
To Confine or not to Confine: A Mean Field
Game Analysis of the End of an Epidemic

Gontzal Sagastabeitia1?, Josu Doncel1[0000−0002−5552−9134], and Nicolas
Gast2[0000−0001−6884−8698]

1 University of the Basque Country, UPV/EHU, Leioa, Spain
2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France

Abstract. We analyze a mean field game where the players dynamics
follow the SIR model. The players are the members of the population
and the strategy consists in choosing the probability of being exposed
to the infection, i.e., its confinement level. The goal of each player is to
minimize the sum of the confinement cost, which is linear and decreasing
on its strategy, and a cost of infection per unit time. We formulate this
problem as a mean field game and we investigate the structure of a mean
field equilibrium. We study the behavior of agents during the end of the
epidemic, where the proportion of infected population is decreasing. Our
main results show that: (a) when the cost of infection is low, a mean
field equilibrium consists of never getting confined, i.e., the probability
of being exposed to the infection is always one and (b) when the cost
of infection is large, a mean field equilibrium consists of being confined
at the beginning and, after a given time, being exposed to the infection
with probability one.

Keywords: Mean field game · SIR model · Confinement.

1 Introduction

The situation derived from COVID19 disease has put in evidence the need of
carrying out research in the epidemic field. The most important epidemic model
that has been investigated in the literature is based on the SIR model. In the
SIR model, it is considered that each member of the population belongs to one
of the following states: susceptible (S), infected (I) or recovered (R). It has been
first studied in [13] and we refer to [1,5] for books presenting the large literature
of the SIR model.

Mean field games study the rational behavior of an infinite number of players.
They were introduced recently by Jean-Michel Lasry and Pierre Louis Lions in
[16,17,18] and Minyi Huang et al. in [11]. Two important assumptions are made
in mean field games: (a) the players are indistinguishable, i.e., one can only
observe the number of objects in each state, and (b) as the number of players is
infinite, the decisions of an individual player do not affect the dynamics of the
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whole population. These assumptions lead to a simplification of the computation
of the equilibrium compared with the computation of the Nash equilibrium of
games with a finite number of players, which is known to be a PPAD-complete
problem3 [4]. As a consequence, there has been in the last years a huge literature
analyzing mean field games in a wide range of applications in macro-economic
models [8], in autonomous vehicles [10], security of communications [14] and
traffic modeling [2], to mention a few.

The SIR model and its variations have been also studied from the perspective
of mean field games. Some works have analyzed mean field games where the
action consists of the vaccinations policies, for instance [15] and its extension with
births and deaths [12], and also [7]. In our work we do not consider vaccinations,
but the confinement level, or in other words, how players choose to be exposed
to the infection. We remark that there are some recent articles that have studied
the effect of confinements in the population using mean field games [3,19]. In
[3], players can choose a contact rate when they are infected or recovered, while
in our work only the susceptible population controls their contact rate. Besides,
they consider continuous time and a non-linear cost function, unlike we do. The
authors in [19] also consider continuous time and that all players can choose
the contact rate with the population. They also consider more variables, such
as asymptomatic infected players and the population’s age. The main difference
between [3,19] and our work, besides the use of discrete time, is that we focus
in the end of the epidemic, and that they do not show the existence of the mean
field equilibrium nor study its structure. Another related work is [9] where they
consider simultaneously the space-time evolution of the epidemics and of the
human capital and focus on the benefits of formulating a mean field game.

In this work, we consider that there is an infinite number of players that can
decide the probability of being exposed to the infection, i.e., the confinement
level. We assume that there is a cost of confinement which is linear and decreasing
on the strategy of the players and a cost of being infected per unit time. We
also focus on a regime of the end of the epidemic in which the proportion of
the infected population decreases over time. In this context, we formulate a
mean field game and we show that the solution of this game, i.e., the mean
field equilibrium, at the penultimate time step consists of being exposed to the
infection with probability one. As a consequence, two strategies are considered
in the following: (a) constant, which means that the probability of being exposed
to the infection is always one, that is, that rational players are never confined
and (b) one jump, which means the players are confined (i.e., not exposed to
the infection), at the beginning and, from a given time, the probability of being
exposed to the infection is one.

The main contributions of this article are summarized as follows:

– We establish sufficient conditions for the existence of a mean field equilib-
rium that is constant, i.e., when the mean field equilibrium consists of being

3 PPAD stands for “polynomial parity arguments on directed graphs”. It is a com-
plexity class that is a subclass of NP and is believed to be strictly greater than
P.
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exposed to the infection with probability one always (see (COND-CONST)).
This condition means that, when the cost of infection is small, there exists
a mean field equilibrium where players are never confined.

– We establish sufficient conditions for the existence of a mean field equilibrium
that is a strategy with one jump (see (COND1-JUMP) and (COND2-JUMP)).
This condition means that, when the cost of infection is large, there exists
a mean field equilibrium where players are confined at the beginning and,
from a given time, are completely exposed to the infection.

Finally, we discuss the numerical experiments we have carried out to analyze
the structure of a mean field equilibrium when the aforementioned conditions
do not hold. We conclude that when (COND1-JUMP) does not hold the mean
field equilibrium with one jump does not seem to exist, but it might exist even
though (COND2-JUMP) does not hold.

The rest of the article is organized as follows. In Section 2 we describe the
model we study in this article and we formulate the mean field game under
analysis. In Section 3 we present some preliminary results regarding the mean-
field game. In Section 4 we present our results regarding the existence of a
constant mean field equilibrium and in Section 5 we explain our result about the
existence of a mean field equilibrium. In Section 6 we discuss the existence of a
mean field equilibrium out of the conditions of our main results. In Section 7 we
present the main conclusions of our work as well as the future research directions.

2 Model Description

2.1 Notation

We consider a population of homogeneous players that evolve in discrete time
from 0 to T . The players are in one of the following three states: susceptible
(S), infected (I) or recovered (R). We denote by mS(t), mI(t) and mR(t) the
proportion of the population that is in each state.

The dynamics of one player is described as follows. A player encounters other
players in a time slot with probability γ. If a player is susceptible and encounters
an infected player, then it becomes infected. An infected player recovers in the
next time slot with probability ρ. Once a player is recovered, its state does not
change. We also consider that a susceptible player can be protected from the in-
fection by choosing the strategy π. A strategy π is a function from {0, 1, . . . , T}
to [0, 1] and π(t) is the probability that a susceptible player at time slot t is
exposed to the infection. When π(t) = 0, the players are confined, or in other
words, they are completely protected from the infection at time t; on the other
hand, when π(t) = 1, they are completely exposed to the infection and, there-
fore, they can be infected if they encounter an infected player. The Markovian
behavior of a player is represented in Figure 1.

We are interested in the analysis of this epidemic model with an infinite
number of players. In this case, the dynamics of the population is given by the
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S I R
γmI(t)π(t) ρ

Fig. 1: The dynamics of a player in the epidemic model. An player has three
possible states: S (susceptible), I (infected) and R (recovered).

Kolmogorov Equation that takes the following form
mS(t+ 1) = mS(t)− γmS(t)mI(t)π(t)

mI(t+ 1) = mI(t) + γmS(t)mI(t)π(t)− ρmI(t)

mR(t+ 1) = mR(t) + ρmI(t).

(1)

Let us make the following assumption.

Assumption 1 (mI decreasing). We assume that mS(0)γ < ρ.

We know from (1) that mS(t + 1) ≤ mS(t) for all t = 0, 1, . . . , T − 1, i.e.,
the proportion of the susceptible population is non-increasing with t. Therefore,
from the above assumption, it follows that the proportion of infected population
decreases with t:

mI(t+ 1) = mI(t) + γmS(t)mI(t)π(t)− ρmI(t)

= mI(t)(1 + γmS(t)π(t)− ρ)

≤ mI(t)(1 + γmS(0)π(t)− ρ)

≤ mI(t)(1 + γmS(0)− ρ)

< mI(t),

where in the first inequality we use that mS(t) ≤ mS(0), in the second inequality
that π(t) ∈ [0, 1] and in the last one the property of Assumption 1. In Section 6,
we discuss the difficulties on the analysis of the formulated mean field game
when Assumption 1 does not hold.

2.2 Mean Field Game Formulation

We focus on a particular player, that we call Player 0. As we consider a mean field
game model, the dynamics of the global population are not affected by Player 0
alone and is driven by Equation (1). Player 0 chooses her confinement strategy
π0, where π0(t) ∈ [0, 1] for all t = 0, 1, . . . , T . We consider that, when π0(t) = 0,
Player 0 gets confined and therefore, it cannot be infected. But, when π0(t) = 1,
Player 0 is completely exposed to the infection. The probability that Player 0
is in a given state depends not only on π0, but also on m(t), the population
distribution (which depends on π(t)).

Let us make the following assumption regarding the cost of a player.

Assumption 2 (Linear confinement cost). We assume that when a player
chooses strategy π0(t), its confinement cost is cL−π0(t) at time t, where cL ≥ 1.
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Therefore the confinement cost of Player 0 is linear with respect to its confine-
ment strategy, and the total cost incurred by the player is the sum of two costs:
the confinement cost, which is presented in Assumption 2; and the infection cost,
a constant cI > 0 per time unit if the player is infected.

Let xπ
0,π
i (t) be the probability that Player 0 is in state i at time t, where

i ∈ {S, I,R}. The quantities xπ
0,π
i (t) satisfy the following system of equations:

xπ
0,π
S (t+ 1) = xπ

0,π
S (t)− γxπ

0,π
S (t)mI(t)π(t)

xπ
0,π
I (t+ 1) = xπ

0,π
I (t) + γxπ

0,π
S (t)mI(t)π(t)− ρxπ

0,π
I (t)

xπ
0,π
R (t+ 1) = xπ

0,π
R (t) + ρxπ

0,π
I (t).

Note that the above equation is similar to Equation (1) except that it is linear
in x whereas Equation (1) is not linear in m.

The expected individual cost of Player 0 is:

T∑
t=0

[
xπ

0,π
S (t)f(π0(t)) + cIx

π0,π
I (t)

]
,

where f(a) = cL − a represents the cost of confinement in a time unit.
We call the best response to π, and denote it by BR(π), the set of confinement

strategies that minimize the expected cost of Player 0 for a given population
strategy π, that is,

BR(π) = arg min
π0

T∑
t=0

[
xπ

0,π
S (t)f(π0(t)) + cIx

π0,π
I (t)

]
, (2)

which is a non-empty set by compacity of the strategy space.
We define a mean field equilibrium as a fixed point of the best-response

function:

Definition 1 (Symmetric Mean Field Equilibrium). The strategy πMFE

is a symmetric mean field equilibrium if and only if

πMFE ∈ BR(πMFE).

This is the classical definition of an equilibrium in a mean field game. The ra-
tionale behind this definition is that in a homogeneous population, each player’s
best-response is the same as that of Player 0. This means that, for a given con-
finement strategy of the population π, any player of the population chooses the
strategy BR(π). As in classical games, a mean field equilibrium is a situation
where no player has incentive to deviate unilaterally from the selected confine-
ment strategy.

Remark 1. This model is a particular case of the mean field games studied in
[6] and therefore, the existence of a mean field equilibrium follows directly. In
this work, we go beyond this existence result and our goal is to characterize the
structure of the solution of the formulated mean field game.
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2.3 Discussion and limits of our assumptions

We have already presented the two main assumptions made in this paper, As-
sumption 1 and 2, which are not found in most papers on this subject.

Assumption 1 means that we are only studying the end of the epidemic rather
than its spread. Therefore, our results focus on strategies for lifting restrictions,
rather than on preemptive measures. This assumption makes it easier to find
the mean-field equilibrium, and provides more straightforward responses from
the players. The generalisation of this work to the whole spread of the epidemic
is left for future work.

On the other hand, the main effect Assumption 2 has on our results is the
binary choice of players. The linear cost means that when minimizing costs,
the best response of players will either be full lockdown or no measures at all.
Therefore, instead of having a smooth best response, as in most papers that
study similar models, the players’ best response will not be continuous. This
limitation makes the implementation of a strategy more clear, as the decisions
are reduced to two options; but this lack of smoothness makes finding the mean-
field equilibrium more difficult.

3 Preliminary Results

We focus on the best-response to π of Player 0. We know that the optimal
cost and the best-response verify the following Bellmann equations: for t =
0, 1, . . . , T − 1,

V ∗S (t) = min
π0(t)∈[0,1]

(
f(π0(t)) + (1− γmI(t)π

0(t))V ∗S (t+ 1)

+γmI(t)π
0(t)V ∗I (t+ 1)

)
V ∗I (t) = cI + (1− ρ)V ∗I (t+ 1),

BR(π)(t) = arg min
π0(t)∈[0,1]

(
f(π0(t)) + (1− γmI(t)π

0(t))V ∗S (t+ 1)

+γmI(t)π
0(t)V ∗I (t+ 1)

)
,

with V ∗S (T ) = V ∗I (T ) = 0.

Remark 2. The best response of Player 0 for strategy π BR(π) is the product
of all the best responses at time t BR(π)(t) over t = 0, . . . , T − 1. I.e.

BR(π) = {π0|π0(t) ∈ BR(π)(t), ∀t = 0, . . . , T − 1}

We first note that, since V ∗S (T ) = V ∗I (T ) = 0, and from the above Bellmann
equations, the best response at time T − 1 is equal to 1, i.e., the best strategy
of Player 0 at the penultimate time step is always one. Therefore, throughout
the article, when we say that a strategy (the best-response or the mean field
equilibrium) is constant, we mean that it is always one (see Section 4). Likewise,
when we say that a strategy has one jump, we mean that there exists a value t0
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such that 0 ≤ t0 < T − 1 and that the considered strategy is zero from 0 to t0
and one from t0 + 1 to T (see Section 5).

We remark that V ∗S (t) is the value for π0(t) that minimizes the following
function:

cL − π0(t) + (1− γmI(t)π
0(t))V ∗S (t+ 1) + γmI(t)π

0(t)V ∗I (t+ 1).

The derivative with respect to π0(t) of the above expression is

−1 + γmI(t)(V
∗
I (t+ 1)− V ∗S (t+ 1)).

This means that the derivative of V ∗S (t) with respect to π0(t) is positive if

γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) > 1, (COND-BR=0)

in which case the best response at time t is zero, whereas the derivative of V ∗S (t)
with respect to π0(t) is negative when

γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) < 1.

In case of an equality, the best response can be any value between zero and
one. In that case we will consider that Player 0 will decide not to confine, and
therefore we have that the best response at time t is one if and only if

γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) ≤ 1, (COND-BR=1)

Hence, Player 0 has to make a binary choice between not confining and
confining.

Prior to focus on our analysis of the formulated mean field game, let us
present the following result that characterizes the value of V ∗I (t) since it will be
useful in the analysis of our work.

Lemma 1. We have that for t = 0, 1, . . . , T − 1,

V ∗I (t) = cI

T−1−t∑
i=0

(1− ρ)i = cI
1− (1− ρ)T−t

ρ
.

Proof. See Appendix A.

Unfortunately, we could not provide a closed-form expression for V ∗S (t) for
any t because V ∗S (t) depends on the best-response strategy at every time larger
than t. This makes this model extremely difficult to analyze. However, in the
following section, we manage to provide sufficient conditions for the existence of a
constant mean field equilibrium and, in the next one, of a mean field equilibrium
with one jump.
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4 Existence of a constant mean field equilibrium

We aim to study the conditions under which there exists a mean field equilibrium
that is always one, i.e., a mean field equilibrium π such that π(t) = 1 for every
t = 0, . . . , T . We first show that, if cI ≤ cL − 1, then V ∗I (t + 1) is less or equal
than V ∗S (t+ 1) for all t.

Lemma 2. When cI ≤ cL−1, we have that V ∗S (t) ≥ V ∗I (t) for all t = 0, 1, . . . , T .

Proof. See Appendix B.

From this lemma, we have that, when cI ≤ cL−1, γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1))
is always non-positive and, as a consequence, the condition (COND-BR=1) is
satisfied for all t. Therefore, we have the following result.

Proposition 1. When cI ≤ cL − 1, the best response to any π is constant.

We now focus on the difference between V ∗S (t) and V ∗I (t) and we provide an
upper bound of this difference.

Lemma 3. Assume that the best response to any π at time step t is one. There-
fore,

V ∗S (t)− V ∗I (t) < cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1.

Proof. See Appendix C

From the above result, we now establish a sufficient condition for the best
response to any π to be constant.

Proposition 2. Let cI > cL − 1. When

γmI(0)

(
cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1

)
≤ 1,

the best response to any π is constant.

Proof. See Appendix D.

We now note that

γmI(0)

(
cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1

)
≤ 1 ⇐⇒

cI ≤
ρ(1 + γmI(0)(cL − 1))

γmI(0) (1 + ρ− (1− ρ)T−1)
.

Therefore, according to the above result, the best response to any π is con-

stant when the cost cI is larger than cL−1 and less or equal to ρ(1+γmI(0)(cL−1))
γmI(0)(1+ρ−(1−ρ)T−1)
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or, according to Proposition 1, when cI ≤ cL − 1. This means that, under any
of these conditions, if we consider that π is constant, the best response to π is
constant (according to what we have discussed above), i.e., a constant strategy
is a fixed point for the best response function. Thus, according to Definition 1,
it follows that a constant strategy is a mean field equilibrium.

Let

cI ≤ max

(
cL − 1,

ρ(1 + γmI(0)(cL − 1))

γmI(0) (1 + ρ− (1− ρ)T−1)

)
(COND-CONST)

We now present the main result of this section, which provides conditions
under which a constant mean field equilibrium exists.

Proposition 3. There exists a mean field equilibrium that is constant when
(COND-CONST) holds.

According to this result, we conclude that a mean field equilibrium is constant
when the cost of infection is small. This means that no rational player, in this
case, will get benefit of changing unilaterally the confinement strategy at any
time.

In the next section, we focus on a mean field equilibrium that has one jump.
We will thus assume that (COND-CONST) is not satisfied.

5 Existence of a mean field equilibrium with one jump

We first analyze the conditions under which the best response has one jump,
i.e., there exists t0 < T − 1 such that the best response is{

1 if t > t0

0 if t ≤ t0.

We say that a strategy has, at most, one jump when it has one jump or it
is constant. Let us now present the following condition that will be required to
ensure that the best response has, at most, one jump.

cI ≥
cL

(1− ρ)T−1
. (COND1-JUMP)

We now show the following result.

Proposition 4. If (COND1-JUMP) holds, then the best response to any π has,
at most, one jump.

Proof. See Appendix E.

We now focus on the existence of a mean field equilibrium, i.e., we aim to
show that there exists a strategy that is a fixed point for the best response
function. We consider that π̄ is the strategy that is a vector with all zeros, i.e.,
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π̄(t) = 0 for all t = 0, . . . , T . Let π̃ ∈ BR(π̄). When (COND1-JUMP) holds, we
know that π̃ has, at most, one jump. In the remainder of this section, when we
consider the strategy π̃, we denote by Ṽ ∗S (t) the cost of being susceptible and
m̃S and m̃I the proportion of the susceptible and infected population. As we
showed in Lemma 1, V ∗I (t) the cost of being infected does not depend on the
population’s strategy, and therefore when we consider the strategy π̃ the cost of
being infected does not change, and we can still denote it as V ∗I (t). We aim to
provide conditions such that π̃ ∈ BR(π̃).

Let t0 be such that π̃(t) = 1 for all t > t0 and π̃(t) = 0 for all t ≤ t0. Since
we know that the best response at time T − 1 is one always, we conclude that
t0 cannot be larger or equal to T − 1. We assume that t0 ≥ 0 (in Remark 4 we
deal with the case where this does not occur).

We now show the following result that will be useful to prove the existence
of a mean field equilibrium with one jump.

Lemma 4. Let (COND1-JUMP).

– For all t ≥ 0, m̃I(t) ≥ mI(t).
– When t > t0, V ∗I (t) ≥ V ∗S (t)

– When t > t0, Ṽ ∗S (t) ≥ V ∗S (t).

Proof. See Appendix F.

Using the above results, in the following lemma, we show that the best re-
sponse to π̃ at time t0 + 1 is one.

Lemma 5. Let (COND1-JUMP). The best response to π̃ at time t0 + 1 is one.

Proof. We know that the best response to π̄ is one at time t0 + 1. This implies
that

γmI(t0 + 1)(V ∗I (t0 + 2)− V ∗S (t0 + 2)) ≤ 1. (3)

We now remark that, when t ≤ t0, π̄(t) = π̃(t) and, as a result, mI(t0 + 1) =
m̃I(t0 + 1).

Besides, using Lemma 4, we conclude that V ∗I (t0 + 2)− Ṽ ∗S (t0 + 2) is smaller
or equal than V ∗I (t0 + 2)− V ∗S (t0 + 2). Thus, it follows from (3) that

γm̃I(t0 +1)(V ∗I (t0 +2)− Ṽ ∗S (t0 +2)) ≤ γmI(t0 +1)(V ∗I (t0 +2)−V ∗S (t0 +2)) ≤ 1,

which according to (COND-BR=1) means that the best response to π̃ at time
t0 + 1 is one.

As a consequence of the above reasoning, we have that, when (COND1-JUMP)
holds, π̃ is a mean field equilibrium if and only if the best response to π̃ at time
t0 is equal to zero. According to (COND-BR=0), this occurs when

γm̃I(t0)(V ∗I (t0 + 1)− Ṽ ∗S (t0 + 1)) > 1.
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We now notice that for t ≤ t0, we have that π̄(t) = π̃(t) and, as a result, we
also derive that mI(t0) = m̃I(t0). This implies that the above expression can be
alternatively written as follows:

γmI(t0)(V ∗I (t0 + 1)− Ṽ ∗S (t0 + 1)) > 1.

As a result,

π̃ ∈ BR(π̃) ⇐⇒ γmI(t0)(V ∗I (t0 + 1)− Ṽ ∗S (t0 + 1)) > 1.

We now aim to investigate the conditions under which the above expression
is satisfied. Let us now present the following auxiliary result.

Lemma 6. Let (COND1-JUMP). For t > t0, V ∗I (t) − Ṽ ∗S (t) is decreasing with
t.

Proof. See Appendix G.

Taking into account that the best response to any π at time T −1 is one and
the costs at time T are zero, it follows that V ∗I (T−1) = cI and Ṽ ∗S (T−1) = cL−1.
Using the result of Lemma 6, we obtain the following result:

Lemma 7. Let (COND1-JUMP). For all t > t0,

V ∗I (t)− Ṽ ∗S (t) ≥ V ∗I (T − 1)− Ṽ ∗S (T − 1) = cI − cL + 1.

From this result, we conclude that the condition γmI(t0)(V ∗I (t0+1)−Ṽ ∗S (t0+
1)) > 1 is satisfied when

γmI(t0)(cI − cL + 1) > 1. (4)

We now remark that, from Assumption 1, mI(t0) > mI(T ). Moreover, when
(COND1-JUMP) we have that cI > cL − 1 and, as a result,

γmI(t0)(cI − cL + 1) > γmI(T )(cI − cL + 1).

Using (1), we have that mI(T ) = (1−ρ)TmI(0). Therefore, (4) is satisfied when

γmI(0)(1− ρ)T (cI − cL + 1) > 1. (COND2-JUMP)

From the above reasoning, the next result follows.

Proposition 5. A mean field equilibrium with one jump exists when (COND1-JUMP)
and (COND2-JUMP) hold.
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In Section 6, we discuss our numerical experiments that show how (COND1-JUMP)
and (COND2-JUMP) influence on the existence of a mean field equilibrium.

Let us note that

γmI(0)(1− ρ)T (cI − cL + 1) > 1 ⇐⇒ cI > cL − 1 +
1

γmI(0)(1− ρ)T
.

This provides the following expression for the existence of a mean field equi-
librium with one jump which is analogous to that of (COND-CONST) for the
existence of a mean field equilibrium that is constant:

cI > max

(
cL − 1 +

1

γmI(0)(1− ρ)T
,

cL
(1− ρ)T−1

)
.

According to the derived expression, we conclude that, when cI is large, there
exists a mean field equilibrium that consists of a strategy with one jump. This
means that, when players incur a high cost of being infected, they get confined
at the beginning of the epidemic and they do not get confined after a fixed
threshold time.

Remark 3. We now assume that (COND1-JUMP) and (COND2-JUMP) hold
and we consider that the jump is given at T − 2. According to (COND-BR=0),
this occurs when

γmI(T − 2)(V ∗I (T − 1)− V ∗S (T − 1)) > 1.

Since V ∗I (T−1)−V ∗S (T−1) = cI−cL+1 and mI(T−2) = (1−ρ)T−2mI(0) (which
holds because π̄ is a vector with all zeros), the above expression is equivant to

γ(1− ρ)T−2mI(0)(cI − cL + 1) > 1.

This expression is clearly satisfied when (COND2-JUMP) is satisfied. Therefore,
we conclude that when (COND1-JUMP) and (COND2-JUMP) hold, the jump
is given at time T − 2.

Remark 4. Let us consider that it does not exist a t0 such that the best response
to π̄ has one jump. Hence, the best response to π̄ (which is a vector with all
zeros) is constant. According to (COND-BR=1), if (COND1-JUMP) holds this
occurs when

γmI(0)(V ∗I (1)− V ∗S (1)) < 1.

According the result of Lemma 5, we derive that the best response at time
zero is one. As a result, the best response to π̃ is a constant strategy if γmI(0)(V ∗I (1)−
Ṽ ∗S (1)) < 1, which implies that a mean field equilibrium that is constant exists
when this condition is verified. This provides an additional sufficient condition
for the existence of a constant mean field equilibrium to those presented in Sec-
tion 4.
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6 Discussion of (COND1-JUMP) and (COND2-JUMP)

In Proposition 4, we established conditions under which the best response has, at
most, one jump. We now aim to analyze the best response when these conditions
do not hold and we show that, for this instance, the best response might have
multiple jumps.

We consider the following parameters: T = 100, γ = 0.85, ρ = 0.75, cI =
86, cL = 2 and mS(0) = 0.88 and mI(0) = 0.12. It is easy to check that
these parameters do not satisfy the conditions (COND1-JUMP). In Figure 2, we
consider that π is a vector of all ones and we illustrate the best response to π
for the considered parameters.
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Fig. 2: The best response to π = (1, . . . , 1).

We observe that the best response strategy has two jumps. That is, the
behavior of a selfish player consists of being exposed to the infection with proba-
bility one at the first two time steps; then, a selfish player would be confined for
two time steps and, finally, the best response is equal to one until the end. This
result shows that, even though the proportion of infected population decreases
with t (and therefore, the maximum number of infected population is achieved
at the beginning), when T is large, a selfish player might prefer to be exposed
to the infection in the first two time steps instead of being confined. The main
reason for this counter-intuitive behavior is that, when the epidemic is long, the
player will almost surely get the infection and, therefore, it might decide to be
completely exposed in the first time steps.

We also analyzed the structure of a mean field equilibrium with this set of
parameters. We first computed the best response to all the strategies π with one
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jump as well as to the strategy π that is constant. We observed that none of
these instances led to a fixed point. Therefore, we conclude that a mean field
equilibrium with at most one jump does not always exist. Moreover, we also
observed that the fixed point algorithm did not converge to a strategy after 300
iterations. Therefore, when (COND1-JUMP) is not satisfied, the characterization
of the mean field equilibrium remains an open question.

We have observed that the fixed point algorithm converges to a mean field
equilibrium with at most one jump in all the instances in which (COND1-JUMP)
is satisfied, but (COND2-JUMP) not. This numerical work suggests that the
mean field equilibrium is constant or has a single jump when (COND1-JUMP)
is satisfied. Therefore, (COND1-JUMP) seems to be a necessary and sufficient
condition for the existence of a mean field equilibrium with at most one jump.

Finally, we have also studied numerically the structure of a mean field equi-
librium when Assumption 1 is not satisfied. For this case, we have seen that the
best response might have multiple jumps and the best response algorithm does
not always converge. Therefore, the characterization of the mean field equilib-
rium when Assumption 1 does not hold remains an open question as well.

7 Conclusions and Future Work

We have studied a mean field game in which each player can individually choose
how to get confined, i.e., in each time step players can choose the probability of
being exposed to the infection. We provide conditions under which there exists
(a) a mean field equilibrium that is constant, i.e., it consists of being exposed
to the infection with probability one always and (b) a mean field equilibrium
that is a strategy with one jump, i.e., it is confined at the beginning and, from
a given time, it is completely exposed to the infection.

For future work, we are interested in providing necessary and sufficient condi-
tions for the existence of a mean field equilibrium and also in full characterizing
it for the considered assumptions. We would also like to analyze the efficiency of
the mean field equilibrium, i.e., if the cost at the mean field equilibrium is much
larger than the optimal cost in the system. Finally, we would like to explore this
mean field game beyond the ending of the epidemic, for an arbitrary dynamic of
the proportion of infected population (i.e., not necessarily decreasing with t).
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A Proof of Lemma 1

We first note that V ∗I (T − 1) = cI + (1 − ρ)V ∗I (T ) = cI , which clearly verifies
the desired condition.
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We now assume that V ∗I (t + 1) = cI
∑T−2−t
i=0 (1 − ρ)i, for t < T − 1 and we

verify the following:

V ∗I (t) = cI + (1− ρ)cI

T−2−t∑
i=0

(1− ρ)i = cI + cI

T−1−t∑
i=1

(1− ρ)i

= cI

T−1−t∑
i=0

(1− ρ)i = cI
1− (1− ρ)T−t

ρ
.

And the desired result follows.

B Proof of Lemma 2

Let us first observe that the desired result holds for t = T since V ∗S (T ) = 0 and
V ∗I (T ) = 0. We now note that, from Lemma 1, we have that V ∗I (T − 1) = cI .
Besides, using that when t = T − 1 the best response to π is always one, it
follows that V ∗S (T −1) = cL−1. As a consequence, V ∗S (T −1) ≥ V ∗I (T −1) when
cI ≤ cL − 1, i.e., the desired result is also satisfied when t = T − 1. We now
assume that V ∗S (t+1) ≥ V ∗I (t+1) for t < T−1 and we verify that V ∗S (t) ≥ V ∗I (t)
when cI ≤ cL − 1.

V ∗S (t) = min
π0(t)∈[0,1]

[
cL − π0(t) + (1− γmI(t)π

0(t))V ∗S (t+ 1) + γmI(t)π
0(t)V ∗I (t+ 1)

]
= min
π0(t)∈[0,1]

[
cL − π0(t) + V ∗S (t+ 1) + γmI(t)π

0(t) (V ∗I (t+ 1)− V ∗S (t+ 1))
]

= cL − 1 + V ∗S (t+ 1) + γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) ,

where the last equality holds since V ∗I (t+ 1)− V ∗S (t+ 1) ≤ 0 and, therefore, the
value that minimizes cL−π0(t)+(1−γmI(t)π

0(t))V ∗S (t+1)+γmI(t)π
0(t)V ∗I (t+1)

is π0(t) = 1. Since V ∗I (t) = cI + (1− ρ)V ∗I (t+ 1) < cI +V ∗I (t+ 1), it follows that

V ∗I (t)− V ∗S (t) < cI + V ∗I (t+ 1)− (cL − 1 + V ∗S (t+ 1) + γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)))

= cI − cL + 1 + (1− γmI(t)) (V ∗I (t+ 1)− V ∗S (t+ 1)) ,

which is clearly non-positive because cI ≤ cL − 1 and γmI(t) < 1 and since we
assumed that V ∗S (t+ 1) ≥ V ∗I (t+ 1). And the desired result follows.

C Proof of Lemma 3

Since the best response at time t is one,

V ∗S (t) = cL − 1 + (1− γmI(t))V
∗
S (t+ 1) + γmI(t)V

∗
I (t+ 1).

Besides,

V ∗I (t) = cI + (1− ρ)V ∗I (t+ 1) < cI + V ∗I (t+ 1).
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As a result,

V ∗I (t)− V ∗S (t) < cI + V ∗I (t+ 1)− cL + 1− (1− γmI(t))V
∗
S (t+ 1)− γmI(t)V

∗
I (t+ 1)

< cI + V ∗I (t+ 1)− cL + 1− γmI(t)V
∗
I (t+ 1)

< cI + V ∗I (t+ 1)− cL + 1

= cI

(
1 +

1− (1− ρ)T−t−1

ρ

)
− cL + 1

< cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1.

And the desired result follows.

D Proof of Proposition 2

We know that the best response to π is one when t = T − 1 because the costs
at time T are zero. Therefore, we only need to show that the best response to
any π is one for all t < T − 1.

We assume that the best response to any π is one at time t + 1. Therefore,
from Lemma 3, it follows that

V ∗S (t+ 1)− V ∗I (t+ 1) < cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1.

As a result,

γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) < γmI(t)

(
cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1

)
.

From Assumption 1, it follows that mI(t) < mI(0) and therefore, the rhs of the
above expression is upper bounded by

γmI(0)

(
cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1

)
because cI

(
1 + 1−(1−ρ)T−1

ρ

)
− cL + 1 > 0 since cI > cL − 1 and ρ > 0. Since we

have that

γmI(0)

(
cI

(
1 +

1− (1− ρ)T−1

ρ

)
− cL + 1

)
≤ 1,

from the above reasoning, it follows that

γmI(t) (V ∗I (t+ 1)− V ∗S (t+ 1)) < 1,

which, according to (COND-BR=1), it implies that the best response to any π
at time t is one. And the desired result follows.
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E Proof of Proposition 4.

Let us recall that the best response to any π at time T − 1 is one. We aim to
show that, when (COND1-JUMP) holds, the best response to π does not have
more than one jump. For a fixed strategy π, let t0 be the first time (starting
from T ) such that the best response to π is zero. The desired result follows if
we show that for all t ≤ t0 the best response to π is zero. Using an induction
argument, we assume that, there exists a t̄ ≤ t0 such that the best response to
π at time t̄ is zero, which according to (COND-BR=0) is achieved when

γmI(t̄)(V
∗
I (t̄+ 1)− V ∗S (t̄+ 1)) > 1 (5)

and we aim to show that

γmI(t̄− 1)(V ∗I (t̄)− V ∗S (t̄)) > 1 (6)

i.e., that the best response to π at time t̄ − 1 is zero as well. Since the best
response to π at time t̄ is zero, it follows that

V ∗S (t̄) = cL + V ∗S (t̄+ 1),

and we also have that V ∗I (t̄) = cI(1− ρ)T−t̄−1 + V ∗I (t̄+ 1). As a result,

V ∗I (t̄)− V ∗S (t̄) = cI(1− ρ)T−t̄−1 − cL + V ∗I (t̄+ 1)− V ∗S (t̄+ 1).

From (5), we obtain that V ∗I (t̄+ 1)− V ∗S (t̄+ 1) > 1
γmI(t̄) , therefore

V ∗I (t̄)− V ∗S (t̄) > cI(1− ρ)T−t̄−1 − cL +
1

γmI(t̄)

From (COND1-JUMP), we derive that cI(1−ρ)T−t̄−1−cL > 0, which means
that the rhs of the above expression is lower bounded by

V ∗I (t̄)− V ∗S (t̄) >
1

mI(t̄)
.

We multiply both sides by γmI(t̄− 1):

γmI(t̄− 1)(V ∗I (t̄)− V ∗S (t̄)) >
mI(t̄− 1)

mI(t̄)
.

We now notice that mI(t̄−1)
mI(t̄) > 1 due to Assumption 1 and, therefore, (6) holds

which implies that the desired result follows.

F Proof of Lemma 4

F.1 m̃I(t) ≥ mI(t)

We first show that m̃I(t) ≥ mI(t) for t ≥ 0. We note that, at time zero, both
values coincide, i.e., m̃I(0) = mI(0). We now assume that for t ≥ 0, m̃I(t) ≥
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mI(t), and we aim to show that m̃I(t+ 1) ≥ mI(t+ 1). Using (1) and also that
π̄(t) is formed by all zeros,

mI(t+ 1) = mI(t)(1 + γmS(t)π̄(t)− ρ) = mI(t)(1− ρ),

whereas for π̃ we have

m̃I(t+1) = m̃I(t)(1+γm̃S(t)π̃(t)−ρ) ≥ m̃I(t)(1−ρ) ≥ mI(t)(1−ρ) = mI(t+1).

And the desired result follows.

F.2 V ∗
I (t) ≥ V ∗

S (t)

We now focus on the proof of V ∗I (t) ≥ V ∗S (t) for all t > t0. We first note that
V ∗I (T ) = V ∗S (T ) = 0 and, therefore, the desired result follows at time T . We
now assume that V ∗I (t+ 1) ≥ V ∗S (t+ 1) for t+ 1 > t0 and we aim to show that
V ∗I (t) ≥ V ∗S (t). Since the best response to π̄ at time t is one, we have that

V ∗S (t) = cL − 1 + (1− γmI(t))V
∗
S (t+ 1) + γmI(t)V

∗
I (t+ 1)

and taking into account that V ∗I (t) = cI(1− ρ)T−1−t + V ∗I (t+ 1), we have that

V ∗I (t)−V ∗S (t) = cI(1−ρ)T−1−t−cL+1+(1−γmI(t))(V
∗
I (t+1)−V ∗S (t+1)) ≥ 0,

which holds since V ∗I (t + 1) ≥ V ∗S (t + 1) and cI ≥ cL
(1−ρ)T−1 >

cL
(1−ρ)T−t−1 . And

the desired result follows.

F.3 Ṽ ∗
S (t) ≥ V ∗

S (t)

Finally, we show that Ṽ ∗S (t) ≥ V ∗S (t) for all t > t0. We know that Ṽ ∗S (T ) =

V ∗S (T ) = 0 since the cost at the end is zero. Therefore, we assume that Ṽ ∗S (t+1) ≥
V ∗S (t+ 1) for t > t0 and we aim to show that Ṽ ∗S (t) ≥ V ∗S (t).

We know that the best response to π̄ for t > t0 is one. Therefore, V ∗S (t) =

cL − 1 + V ∗S (t+ 1) + γmI(t)(V
∗
I (t+ 1)− V ∗S (t+ 1)). For Ṽ ∗S (t), we denote by a

the best response to π̃ at time t. Thus,

Ṽ ∗S (t) = cL − a+ (1− γm̃I(t)a)Ṽ ∗S (t+ 1) + γm̃I(t)aV
∗
I (t+ 1).

Using that Ṽ ∗S (t+ 1) ≥ V ∗S (t+ 1) and because 1− γm̃I(t)a is positive, we get

Ṽ ∗S (t) ≥ cL − a+ (1− γm̃I(t)a)V ∗S (t+ 1) + γm̃I(t)aV
∗
I (t+ 1). (7)

Therefore, Ṽ ∗S (t) ≥ V ∗S (t) is true when

cL − a+ (1− γm̃I(t)a)V ∗S (t+ 1) + γm̃I(t)aV
∗
I (t+ 1)

≥ cL − 1 + V ∗S (t+ 1) + γmI(t)(V
∗
I (t+ 1)− V ∗S (t+ 1)).
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Simplifying

1− a ≥ γ(mI(t)− m̃I(t)a)(V ∗I (t+ 1)− V ∗S (t+ 1)).

Using that m̃I(t) ≥ mI(t) and since V ∗I (t + 1) − V ∗S (t + 1) is non-negative, the
rhs of the above expression is smaller or equal than γ(1 − a)mI(t)(V

∗
I (t + 1) −

V ∗S (t+ 1)). Therefore, a sufficient condition for the desired result to hold is

1− a ≥ γ(1− a)mI(t)(V
∗
I (t+ 1)− V ∗S (t+ 1)).

We now differentiate two cases: (a) when a = 1, we have zero in both sides of the
expression and therefore, the condition is satisfied; (b) when a 6= 1, we divide
by 1− a both sides of the expression and we get

1 ≥ γmI(t)(V
∗
I (t+ 1)− V ∗S (t+ 1)),

which is also satisfied from (COND-BR=1) because the best response to π̄ at
time t is one.

G Proof of Lemma (6)

We aim to show that

V ∗I (t)− Ṽ ∗S (t) ≥ V ∗I (t+ 1)− Ṽ ∗S (t+ 1),

for t > t0. From Lemma 5 we know that the best response to π̃ is one for t > t0,
because (COND1-JUMP) is satisfied, and therefore,

Ṽ ∗S (t) = cL − 1 + Ṽ ∗S (t+ 1) + γmI(t)(V
∗
I (t+ 1)− Ṽ ∗S (t+ 1)).

From Lemma 1, we have that

V ∗I (t) = cI(1− ρ)T−t−1 + V ∗I (t+ 1).

Therefore,

V ∗I (t)− Ṽ ∗S (t) = cI(1− ρ)T−t−1 − cL + 1 + (1− γmI(t))(V
∗
I (t+ 1)− Ṽ ∗S (t+ 1)).

Hence, using the above expression, we get that

V ∗I (t)− Ṽ ∗S (t) ≥ V ∗I (t+ 1)− Ṽ ∗S (t+ 1) ⇐⇒

cI(1− ρ)T−t−1 − cL + 1− γmI(t)(V
∗
I (t+ 1)− Ṽ ∗S (t+ 1)) ≥ 0.

We now note that when cI ≥ cL
(1−ρ)T−1 , we get cI(1 − ρ)T−t−1 > cL, and as

the best response to π̃ is one we have (COND-BR=1). Therefore,

cI(1− ρ)T−t−1 − cL + 1− γmI(t)(V
∗
I (t+ 1)− Ṽ ∗S (t+ 1))

> 1− γmI(t)(V
∗
I (t+ 1)− Ṽ ∗S (t+ 1)) ≥ 0

and the desired result follows.
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