If we compare the GP-based models’ MARE to
that of the LR models, we see that for all three examples
(and all states studied beyond these examples), GP achieves
a lower MARE than LR, especially with non-cumulative
aggregation (even the 4-level model is below the linear MARE
for all executions of California and Texas). The cumulative
aggregation model usually needs more depth than the non-
cumulative to better its linear counterpart, and in California
there are some executions where the GP-based model was
worse, but it is better than LR on average.

With these statewide GP-based models, we are achieving
very low mean MAREs, below a 10% deviation from the
observed data on average. This low MARE looks like the
models are working extremely well, and could lead us to think
that allowing even more depth would be desirable, as we may
be able to reduce the MARE even more. However, there are
two main reasons why that may not be a good idea. On the
one hand, the more levels the model has, the more complex
and confusing it becomes. Hence, if we want to understand
the internal workings of the model, more complex trees could
be a problem. Besides, a small reduction of the MARE may
not be worth the great growth in complexity. On the other
hand, when building a prediction model, reducing the error of
the training data to a minimum (the observed data per state
in our case) runs the risk of over-fitting the model to said
training data and including the noise of the observations into
the model, which gravely reduces the usefulness of the model
outside the small data-set used.

Therefore, we decided that the small MARE obtained with
maximum depths of up to 10 levels is a good enough result
and that it is unnecessary to try to lower it even more by
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Figure 3: Box-plots of the MARE of 20 executions of the GP algorithm with different maximum depths for California (CA),
Texas (TX) and Pennsylvania (PA).

raising the maximum depth further.
In order to see couple of examples from all the models

generated, we are going to show some estimations for both
the minimum depth allowed (4) and the maximum depth (10).
We have picked the models that are closest to the mean MARE
of all 20 executions as examples, for the most populous state
(CA). The model of depth four that the algorithm returned for
CA with non-cumulative aggregation, is the following:(
REF + 0.01RF +

0.01

TBR
(RF − 0.1)

)
eREF(WWC−TBR).

And with cumulative aggregation, the result is:

(NRC − TBR − ln(CLI ))
CLI + 0.1

100RF
+

RF

(REF + 10)eTBR
.

It becomes evident at first glance that these models are more
complex than a simple LR model, even if these are the GP-
based models with the least depth. They are also clearly non-
linear. These models have the MARE and R2 values shown
on Table II. The resultant estimated seropositivity rates can be
seen in Figure 4.

We have done the same with the maximum depths of ten.
The MARE and R2 values can be seen on Table II, and the
estimations on Figure 4.

By depth
4 10

MARE Non-cum. 0.1053 0.0799
Cum. 0.0980 0.0637

R2 Non-cum. 0.9708 0.9854
Cum. 0.9483 0.9872

Table II: Table with the MARE and R2 of the California GP-
based models with a maximum tree depth of 4 and 10.

B. Results for all the USA

We have also used GP to obtain nationwide prediction
models, aggregating all available data from all the USA. As
previously mentioned, there are some states that have had less
than 30 rounds of the CDC survey conducted on them, which
may indicate that the accuracy of those measurements is lower.
In order to see whether the accuracy of the nationwide models
works better with some states, we have built three nationwide
models using three sets of states: all states, only the states
with 29 or 30 rounds surveyed (all but HI, ND, SD and WY),
and the top 10 most populous states (CA, TX, FL, GA, NY,
PA, IL, OH, MI and NC).

After running the GP algorithm for those three sets of states
20 times, we computed the mean MARE for each maximum
depth, just like we did with the statewide models. The resultant
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Figure 4: GP estimations of seropositivity rates for California, with a maximum depth of 4 and 10.

By maximum depth
4 6 8 10

All Non-cum. 0.176 0.171 0.167 0.168
Cum. 0.362 0.351 0.311 0.325

29-
30

Non-cum. 0.162 0.157 0.155 0.154
Cum. 0.313 0.302 0.291 0.291

Top
10

Non-cum. 0.127 0.122 0.120 0.118
Cum. 0.211 0.193 0.191 0.183

Table III: Table with the mean MARE of 20 executions of
the GP nationwide algorithm with all states, states with 29-
30 rounds and the top 10 states; for different maximum tree
depths.

mean MARE values are on Table III; and we have also
displayed the MAREs of all 20 executions with box-plots on
Figure 5.

Looking at the box-plots, we can see that the MARE of
the nationwide GP-based models is higher on average than
the MARE of the statewide models. However, the GP-based
models greatly over-perform the linear nationwide models,
specially with non-cumulative aggregation. Furthermore, the
GP nationwide models seems to suggest that the nationwide
model performs poorly with smaller states, driving the mean
MARE up, because the GP-based models without the states
with less than 29 rounds shows better results, and we get even
better MARE if we only account for the ten most populous
states. This behaviour is also observed with LR.

Besides, just like the statewide GP-based models, the larger
the maximum depth of the models, the more accurate they
get. However, there is barely any improvement from maximum
depth 8 to 10 for non-cumulative aggregation when states with
29-30 rounds are considered, and for both aggregations with
all states. That seems to indicate that a maximal depth beyond
8 levels does not result in a big improvement in accuracy.
This leads us to think that sacrificing simplicity for relatively
minuscule improvements beyond depth 8 is not worth it.

It is also worth noting that when multiple states are con-
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Figure 5: Box-plots of the MARE of 20 executions of the
nationwide GP algorithm with different maximum depths for
five sets of states: all states, 29-30 round states, and the top
10 most populous.
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Figure 6: Residuals vs. fitted values plot for the nationwide
model with all states.
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Figure 7: Residuals vs. fitted values plot for the nationwide
model with the Top 10 states.

sidered, the aggregation that results in the best MARE is
the non-cumulative, opposite to what was observed with the
statewide models. Furthermore, the accuracy of the GP-based
models found with cumulative aggregation vary much more
than those found using non-cumulative aggregation. The box-
plots of the cumulative models show that the MARE values
are more spread out. This suggests that the non-cumulative
approach results in more deterministic or predictable behaviour
for the GP algorithm, while cumulative aggregation is more
random and variable.

Lastly, we have checked that the residuals resultant from the
GP-based models are symmetric and do not contain any kind
of discernible pattern. For that, we first plotted the fitted values
of the model versus their residuals, and then we checked the
quantiles of said residuals. On Figures 6 and 7, we show the
residual plots of the GP nationwide models with all states
and with the top 10 states, respectively (with a maximum
depth of 10). By a quick look at the plots, one cannot see
any clear pattern or trend, and the points seem to be randomly
distributed and centred around zero. The only two possible
anomalies are: there are many more points with small fitted
values, and the cumulative model with all states seems to have
a downward protuberance around 0.3. The former is simply
due to the nature of the data observed; and the latter is only a
problem for the model with all states, so the model without the
problematic states (the smallest ones) doesn’t have any clear
problems.

In Table IV we can see the quantiles of the residuals of the
same two GP-based models, and except for the cumulative all
states model, which is a bit skewed towards the positives, they
are symmetric and centred around zero, specially the top 10

All states Top 10 states
Non-cum. Cum. Non-cum. Cum.

min -0.122 -0.196 -0.095 -0.126
25% -0.011 -0.015 -0.014 -0.023
50% 0.005 0.011 -0.001 -0.001
75% 0.020 0.056 0.015 0.030
max 0.195 0.297 0.085 0.202

Table IV: Table with the quantiles of the residuals from the GP
nationwide models with all states and with the top 10 states.

states model.
It is worth mentioning that a big disadvantage of GP-based

models is their execution time. While the classical LR model
is built almost instantaneously (less than one second), the
GP equivalent requires much more time to be built (orders
of magnitude greater execution time). In some cases, the GP
algorithm may need multiple hours to converge. Besides, as
GP is a stochastic modelling approach the execution time is
not fixed and can fluctuate significantly.

IV. CONCLUSIONS AND FUTURE WORK

During the COVID-19 pandemic, many approaches based
on machine learning and statistics have been proposed to
estimate its behaviour. In this context, we have proposed a
stacking ensemble machine learning approach which learns to
combine the estimates from these methods, even incorporating
other explanatory variables, to obtain a final estimate.

In our work, we have tested how well can GP work for
this problem, and the obtained result show that the GP-based
models used can very accurately estimate the seroprevalence
rates of SARS-CoV-2. When comparing the MARE of the
GP-based models to that of a baseline LR model, we clearly
see that GP can obtain a lower MARE. Furthermore, the
more depth and complexity is allowed when running the GP
algorithm, the better the models get, but beyond a model depth
of 8 the MARE does not improve considerably.

Overall, we see that statewide models are more accurate
than nationwide models, with multiple states, and that the
smaller states deviate from the trend of the bigger states,
resulting in a higher MARE. Between the two aggregation
methods used, we noticed that the cumulative approach is
more appropriate for statewide models, but when working with
multiple states the non-cumulative approach is more accurate.

Possible future work includes the following research lines:
(i) studying GP more in depth by, for example: trying a larger
set of operators beyond the ones used in this paper; allowing
the GP algorithm to run for more time or using a bigger popu-
lation size; trying to minimise the MARE instead of the SSR,
(ii) checking whether adding new explanatory variables such
as number of deaths by COVID-19 or vaccination rates can
improve the models, (iii) trying to use the models to forecast
future seroprevalence rates, (iv) researching the application of
Neural Networks and other machine learning techniques to
this problem, and (v) exploring new aggregation approaches
other than cumulative and non-cumulative.
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