
Queueing Systems (2024) 107:257–293
https://doi.org/10.1007/s11134-024-09924-z

Performance paradox of dynamic matching models under
greedy policies
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Abstract
We consider the stochastic matching model on a non-bipartite compatibility graph and
analyze the impact of adding an edge to the expected number of items in the system.
One may see adding an edge as increasing the flexibility of the system, for example,
asking a family registering for social housing to list fewer requirements in order to
be compatible with more housing units. Therefore, it may be natural to think that
adding edges to the compatibility graph will lead to a decrease in the expected number
of items in the system and the waiting time to be assigned. In our previous work, we
proved this is not always true for the First Come First Matched discipline and provided
sufficient conditions for the existence of the performance paradox: despite a new edge
in the compatibility graph, the expected total number of items can increase. These
sufficient conditions are related to the heavy-traffic assumptions in queueing systems.
The intuition behind this is that the performance paradox occurs when the added edge
in the compatibility graph disrupts the draining of a bottleneck. In this paper, we
generalize this performance paradox result to a family of so-called greedy matching
policies and explore the type of compatibility graphs where such a paradox occurs.
Intuitively, a greedy matching policy never leaves compatible items unassigned, so
the state space of the system consists of finite words of item classes that belong to
an independent set of the compatibility graph. Some examples of greedy matching
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policies are First Come First Match, Match the Longest, Match the Shortest, Random,
Priority. We prove several results about the existence of performance paradoxes for
greedy disciplines for some family of graphs. More precisely, we prove several results
about the lifting of the paradox from one graph to another one. For a certain family of
graphs, we prove that there exists a paradox for the whole family of greedy policies.
Most of these results are based on strong aggregation of Markov chains and graph
theoretical properties.

Keywords Matching models · Performance paradox · Strong aggregation · Separable
solutions

Mathematics Subject Classification 91B68 · 68M20

1 Introduction

Braess showed that adding resources to transportation networks can hurt the per-
formance of the system [1]. Many authors have been interested in investigating the
existence of such a paradox in several contexts related to queueing networks (see
for instance [2–6]). In this work, we analyze whether such a phenomenon exists in
dynamic matching models where the compatibility graph is non-bipartite.

In our previous work [7], we analyzed the performance of the stochastic First
Come First Match (FCFM) matching model with a general compatibility graph, when
the flexibility increases, i.e., when an edge is added to the compatibility graph. We
showed that, when there is a unique bottleneck in the system, increasing the flexibility
can decrease the overall performance of the system, which is reminiscent of the Braess
paradox. The existence of such a performance paradox leads to many questions:

• First, is it only due to the FCFM discipline? Are other disciplines like Match the
Longest or Random also prone to this phenomenon? In this article, we develop
some theoretical techniques to transfer the existence of a paradox from FCFM dis-
cipline to any greedy discipline (i.e., to any discipline where an arriving item must
be assigned to a compatible item immediately if there is one). Most of the disci-
plines considered in the literature are shown to be greedywith the notable exception
of the threshold disciplines studied in [8] and [9].We first prove that all greedy dis-
ciplines exhibit the performance paradox for quasi-complete compatibility graphs.
The results are proved using strong aggregation of Markov chains. Intuitively we
prove that all the greedy disciplines are equivalent for quasi-complete compatibil-
ity graphs when we are interested in the total number of items. We then introduce
two operations on compatibility graphs, the JOIN and the UNION.We show that if
compatibility graph G associated with a greedy discipline satisfies the conditions
for the existence a performance paradox, then the compatibility graph G �� I Nn

(I Nn being a set of n independent nodes) associated with the same discipline also
satisfies these conditions and thus also exhibits a performance paradox.

• Is the paradox related to the size or the number of edges of the compatibility graph?
An important conclusion of our work is that there exists a performance paradox
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for a compatibility graph with n > 3 nodes and 4n − 11 edges. Therefore, the
paradox can be obtained for any number of nodes or any number of edges.

• Does the paradox only appear when we have only one bottleneck in the system?
Is this condition only technical or is it mandatory? In Sect. 2.4, we provide an
example with two bottlenecks where the performance paradox exists. Therefore,
the assumption on the uniqueness of the bottleneck is only a technical condi-
tion required to prove our previous result about the existence of the performance
paradox.

1.1 Related work

The model we consider in this work was introduced in [10], where it is called general
stochastic matching model to emphasize that the compatibility graph is non-bipartite,
and further studied in [11]. The works [10] and [11] present interesting properties of
this model such as that the policies Match the Longest, in which the incoming item is
matched with an item of the compatible class with the longest queue size, and FCFM
disciplines have a maximal stability region. Recently, Comte shows that this matching
model with the FCFM discipline is related to the order-independent loss queueing
networks [12]. An extension of FCFM stochastic matching model to multigraphs with
self-loops has been studied in [13].

A related model to ours is the bipartite dynamic matching model. In this model, the
graph that determines compatibilities between items is bipartite and, thus, the nodes
can be separated in two disjoint sets: server nodes and customer nodes. To the best
of our knowledge, Kaplan [14] was the first analyzing the fully dynamic setting of
matching model, i.e., all the items arrive to the system according to a random process.
He analyzed the problem of how to assign public houses to tenants. In that work, it
is considered that an available public house is assigned to the longest waiting family
among those that expressed their interest for that house. The First Come First Served
infinite bipartite matching model, proposed by Caldentey et al. [15], considers an infi-
nite sequence of server nodes, independent and identically distributed according to
a probability distribution on the server classes, and an independent infinite sequence
of job items, independent and identically distributed according to a probability dis-
tribution on the job classes. Busic et al. [16] study the stability of the system for
different matching policies, whereas in [17] Gardner and Righter study, the relation
between the bipartite matching model under FCFM and the order-independent queues
is observed. Optimal matching policies of bipartite matching models have been stud-
ied in an asymptotic regime in [8] and for the N-shaped model in [9]. Weiss in [18]
studies a bipartite matching model, in which jobs and servers are assigned according
to the First Come First Served policy, but jobs are immediately lost if they do not find
an available server upon arrival.

Adan andWeiss in [19] show that, under the heavy-traffic assumption on the arrivals,
the First Come First Served infinite bipartite matching model has the same stationary
distribution as the First Come First Served-Assign the Longest Idle Server queueing
model. Furthermore, Adan et al. in [20] show that the First Come First Served-Assign
the Longest Idle Server model has the same stationary distribution as the redundancy
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service model. In the context of redundancy networks, the work of [21] shows that
providing more flexibility to a class leads to a performance improvement of this class
but it might not be beneficial for the other classes (the work of [22] shows that the
Least Redundant First scheduling policy that is optimal with respect to overall system
response time, can be unfair in that it can hurt the jobs that become redundant).
Therefore, from the aforementioned works, one might conclude that the performance
paradox existence analysis in dynamic matching models has been already carried out.
However, we would like to remark that these works assume a bipartite compatibility
graph (whereas in our work we consider non-bipartite matching dynamic models) and
strongly depend on the product form result for First Come First Served discipline so
they cannot be generalized to any greedy discipline.

1.2 Organization

The rest of the article is organized as follows. In Sect. 2, we present the model we
study as well as the previous results on the existence of the performance paradox
for FCFM. In Sect. 3, we focus on the greedy policies and we study the existence
of the performance paradox for quasi-complete graphs. In Sect. 4, we consider the
join operation on compatibility graphs and analyze the performance paradox for this
instance. In Sect. 5, we present the main conclusions of our work as well as the future
work.

2 Matchingmodel and performance paradox

Weconsider a queueing systemwith n classes of items. Items of different classes arrive
to the system according to independent Poisson processes, with rates λi > 0, i =
1, . . . , n. The compatibilities between item classes are described by a connected non-
bipartite compatibility graph G = (V , E), where V = {1, . . . , n} is the set of item
classes and E is the set of allowed compatible pairs: items of classes i and j are
compatible if and only if (i, j) ∈ E . If an incoming item is incompatible with all items
present in the system, it is placed at the end of the queue of unassigned items. If it is
compatible, and if policies are not restricted to be greedy, the controller has the option
of not matching it to one of the compatible items, in which case it is also added to the
end of the queue. If a compatible item is matched (or assigned) to the incoming item,
both items disappear.

For a class i ∈ V , we denote by �(i) = { j ∈ V : (i, j) ∈ E} the set of all
the neighbors of the node i in the compatibility graph G, i.e., if j ∈ �(i) items of
class i are compatible with items of class j . For any subset of item classes V1 ⊆ V ,
let �(V1) = ⋃

i∈V1 �(i), and λV1 = ∑
i∈V1 λi . A subset of nodes I ⊆ V is called

an independent set if there is no edge between any two nodes in I, i.e., for any
i, j ∈ I, (i, j) /∈ E .
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2.1 Markov representation for greedy policies

Let V∗ be the set of finite words over the alphabet V and we denote the empty word
by ∅. Let

W = {w = w1 · · · wq ∈ V∗ : ∀(i, j) ∈ [1, q]2, i 	= j, (wi , w j ) /∈ E}

be the subset of words without a compatible pair of letters, i.e., the set of ordered
independent sets of G. For any w ∈ W and any x ∈ V , let |w|x be the number of
occurrences of letter x in wordw. Let |w| be the length ofw (i.e., the number of letters
of the word w). A word containing only letters i will be denoted by i∗.

In a greedy policy, a unique compatible item is matched with the incoming one and
both disappear (a formal definition of greedy policies will be presented in Sect. 3).
Under a greedy policy, a state of the system right after the new arrival (if any) has
been assigned or placed in the queue of unassigned items can be described by a word
w ∈ W. Each letter wi ∈ V represents the class of an unassigned item waiting in the
system and the order of the letters represents their order of arrival.

Let us present some notation that wewill use throughout the paper. LetM(G, λ, D)

be the continuous-timeMarkov chain associatedwith compatibility graphG, matching
discipline D and arrival rates of letters λ. Let E[M(G, λ, D)] be the expectation of
the total number of letters for this Markov chain in steady state. Let Kn be a complete
graph with n nodes and I Nn be a set with n independent nodes (i.e., n nodes without
edges). Similarly, G − (a, b) denotes the subgraph of G where edge (a,b) has been
deleted. Let Kn − (a, b) denote the complete graph with n nodes without edge (a, b):
it is called a quasi-complete graph in this paper.

After applying standard uniformization technique, with a uniformization constant
� >

∑n
i=1 λi , we obtain a matching model in discrete time. In each time slot t ∈ N ,

one item arrives to the system with probability 1 − α0, and there are no arrivals with
probability

α0 = 1 − ‖λ‖1
�

> 0.

Thus, each item belongs to a class within the set of item classes sampled from a
conditional probability distribution over V given the event that there is an arrival:
α = (α1, · · · , αn), with αi = λi‖λ‖1 , ∀1 ≤ i ≤ n. It follows that αi > 0, ∀i .

E[M(G, α, D)] will denote the expectation of the total number of letters for this
discrete-time Markov chain with arrival probabilities α.

Let I be the set of independent sets of G. We assume that

αI < α�(I), ∀I ∈ I. (1)

According to [10, Proposition 2], the above condition is a necessary condition for any
matching policy to be stable. As a consequence, if the compatibility graph is bipartite,
the system is not stable, see [10]. Therefore, throughout the paper, we assume that the
compatibility graph is not bipartite, even if we consider bipartite graphs as subgraphs.
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Table 1 A summary of the main notation

Symbol Notation

G Compatibility graph

G − (a, b) Subgraph of G in which we remove the edge (a,b)

V = {1, . . . , n} Set of item classes

λi Arrival rate of jobs of class i

αi Arrival probability of jobs of class i

w A word over the alphabet V

x ∈ V An arbitrary letter

�(x) The set of compatible items with x

D An arbitrary matching discipline

M(G, λ, D) The Markov chain of graph G

vector of arrivals λ and matching discipline D

We also assume the compatibility graph has at least four nodes, to eliminate trivial
cases.

For any I ∈ I, let �I = α�(I) − αI be the stability gap of independent set I.
We summarize the notation of this work in Table 1.

2.2 Performance paradox analysis of [7]

Wesay that there exists a performanceparadox for compatibility graphG anddiscipline
D if there exists an edge (a, b) such that

E[M(G, α, D)] > E[M(G − (a, b), α, D)] (2)

that is, if the mean number of items increases by adding an edge to the compatibility
graph.

Let us now recall our previous results [7]. We first present some notation to
understand the main result of this section.

Definition 1 (Bottleneck) A set I ∈ argminI∈I�I will be called a bottleneck set in
the sense that it has the smallest maximal draining speed.

Let

δ̄ = min
I∈I

�I = min
I∈I

(α�(I) − αI). (3)

We have δ̄ > 0 aswe assume thatα satisfies (1).We select a bottleneck set (or saturated
independent set) Î ∈ argminI∈I�I with the highest cardinality, i.e.,

|Î| = max
I∈I s.t. �I=δ̄

|I|. (4)
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Weare interested in how theperformanceof the systemevolves by adding an edgewhen
�Î tends toward 0. First, we define a parameterized family of item class distributions:

αδ
i =

⎧
⎪⎪⎨

⎪⎪⎩

αi + δ̄
2

αi|αÎ | − δ
2

αi|αÎ | , if i ∈ Î,

αi − δ̄
2

αi|α
�(Î)

| + δ
2

αi|α
�(Î)

| , if i ∈ �(Î),

αi , otherwise,

for all 0 < δ ≤ δ̄, where δ̄ is defined in (3) and Î in (4). It is clear that αδ̄ = α. By
definition of αδ ,

αδ

�(Î)
− αδ

Î = α
�(Î)

− δ̄

2
+ δ

2
− αÎ − δ̄

2
+ δ

2
= δ̄ − δ̄ + δ = δ,

which tends to 0 when δ tends to 0.
We now consider the expectations of the total number of items for the models both

with and without edge as a function of δ and analyze their difference when δ tends to
0.

Definition 2 (Saturated Independent Set) An independent set I is called saturated if
�δ

I = αδ
�(I)

− αδ
I tends to 0 when δ tends to 0.

In our previous work [7], we assume there is only one saturated independent set Î.
Theorem 1 [Adapted from Theorem 2 of [7]] If Î is uniquely defined for graph G,
and if Î has both a and b as neighbors, then there exists a performance paradox for
adding the edge (a, b) to G for δ sufficiently small.

We would like to emphasize that the assumption about the uniqueness of the sat-
urated independent set is a technical condition required to prove the existence of
a performance paradox. As we will see in Sect. 2.4, the performance paradox also
occurs when this assumption does not hold.

2.3 An example of performance paradox

In the following, we provide an example in which we can establish the exact value
of δ for the performance paradox to occur. The example is based on a matching
model formed by a quasi-complete graph with four nodes (denoted as K4 − (3, 4))
(see Fig. 1). We also consider the graph where we add edge (3, 4) (i.e., complete graph
K4). Therefore, each node different from3 and 4 is an independent set that is connected
to these nodes.

We consider the following conditional probability distribution of arrivals: α1 =
0.45, α2 = 0.11 and α3 = α4 = 0.22. For this instance, the saturated independent set
is Î = {1} with δ̄ = α{2,3,4} − α1 = 0.1. We define a new collection of conditional
probability distributions αδ for all 0 < δ ≤ 0.1, i.e αδ

1 = 0.5 − δ
2 , α

δ
2 = 0.1 + δ

10 and
αδ
3 = αδ

4 = 0.2 + δ
5 . Since the saturated independent set has the nodes that connect
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Fig. 1 Quasi-complete
compatibility graph with 4
nodes: K4 − (3, 4)

the missing edge as neighbors (i.e., the node 1 is a neighbor of node 3 and node 4),
we know from Theorem 1 that there exists a performance paradox for δ sufficiently
small.

We study the exact value of the saturation threshold, i.e., the maximum δ value
for the existence of the paradox under the FCFM policy. According to Lemma 1
and Lemma 4 (which are presented in the next section as they are proved for any
greedy policy), we can conclude that, for FCFM policy, for the matching model under
consideration here, the performance paradox exists if and only if δ < 0.0818369. All
the details of the computations as well as a plot representing the mean number of items
of both matching models when δ varies are presented in Appendix A.2.

2.4 An example withmultiple saturated independent sets

The definition of the parametrized αδ implies that the unique saturated independent
set is Î. We now discuss the situation where there are multiple saturated independent
sets. This means that multiple independent sets have their stability gaps that tend to
0 as δ tends to 0. In that case, the conditions of Theorem 1 in [7] are not satisfied.
However, in this section, we present an example with two saturated independent sets
where the performance paradox exists.

Now we consider compatibility graph K4 and K4 − (1, 2). Let us define the
conditional probability distribution of the arrivals as α1 = α2 = 0.15, α3 = 0.4
and α4 = 0.3. We choose the saturated independent sets to be {3} and {1, 2}. We
define a new parametrized family of conditional probability distributions αδ , for all
0 < δ ≤ 0.1, as αδ

1 = αδ
2 = 0.25 − δ, αδ

3 = 0.5 − δ and αδ
4 = 3δ. In the follow-

ing result, we prove that there exists a performance paradox and compute exactly for
which value of δ it appears. Its proof is available in Appendix B.1.

Proposition 1 For the dynamic matching model under consideration, there exists a
performance paradox if and only if δ ∈ (0, 0.0563).

A plot representing the number of items of the matching models under study as a
function of δ is represented in Appendix B.2. In the following result, we show that the
difference E[M(K4, α

δ, FCFM)] − E[M(K4 − (1, 2), αδ, FCFM)] is unbounded
as δ tends to 0 and we quantify its growth rate. Its proof is available in Appendix B.3.

Proposition 2 When δ tends to 0,

δ(E[M(K4, α
δ, FCFM)] − E[M(K4 − (1, 2), αδ, FCFM)]) → 1

24
.
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Remark 1 This example shows that the existence of the paradox is not related to the
uniqueness of a saturated independent set. This was only a technical condition used
to prove Theorem 1 in [7].

3 Greedymatching disciplines

In the following, we denote by �(w) = ∪x∈w�(x) for any word w and by S the set
of words. Let us first present some definitions.

Definition 3 (Compatibility) Letw be a state of the system and x a letter which arrives
in the system. We say that x is compatible with w if x ∈ �(w).

Remember that a subsequence of a word (or a sequence of letters) w is derived
from w by deleting some or no letters without changing the order. Subsequences can
contain consecutive letters which were not consecutive in the original word. Thus,
subsequences are not necessarily substrings.

Definition 4 (Effect of a compatibility) Let w be a state of the system and x a letter
which arrives in the system. If x is not compatible with w, it is appended at the end
of word w. Otherwise, if x is compatible with w, the transition is described by the
matching discipline.

Definition 5 (Matching discipline) Let x ∈ �(w). A matching discipline D is a func-
tion from S × V which returns a non-empty subset of states ND(w, x) and a discrete
distribution of probability ψND(w,x) on this subset such that:

1. All the words in ND(w, x) are possibly subsequences of the word w concatenated
with letter x .

2. The distribution gives the probability tomake a transition to any state in ND(w, x):
ψND(w,x)(p) is the probability to jump from state w to any state p in ND(w, x),
due to the arrival of an item of class x . Obviously:

∑

p∈ND(w,x)

ψND(w,x)(p) = 1,

and if the set ND(w, x) is a singleton, the probability distribution is a Dirac.

Remark 2 This definition allows us to model disciplines where ND(w, x) = {w} (i.e.,
the matching has no effect on word w even when x is compatible with a letter in w).
It is also possible to represent disciplines where the effect of a matching is to remove
all the letters in w which are compatible with letter x . We now introduce the notion
of greedy matching discipline.

Definition 6 (Greedy matching discipline) A matching discipline GD is greedy if,
given state w and arriving compatible letter x , for all states p in NGD(w, x), we have
|p| = |w| − 1 and x /∈ p.
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Example 1 Clearly, FCFM is a greedy discipline such that the set ND(w, x) is a sin-
gleton for all words w and letters x that are compatible with w. Match the Longest
with random drawing of tie breaking is a greedy discipline but the set ND(w, x) may
contain several words.

Definition 7 (RANDOM discipline) Assuming that a letter is compatible with a word,
we delete one compatible letter in the word, where this letter is chosen with a uniform
distribution among the compatible letters.

Example 2 (RANDOM) Consider a state w = abcaba. Suppose that a letter t arrives
and that t is compatible with both a and b but it is not compatible with with c.

ND(w, t) = {bcaba, acaba, abcba, abcaa, abcab}

Under the RANDOM discipline, each of these words has a probability of 1/5 to be
selected.

Remark 3 RANDOM is a greedy discipline.

Proposition 3 If the compatibility graph is such that the degree of every node is pos-
itive, the arrival rates of all items are positive and the discipline is greedy, then the
Markov chain contains a state with 0 items which is reachable from any state.

Proof Indeed all items can be deleted due to a succession of arrivals of compatible
classes. ��

Now we establish some relations between the FCFM discipline and any greedy
discipline (GD).

3.1 Complete graphs and greedy disciplines

The performance paradox analysis consists of comparing the mean number of items
for a quasi-complete graph and a complete graph. In the main result of this section,
we provide an explicit expression for the mean number of items of a complete graph
with an arbitrary greedy matching policy.

The following result characterizes the Markov chain associated with Kn and any
greedy matching policy as well as its expected value.

Lemma 1 For a greedy matching discipline GD, the states of the Markov chain asso-
ciated with Kn are words which are associated with the independent sets of the
compatibility graph, i.e., the following words: ∅, 1∗, 2∗, . . . , n∗. In fact, the Markov
chain consists of n birth and death processes which are connected through the empty
word; when the state is x∗, with probability αx the number of letters increases by one
and with probability 1−αx decreases by one. Assuming αi < 0.5 for all i = 1, . . . , n,
the mean number of items is

(

1 +
n∑

i=1

αi (1 − αi )

1 − 2αi

)−1 (
n∑

i=1

αi (1 − αi )

(1 − 2αi )2

)

. (5)
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Proof We assume that the initial state is the empty word. The first arrival (say a class
x item) triggers a transition to word x . If the next arrival is again a class x item (with
probability αx ), the next state is xx , otherwise the arriving letter (say y) matches
with the x as the compatibility graph is a complete graph. For any greedy matching
discipline, this matching causes the destruction of both y and x and a transition to
the empty word. Such an event occurs with probability αy . Thus, by induction on the
transitions, we only obtain words with only one class of item or the empty word. As the
valid states only contain one class of items, the discipline does notmatter as soon as it is
greedy and exactly one letter is deleted in the word. Furthermore, for this compatibility
graph, the transition rates of the chain do not depend on the matching discipline (note
that this is not true for sparser compatibility graphs). The derived Markov chain may
be described as a collection of n birth and death processes connected through state ∅.
When the state is x∗, the birth-probability is αx and the death-probability 1− αx . It is
easy to check that the mean number of items is (5). ��
Remark 4 From the above result, we conclude that the mean number of items
associated with compatibility graph Kn and disciplines GD and FCFM are equal,
i.e.,

E[M(Kn, λ,GD)] = E[M(Kn, λ, FCFM)]. (6)

The above result provides an explicit expression for the expectation of the total
number of items if the matching is a complete graph. In the next section, we give a
similar result when the compatibility graph is a quasi-complete graph.

3.2 Quasi-complete graphs and greedy disciplines

Let us now study the expectation of the number of items for compatibility graph Kn

with a deleted edge (which is denoted by Kn −(n−1, n)). We first show how to derive
two compatibility graphs which have the same expected size of words in steady state.
This construction is based on the exact aggregation of Markov chains and the strong
lumpability property (see [23] for the initial definition of aggregation for finite state
space chains, and [24] for a recent description of this subject for denumerable ones).
The following presentation follows [24].

Let W be a Markov chain on set of states W. Let (B1, .., Bk) be a partition of W.
We define a new process Y as follows:

Yn = m ↔ Wn ∈ Bm .

The question is to find conditions such that Y is also a Markov chain. Under these
conditions, Y will be denoted as an exact aggregation of W for partition (B1, .., Bk).
The strong lumpability condition (defined in the following) implies such a result (see
[24] for the proof).

Definition 8 (Strong Lumpability) W is strongly lumpable for partition (B1, .., Bk)

of its state space if for all subset indices i and j and for all states m1 and m2 in Bi , we
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Fig. 2 Compatibility graphs: Kn (a), Kn − (n − 1, n) (b), Kn−1 (c). The triple edge represents that the
node (n − 1 and n for a, b, and x for c) is connected to all the nodes in Kn−2

have

Pr(Wn+1 ∈ Bj |Wn = m1) = Pr(Wn+1 ∈ Bj |Wn = m2).

Bi will be denoted as macro-state i in the following.

We first consider an arbitrary compatibility graph and an arbitrary node x . Let us
denote by Gx this graph. Let Wx = M(Gx , λ,GD), i.e., Wx is the Markov chain
associated with matching Gx and an arbitrary greedy matching policy GD.

Definition 9 (Decomposition matching and Aggregated matching) We define a new
matching by a decomposition of x into two nodes y and z. The decomposition is
defined by:

• �(y) = �(z) = �(x)
• αy > 0
• αz > 0
• αy + αz = αx .

Let Gyz be a new compatibility graph where x is decomposed into y and z. Gyz

will be denoted as the decomposition compatibility graph while Gx is called the
aggregated compatibility graph. Let Wyz = M(Gxy, λ,GD). i.e., Wyz is the Markov
chain associated with Gyz and an arbitrary greedy matching policy GD.

For instance, we consider an aggregated matching in Fig. 2c. Node x is decomposed
into nodes n and n − 1 to build the decomposition compatibility graph (see Fig. 2b).

Proposition 4 If the aggregated matching is associated with a stable Markov chain,
so is the decomposition matching.

Note that by construction y /∈ �(z) and z /∈ �(y).

Lemma 2 We consider the continuous-time Markov chain associated with com-
patibility graph Kn − (n − 1, n), arrival rates λ and a greedy discipline GD:
M(Kn − (n − 1, n), λ,GD). The states of the chain are the words ∅, 1∗,2∗, 3∗,..,
(n − 2)∗ and words written with letters n − 1 and n. The chain is lumpable according
to the following partition.
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• Each of the states represented by i∗ remain as individual states, for i > 0, as does
state ∅.

• All the states w, formed only by letters n and n-1 and such that |w| = l > 0, are
gathered into a macro-state called Cl .

Proof We consider the uniformized version of the chain with uniformization rate� as
mentioned formerly to get M(Kn − (n−1, n), α,GD). Let PGD denote the transition
probability matrix of this DTMC. First, we will prove that this chain is lumpable for
the partition. Let S be its state space. We have to prove the following equality for all
macro-states Cl . Let i and j be macro-state indices

∑

k∈Ci

PGD[k,m] =
∑

k∈Ci

PGD[k, n] ∀ m, n ∈ C j .

If such a condition holds, we note PGD(Ci ,C j ) = ∑
k∈Ci

PGD[k,m] where m is any
state in C j .

Since all the words in Cl have length equal to l, we have to consider all the events:

• Arrival of a class n item. A class n item is not compatible with any letter in word
w (remember that w only contains letters n and n − 1). Thus, letter n is appended
to word w and the state becomes (w|n). This state is in macro-state Cl+1, and the
probability of this transition is αn . Thus from any state in Cl , we have a single
transition with probability αn to a state in Cl+1.

• Arrival of a class n − 1 item: same property, from any state in Cl , we have a
transition with probability αn−1 to a state in Cl+1.

• Arrival of a class k item (with k < n − 1): such an arrival deletes a class n or
class n − 1 item. In the chain, we have a transition from state w to all the states
p in set NGD(w, k) with probability αkψND(w,x)(p). As the discipline is greedy,
set NGD(w, k) is not empty. And all the states in NGD(w, k) have a length equal
to l − 1. Thus, they are all included into macro-state Cl−1. As

∑

p∈ND(w,x)

ψND(w,x)(p) = 1,

we clearly have

P(Cl ,Cl−1) =
∑

p∈ND(w,x)

αkψND(w,x)(p) = αk .

Thus, we have one transition with probability αk from any state in Cl , to a state in
Cl−1. ��
Let Y be the lumped Markov chain presented in the above result. Note that both

the arrival rates and the discipline have been modified when we switch from the
decomposition compatibility graph to the aggregated one. Let λ be the arrival rate
vector in the model before aggregation of nodes n and n − 1, we define the rates μ in
the aggregated model as follows: μi = λi for all i < n − 1 and μn−1 = λn + λn−1.
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For the matching discipline, as we change y and z into x , we modify the sets ND and
the distributions of probability for the aggregated model. However, it is not necessary
to describe them precisely. We just remark that the discipline is still greedy in the
aggregated model and we emphasize that the discipline may change in general by
changing its name to GD′ in the equation. From the above result, we directly obtain
the following.

Proposition 5 Y can be identified with theMarkov chain associated with compatibility
graph Kn−1, arrival rate vector μ and matching discipline GD′. Therefore,

E[M(Kn − (n, n − 1), λ,GD)] = E[M(Kn−1, μ,GD′)]. (7)

Remark 5 In some cases, it is possible to easily obtain the matching discipline in the
aggregated model. For instance, if the original model uses FCFM discipline for the
decomposition model, then the matching discipline after aggregation is also FCFM.
Therefore,

E[M(Kn − (n, n − 1), λ, FCFM)] = E[M(Kn−1, μ, FCFM)]. (8)

We now present the following result that proves, for a quasi-complete graph, that
the expected total number of items coincides for all greedy disciplines.

Lemma 3 For compatibility graph Kn − (n − 1, n), all greedy disciplines provide the
same expectation for the total number of items. More precisely,

E[M(Kn − (n, n − 1), λ,GD)] = E[M(Kn − (n, n − 1), λ, FCFM)].

Proof : Let GD be an arbitrary greedy discipline. From Proposition 5, we have

E[M(Kn − (n, n − 1), λ,GD)] = E[M(Kn−1, μ,GD′)].

And according to Remark 4, we have for any greedy discipline GD′,

E[M(Kn−1, μ,GD′)] = E[M(Kn−1, μ, FCFM)].

Remark 5 allows to conclude as:

E[M(Kn − (n, n − 1), λ, FCFM)] = E[M(Kn−1, μ, FCFM)]. (9)

��
Thus, one can obtain from (5) the expected number of items with a simple

modification of the arrival rates for all greedy disciplines.
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Lemma 4 Assume αi < 0.5 for all i = 1, . . . , n − 2 and αn−1 + αn < 0.5. For any
greedy matching policy, the mean number of items in a quasi-complete graph with n
nodes and edge (n, n − 1) missing, is

(

1 +
n−2∑

i=1

αi

1 − 2αi
+ αn−1 + αn

1 − 2(αn−1 + αn)

)−1

(
n−2∑

i=1

αi (1 − αi )

(1 − 2αi )2
+ (αn−1 + αn)(1 − αn−1 − αn)

(1 − αn−1 − αn)2

)

. (10)

3.3 Existence of a performance paradox for any greedy discipline for
Kn − (n − 1, n) compatibility graph

From the above results, we conclude that, if a paradox occurs for graphs Kn and
Kn − (n − 1, n) under FCFM discipline, it also occurs for any greedy discipline.

Theorem 2 Combining previous lemmas, we get that:

• if a paradox exists for compatibility graph Kn − (n − 1, n) and discipline FCFM,
it also exists for any greedy discipline GD with the same arrival rates

• a paradox exists for (K4 − (3, 4)) for any greedy discipline GD

Proving the existence of a performance paradox for the complete graph with arbitrary
size n and discipline FCFM will need first that we present some results about the
modular construction of compatibility graphs. This is the aim of the next section.

4 Modular construction of matchingmodels

In this section, we aim to analyze operations on the compatibility graph that preserve
the performance paradox. We present a modular construction of matching models by
defining operations on compatibility graphs, on arrival processes and on the matching
disciplines. For this purpose, we restrict ourselves to consistent matching policies,
which are a subset of greedy matching policies.

Definition 10 Adiscipline is consistent if for anywordw, if two letters x and y have the
same neighborhood within w, they also have the same subset of states ND(w, x) and
the same discrete distribution of probability ψND(w,x) on this subset. More formally,

if w ∩ �(x) = w ∩ �(y), then ND(w, x) = ND(w, y) and ψND(w,x) = ψND(w,y).

Definition 11 We define the compatibility index of a letter x in word w as the binary
vector ICw,x with size |w| such that, for all i between 1 and |w|, ICw,x [i] = 1 if
w[i] ∈ �(x) and 0 otherwise.
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Definition 12 A position-based discipline is a policy which uniquely uses the
compatibility index ICw,x to build set ND(w, x) andprobability distributionψND(w,x).

The following proposition follows directly from the definitions.

Proposition 6 Position-based disciplines are consistent.

Remark 6

(a) FCFM, Last Come First Match and Random are position-based disciplines while
Match the Longest and Priority are not.

(b) Match the Longest is not position-based but it is consistent.
(c) We remark that Priority is not a consistent discipline. For instance, consider the

word w = abc and two items x and y such that

�(x) ∩ w = {a, c} = �(y) ∩ w.

One can design a discipline D such that ND(w, x) = {bc} and ND(w, y) = {ab}.
The greedy assumption is satisfied for this word and these items and the discipline
is not consistent.

In the following, we assume that thematching disciplines are greedy and consistent.
We would like to remark that this assumption excludes matching disciplines that make
use of item class information, such as priorities. We now consider the following oper-
ations to build compatibility graphs: the JOIN operation and the UNION operation.
These two operations allow to have a modular presentation of compatibility graphs
and how to combine them.

Definition 13 [∪ operation] We consider two arbitrary disjoint graphs G1 = (V1, E1)
and G2 = (V2, E2). The UNION of G1 and G2 is graph G = (V , E) defined as
follows:

• Nodes: V = V1 ∪ V2,
• Edges: E = E1 ∪ E2.

Definition 14 (JOIN operation) We consider two arbitrary disjoint graphs G1 =
(V1, E1) and G2 = (V2, E2). The JOIN of G1 and G2 is graph G = (V , E) defined as
follows:

• Nodes: V = V1 ∪ V2,
• Edges: E = E1 ∪ E2 ∪ {(x, y), x ∈ V1, y ∈ V2}.

In words, we keep all nodes and edges of G1 and G2 and we add all the edges between
nodes in V1 and V2. The JOIN operation will be denoted by ��.

We depict in Fig. 3 the JOIN of a graph with 4 isolated nodes (nodes 4 to 7) and a
complete graph with 3 nodes (nodes 1 to 3).

Remark 7 If E1 = E2 = ∅, then G, which is the join of G1 and G2, is a com-
plete bipartite graph. Remember that we do not study model associated with bipartite
compatibility graphs as their associated Markov chains are not ergodic (Fig. 4).
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Fig. 3 Graph I N4 �� K3

Fig. 4 Graph G1 �� G2

As a matching model is a triple with a compatibility graph, a collection of arrival
processes and a matching discipline, we also have to explain how we associate the
last two parts of the model to both modular constructions of compatibility graphs. For
the arrival processes, we consider the union of the sets of Poisson processes associ-
ated with G1 and G2. This is easier in continuous time thanks to the race condition
which is already well known for the modular construction of stochastic models. For a
composition of two compatibility graphs G1 and G2 associated with transition rates
vectors λ and μ, we denote as (λ, μ) the rate vector associated with the composition
of G1 and G2.

For the matching disciplines, we first have to find the state space of the models as
they are defined as sets of states and probability distributions on these sets.

State Space for UNION
Let G1 and G2 be two disjoint compatibility graphs. Consider the compatibility

graph G which is the UNION of graphs G1 and G2. Then, the state space of the
continuous-time Markov chain associated with G is the Cartesian product of the state
spaces of the two Markov chains associated with G1 and G2.

State Space for JOIN

Remark 8 Consider a compatibility graph G which is the JOIN of graphs G1 and G2.
Remember that G1 and G2 are disjoint. Let M1 (resp. M2) be the continuous-time
Markov chain associated with G1 (resp. G2) and vectors of arrival rates λ (resp. μ).
Both chains have an empty state because the discipline is greedy. Then, the continuous-
time Markov chain associated with G has the following states which are a couple of
words:

• The states associated with M1 (no items of G2 are in the system) denoted by
(w1,∅) where w1 is a state of M1 (i.e., a word). This set of states will be denoted
by S1.

• The states associated with M2 (no items of G1 are in the system) denoted by
(∅, w2) where w2 is a state of M2. Similarly, we denote as S2 this set of states.
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Fig. 5 Markov chain of the
compatibility graph I N2 �� K2
for RANDOM discipline. The
chain is truncated to words
smaller than 4 letters. The labels
(except E) and the rates are
omitted for the sake of
readability

• Both chains are connected through their empty states which are merged.

The proof is trivial as it is not possible to reach a state (w1, w2)with bothw1 	= ∅ and
w2 	= ∅ due to the edges between G1 and G2 after the JOIN under a greedy policy.
See Fig. 5 for an example.

Finally, we explain how we build a matching discipline on these constructions of
compatibility graphs. Again we have to give separate statements. To be more precise
for these definitions, we add a superscript to the name of the sets to know from which
compatibility graphs they come.

Discipline for UNION
Let (w1, w2) a state of the chain associated with G1 ∪ G2. We have to consider two
types of arrival: a letter x in V (G1) or a letter y in V (G2). We define the discipline
on the UNION as follows:

NG1∪G2
D ((w1, w2), x) = NG1

D (w1, x), (11)

and

NG1∪G2
D ((w1, w2), y) = NG2

D (w2, y). (12)

The probability distributions are also defined similarly.
Thus, due to this discipline and the race condition between the arrival processes, the

transition matrix of the Markov chain is the Kronecker sum of the transition matrices
associated with G1 and G2 (see Plateau [25] for such a result for stochastic automata
networks).

Discipline for JOIN
We consider an arbitrary non-empty set (w1,∅). Indeed there is no need for amatching
discipline for the empty state and states (∅, w2) play a symmetrical role. We have two
cases, according to the arriving letter (say x):

• If x ∈ V (G1), if there is compatibility with w1, then we keep the same discipline

NG1��G2
D ((w1,∅), x) = NG1

D (w1, x), (13)

and the distribution of probability does not change.
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• x ∈ V (G2). Because of the JOIN between G1 and G2, all the letters in w1
match with x . We take as a discipline in that case (i.e., NG1��G2

D ((w1,∅), x)), any
consistent discipline. Indeed in the next section, we will aggregate all the letters x
into only one letter, thus we need that the discipline does not depend on x in that
case.

The transitions are the same as in the Markov chains associated with G1 or G2.
More precisely: we have a transition from (x1,∅) to (x2,∅) if there is a transition
from x1 to x2 in M1. Similarly, there is a transition from (∅, y1) to (∅, y2) if there is
a transition from y1 to y2 in M2. Thus, the set of states of the chain is S1 ∪ S2. Let E
be the empty state: E = (∅,∅).

We are now able to study the models based on these modular decompositions.

4.1 Compatibility graphs G1 �� G2

We first consider graphs G1 and G2 which both contain at least 2 nodes and one edge
(formally K2 ⊂ G1 and K2 ⊂ G2). The case where one of these graphs is a set of
isolated nodes is studied in Sect. 4.2.We consider any greedy and consistent discipline
D built as in the previous section. We assume that all the chains we define are ergodic.

Remark 9 Letλ be the vector of arrival rates for compatibility graphG1 and letμ be the
vector of rates for items inG2. After uniformizationwith rate� = 2(‖λ‖1+‖μ‖1), the
transition probability matrix of discrete-time Markov chain associated with G1 �� G2
and vector of arrivals rates (λ, μ) has the following block decomposition associated
with the partition of the states ({E}, S1 \ {E}, S2 \ {E}):

M =
⎛

⎝
1/2 L1 L2

C1 P1 0
C2 0 P2

⎞

⎠ ,

where L1 and L2 are row vectors such that ‖L1‖1 = ‖λ‖1
�

and ‖L2‖1 = ‖μ‖1
�

, C1
and C2 are column vectors and P1 and P2 are sub-stochastic matrices. Similarly, we
decompose the steady-state distribution πM as (πM

0 , πM
S1

, πM
S2

). Note that we only
need that � > ‖λ‖1 + ‖μ‖1 for uniformization. This value of � has been chosen to
improve the readability of the matrices.

We now prove that the steady-state distribution of the chain associated with G has
a closed form solution based on the steady-state solutions of chains associated with
compatibility graphs we now describe. We call this solution a separable solution for
the steady-state distribution. Let us begin with the description of the sub-models.

We build a simpler compatibility graph as follows: we replace G1 by a single node
s1, we add a loop on s1 due to the edges in G1, we keep G2 unchanged, and we add
the edges between s1 and all the nodes in G2 (see Fig. 6). Compatibility graphs with
self-loops were recently introduced by Moyal et al. in [13] and independently in [26].
Let G ′

2 be this compatibility graph. The arrival rates associated with this compatibility
graph are (‖λ‖1, μ). The discipline associated with G ′

2 is derived from D. As D is
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Fig. 6 G′
2: New compatibility

graph for the first sub-model

Fig. 7 Markov chain for G′
1 for

G1 = K2 and Random
discipline

consistent, all the letters of G1 provoke the same transitions on a word (∅,m2) and
we use this set of nodes and this distribution to define the discipline.

Let M2 be the transition probability matrix after uniformization with rate � and let
πM2 be its steady-state distribution. The state space of the Markov chain associated
with G ′

2 is the following (see Fig. 7):

• The state (1,∅) with one item of class s1 and no items of G2. Note that this is the
only state with a positive number of items of class s1 as G ′

2 contains a loop on s1.• The state (0,∅) = E which represents an empty system.
• The states associated with items of G2 (no s1 items are present in the system):
the states will be denoted as (0, y) where y is a node of G2. Clearly, there is a
one-to-one mapping between states (0, y) in Markov chain M2 and states (∅, y)
in Markov chain P . Therefore, we also denote as S2 this set of states.

Proposition 7 M2 has the following block decomposition associated with the partition
of the states ({(1,∅)}, {E}, S2\{E}).

M2 =
⎛

⎝
1/2 1/2 �0
c2 1/2 L2

0 C2 P2

⎞

⎠ ,

where blocks L2, C2 and P2 have already been obtained in the decomposition of matrix
M and c2 = ‖λ‖1

�
.
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Fig. 8 G′
1: New compatibility

graph for the other sub-model

The proof of the above result is provided in Appendix C.1. We also consider a
decomposition of the steady-state distribution of M2: (π

M2
1 , π

M2
0 , π

M2
S1

).
We do a similar construction for G ′

1 which is depicted in Fig. 8 by aggregation
all the nodes of G2 into a single node s2 and adding a self-loop on s2, with similar
definitions for M1. For this case, we have a block decomposition for M1 based on this
partition:

M1 =
⎛

⎝
1/2 1/2 �0
c1 1/2 L1

0 C1 P1

⎞

⎠ ,

with c1 = ‖μ‖1
�

.

Wecan now show the relation between the steady-state distributions associatedwith
these three models. Let G be the JOIN of graph G1 and G2, and M the discrete-time
Markov chain associated with G and arrival probabilities (α, β). These probabilities
have been derived by uniformization of rates (λ, μ) by rate�. Assume thatM ,M1 and
M2 are ergodic discrete-time Markov chains. Let πM be the steady state distribution
of the chain associated with M . We decompose this distribution into three parts: the
probability of the empty state, the probability of the states of S1 and the probability
of the states of S2.

πM = (πM
0 , πM

S1 , πM
S2 ),

where these elements are obtained through the steps detailed in the following. The
steady-state distribution of M1 is:

πM1 = (π
M1
1 , π

M1
0 , π

M1
S1

),

with an abuse of notation here. Indeed S1 is the set of states of M (not of M1), but there
is a one-to-one mapping between the set of nonzero states of M1 and S1. Therefore,
we use the same index for the decomposition of the probability vector. Similarly, we
denote:

πM2 = (π
M2
1 , π

M2
0 , π

M2
S2

).

Theorem 3 Consider the former construction. We have:

πM
S1 = π

M1
S1

πM
0

π
M1
0

,
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and

πM
S2 = π

M2
S2

πM
0

π
M2
0

,

and finally

πM
0 =

(
1

π
M1
0

+ 1

π
M2
0

− 2

)−1

.

Furthermore, the expectation of the total number of items is:

E[M((G1 �� G2), (λ, μ), D) = πM
0

π
M1
0

E[M(G′
1, λ, D1)] + πM

0

π
M2
0

E[M(G′
2, μ, D2)] − 1,

where D1 and D2 are the disciplines derived from D.

The proof of the above result is provided in Appendix C.2. It is important to remark
that the Markov chain associated with G ′

1 is not a lumped version of the DTMC
associated with G. In general this Markov chain is not lumpable due to the possible
matching between the items of G2. In the next subsection, we study a simpler case
where we have a strong aggregation of the DTMC and this leads to a lifting theorem
for the paradox.

4.2 Compatibility graphs INn1 �� Kn2

We consider a compatibility graph G = I Nn1 �� Kn2 with n1 ≥ 1 and n2 ≥ 2, the
JOIN of a set of n1 isolated nodes and a complete graph with size n2. We assume
that the matching discipline is greedy and consistent. Let us first mention some results
from graph theory. First, we have that, if n2 ≥ 2, then G is not bipartite; indeed, the
graph contains at least one triangle. Furthermore, we also have that

I N1 �� Kn = Kn+1. (14)

One can easily show that the latter result also holds for quasi-complete graphs, i.e.,

I N1 �� (Kn − (a, b)) = Kn+1 − (a, b). (15)

We begin with a result even more general for the state space of I Nn1 �� Gn2 where
Gn2 is an arbitrary graph with size n2.

Theorem 4 Consider a compatibility graph G = I Nn1 �� Gn2, arrival rates of letters
(λ, μ)andanarbitrary consistent andgreedydiscipline D asdefined in Sect. 4. Assume
that n1 > 1 and K2 ⊂ Gn2. We have uniformized the continuous-time Markov chain
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with rate � > ‖λ‖1 + ‖μ‖1 to obtain a discrete-time model. This DTMC is lumpable
for the following partition:

1. State E remains unchanged
2. States (∅,Y ) remain unchanged.
3. States (X ,∅) are aggregated into macro-state (|X |,∅).

We aggregate all the nodes of the independent set into one macro-state which is the
length of the word. Let αy = λy/� be the probability of an arrival of letters y for
the letters in the set of isolated nodes. z will denote the aggregated letters of this
set. The arrival probability of letter z is αz = ∑n1

y=1 αy . The lumped Markov chain
is associated with the compatibility graph I N1 �� Gn2 and discipline D′ which is
derived from D as in Sect.3.

Proof As states E and (∅,Y ) for every word Y remain unchanged, we just have to
consider the macro-states which contain the states (X ,∅). Consider two arbitrary
states (X1,∅) and (X2,∅) such that |X1| = |X2| = k. They are members of the same
macro-state (k,∅). We have two cases: arrival of a letter in V (I Nn1) or in V (G2).

• Consider the arrival of an arbitrary letter in V (I Nn1). The letter does not match
with X1 or X2 as this part of the compatibility graph does not contain any edges.
Therefore, it provokes a transition to a state which is aggregated into macro-state
(k + 1,∅) and the matching discipline is irrelevant here as no matching occurs.

• Assume now an arrival of an arbitrary letter in V (G2). A matching takes place and
as the discipline is greedy and consistent, exactly one letter is deleted among the
letters of X1 or X2. Therefore, both states belong to macro-state (k − 1,∅).

Thus, the lumpability conditions hold. ��
As usual, both chains give the same expectation for the total number of letters.

Corollary 1 Consider an arbitrary greedy and consistent discipline D. We have the
same expectation for the total number of items for model I N1 �� Gn2 and model
I Nn1 �� Gn2 assuming that βz = ∑

y αy for the arrivals of letters z in I N1 and
βy = αy for y in Gn2 for a discipline D′ derived from D.

E[M(I Nn1 �� Gn2, α, D)] = E[M((I N1 �� Gn2, β, D′)].

In general, we are not able to analyze chain M((I N1 �� Gn2, β, D′). However, we
focus on some simple cases. First, we consider G2 = Kn2, using Corollary 1 and (14),
we obtain the following result.

Corollary 2 Using the same transformation of arrival rates and matching disciplines,
we get:

E[M(I Nn1 �� Kn2, α, D)] = E[M(Kn2+1, β, D′)].

We now consider G2 = Kn2, using Corollary 1 and (15), we obtain:
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Corollary 3 We use the same transformation of arrival rates and matching disciplines
and we obtain the same expectation for the total number of items for model Kn2+1 −
(a, b) and model I Nn1 �� (Kn2 − (a, b)).

E[M(I Nn1 �� Kn2 − (a, b), α, D)] = E[M(Kn2+1 − (a, b), β, D′)].

And the existence of a paradox follows:

Theorem 5 If there exists a paradox between compatibility graph Kn2+1 and Kn2+1−
(a, b) for a greedy and consistent discipline, the same (i.e., we keep the same arrival
rates for letters in Kn2) paradox exists between I Nn1 �� Kn2 and I Nn1 �� (Kn2 −
(a, b)).

Proof Corollary 2 proves that Kn2+1 and I Nn1 �� Kn2 have the same expectation
for total number of items, while Corollary 3 establishes the same relation for chains
associated with compatibility graphs Kn2+1 − (a, b) and I Nn1 �� (Kn2 − (a, b)).
Thus, if a paradox exists between Kn2+1 and Kn2+1 − (a, b), it also exists between
Kn2+1 − (a, b) and I Nn1 �� (Kn2 − (a, b)). ��
Corollary 4 For all n ≥ 4, there exists a compatibility graph with size n which exhibits
a paradox for any discipline D.

Proof For n = 4, we give the example for FCFM discipline for compatibility graph
K4 − (3, 4) in Sect. 2.2 and we generalize to in Sect. 3 to any discipline D. For larger
n, we consider compatibility graph I Nn−4 �� (K4 − (3, 4)) and Theorem 5 proves
the claim with the previous results on K4 − (3, 4). ��
Remark 10 Note that the number of edges in graph Kn1 �� (K4 − (3, 4)) is only
4n1 + 5. With n = n1 + 4, we have a compatibility graph for all n with a graph with
n > 3 nodes and 4n − 11 edges. Thus, the average degree is asymptotically 4.

Lemma 5 If compatibility graph G with discipline FCFM satisfies the assumption of
Theorem 1, then matching graph G �� I N1 with discipline FCFM also satisfies the
same assumptions when the arrival probability of the letter in I N1 is sufficiently small.
Therefore, compatibility graph G �� I N1 also exhibits a performance paradox.

Proof Let x be the letter of I N1. And αδ the arrival probabilities for graph G. We have
to prove that the assumptions of Theorem 1 on the saturated independent sets are still
valid for G �� {x}. First, the independent sets of G �� I N1 are the independent sets
of G and {x}. Let us consider the following arrival probabilities for graph G �� {x}:

βδ
0 = αδ

0(1 − δ), βδ
x = αδ

0δ, βδ
y = αδ

y ∀y ∈ V (G).

As αδ is a probability distribution, βδ is also a probability distribution when δ < 1.
Now we have to compute the stability gap for all independent sets of G �� {x}. We
slightly change the notation about the stability gap as follows: �G(I) will denote the
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stability gap of independent set I in graph G. Let us begin with {x}. All the nodes of
G are neighbors of x . Thus:

�
G��{x}
{x} =

∑

y∈V (G)

βy − βx =
∑

y∈V (G)

αy − α0δ = 1 − α0 − α0δ.

Therefore, {x} is not a saturated independent set. Now consider any independent set I
of G �� {x} which is also an independent set of G. I does not contain x , unlike �(I).
Therefore, due to the arrival probabilities we considered:

�
G��{x}
I = �G

I + α0δ.

Clearly, as the transformation of the gaps keep unchanged the saturated independent
set and if we have only one saturated independent set inG, we have only one saturated
independent set in G �� {x}. Therefore, the assumptions of Theorem 1 are still valid
for the graph we have designed. ��
Corollary 5 Using existence of a paradox for disciplineFCFMand compatibility graph
K4 − (3, 4), Lemma 5 implies that a performance paradox exists for compatibility
graph Kn − (n − 1, n) and discipline FCFM for any n.

Proof The proof is an induction on n based on Lemma 5 and Eq. 14 and 15 to build
the graphs adding one node at each step of the induction. ��
Then combining this last corollary with Theorem 2, we prove that a performance
paradox exists for compatibility graph Kn − (n − 1, n) for all greedy disciplines and
size n.

Corollary 6 If a discipline does not exhibit such a paradox for graph Kn-(n-1,n), for
some λ, then this discipline is not greedy.

4.3 Compatibility graph INn1 �� (G2 ∪ G1)

Assume now the following decomposition for the compatibility graph into three
subgraphs:

G = I Nn1 �� (G1 ∪ G2),

whereG1 andG2 are distinct and non-empty.We now establish thatG may have some
paradox if one of the sub-models exhibits a performance paradox. Again we assume
that all the Markov chains considered in this section are ergodic (Fig. 9).

Proposition 8 Consider an arbitrary greedy and consistent matching discipline D.
Assume that the compatibility graph G is the UNION of G1 and G2. Let λ and μ be,
respectively, the arrival rates associated with G1 and G2. Then:

M(G1 ∪ G2, (λ, μ), D) = M(G1, λ, D) ⊕ M(G2, μ, D),

where ⊕ is the tensor (or Kronecker sum).
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Fig. 9 Graph
G = I N1 �� (K2 ∪ I N3), I N1
contains node 4. We note that G
is connected while the subgraphs
I N1 and I N3 are not

Proof As the items in G1 and G2 do not interact, we have built two independent
continuous-time Markov chains. And it is well known (see, for instance, the literature
on stochastic automata networks, for example, [25] and references therein) that the
resulting Markov chains is the Kronecker sum of the components. ��
Corollary 7 Because of the independence of the Markov chains associated with G1
and G2, we clearly have:

E[M(G1 ∪ G2), (λ, μ), D)] = E[M(G1, λ, D)] + E[M(G2, μ, D)].

Therefore if a paradox exist for compatibility graph G1 and discipline D, it also exists
for compatibility graph G1 ∪ G2 and discipline D.

Lemma 6 Assume that G1 with FCFMmatching discipline satisfies the assumptions of
Theorem1 for vector of arrival ratesμ. Assumealso that G2 with vector of arrival rates
λ does not contain any saturated independent set for FCFMmatching discipline. Then,
G1 ∪G2 with FCFM discipline and vector of arrivals (μ, λ) satisfies the assumptions
of Theorem 1.

Proof The independent sets of G1 ∪ G2 are:

• the independent sets of G1,
• the independent sets of G2,
• all the sets which are the union of an independent set of G1 and an independent
set of G2.

Therefore, the saturated independent set of G1 is also a saturated independent set of
G1∪G2. We now have to check thatG1∪G2 contains only one saturated independent
set.AsG2 does not have a saturated independent set, there exists� > 0 such that all the
stability gaps of independent sets of G2 are larger than �. Let I1 be an independent
set of G1 and I2 an independent set of G2. I2 is not saturated by assumption and
clearly, due to the UNION operation:

�
G1��G2
I1∪I2 = �

G1
I1 + �

G2
I2 .

Therefore as �
G2
I2 ≥ �, I1 ∪ I2 cannot be saturated. Thus, the saturated independent

set of G1 is the saturated independent set of G1 ∪ G2. ��
Remember that G1 ∪G2 is not connected. However, we can build connected com-

patibility graphs with UNION and JOIN operations. The following result is a simple
corollary of Remark 8.
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Lemma 7 (State Space) Let G3 �� (G1 ∪ G2), then the states of the Markov chain
associated with G are

• State E,
• states (X ,∅,∅) where X is a state of the chain associated with G3,
• states (∅,Y , Z) where Y (resp. Z) is a state of the chain associated with G1 (resp.

G2),

Theorem 6 Weassume theFCFMmatchingdiscipline and that compatibility graphG1
satisfies the assumptions of Theorem 1. Let μ be the vector of arrival rates associated
with this paradox for G1. Then, we also have a performance paradox for compatibility
graph I Nn1 �� (G1 ∪ G2) associated with arrival rate vector (λ, μ, ν) and FCFM
discipline.

Proof We first aggregate all the nodes of I Nn1 into one single node because the
associated chain is lumpable. According to Theorem 4, using discipline FCFM

E[M((I Nn1 �� (G1 ∪ G2)), (λ, μ, ν), FCFM)]
= E[M((I N1 �� (G1 ∪ G2)), β, FCFM)],

with β = (λ, μ, ν). Lemma 6 shows that as soon as the assumptions of Theorem 1
hold for G1, G1 ∪G2 also satisfies the same assumptions and the compatibility graph
I N1 �� (G1∪G2) also exhibits a paradox for FCFMdiscipline according to Lemma 5.

��

5 Conclusions

We consider the dynamic matching model with a non-bipartite matching graph and
we analyze the existence of a performance degradation when the flexibility increases,
i.e., when we add an edge to the matching graph. This analysis can be seen as analo-
gous to the Braess paradox. In our previous work, we focused on the FCFM discipline
and an arbitrary matching graph and we provided sufficient conditions on the exis-
tence of a performance paradox. In this work, the performance paradox existence
study is extended to greedy disciplines, which is a large family of matching dis-
ciplines that includes, not only FCFM, but also other popular disciplines such as
Match the Longest and Random.We provide constructions for families of graphs with
performance paradox.

As future work, we are interested in exploring the existence of a performance para-
dox for other compatibility graphs.Wealso plan to study the existence of a performance
paradox for greedy policies for the related bipartite stochastic matching model.
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Appendix A Appendix of Section 2.3

A.1 Computations for the example

We first note that, because αδ
1 = 0.5 − δ

2 , αδ
2 = 0.1 + δ

10 and αδ
3 = αδ

4 = 0.2 + δ
5 ,

we obtain from (5) that the mean number of items of the complete graph under any
greedy policy is

E[M(K4, α
δ, FCFM)] =

2
(0.8− δ

5 )(0.2+ δ
5 )

(0.6− 2δ
5 )2

+ (0.5+ δ
2 )(0.5− δ

2 )

δ2
+ (0.9− δ

10 )(0.1+ δ
10 )

(0.8− δ
5 )2

1 + 2
0.2+ δ

5

0.6− 2δ
5

+ 0.5− δ
2

δ
+ 0.1+ δ

10

0.8− δ
5

.

And using (10), we get that the mean number of items of the quasi-complete graph
under any greedy policy is

E[M(K4 − (3, 4), αδ, FCFM)]

=
(0.6− 2δ

5 )(0.4+ 2δ
5 )

(0.2− 4δ
5 )2

+ (0.5+ δ
2 )(0.5− δ

2 )

δ2
+ (0.9− δ

10 )(0.1+ δ
10 )

(0.8− δ
5 )2

1 + 0.4+ 2δ
5

0.2− 4δ
5

+ 0.5− δ
2

δ
+ 0.1+ δ

10

0.8− δ
5

.

Westudy the sign ofE[M(K4, α
δ, FCFM)]−E[M(K4−(3, 4), αδ, FCFM)], which

is the same as the sign of

(

2
(0.8 − δ

5 )(0.2 + δ
5 )

(0.6 − 2δ
5 )2

+ (0.5 + δ
2 )(0.5 − δ

2 )

δ2
+ (0.9 − δ

10 )(0.1 + δ
10 )

(0.8 − δ
5 )

2

)

(

1 + 0.4 + 2δ
5

0.2 − 4δ
5

+ 0.5 − δ
2

δ
+ 0.1 + δ

10

0.8 − δ
5

)

−
(

(0.6 − 2δ
5 )(0.4 + 2δ

5 )

(0.2 − 4δ
5 )2

+ (0.5 + δ
2 )(0.5 − δ

2 )

δ2
+ (0.9 − δ

10 )(0.1 + δ
10 )

(0.8 − δ
5 )

2

)

(

1 + 2
0.2 + δ

5

0.6 − 2δ
5

+ 0.5 − δ
2

δ
+ 0.1 + δ

10

0.8 − δ
5

)

.

Simplifying this expression using Wolfram Mathematica, we obtain the following:

1

δ3(−4 + δ)3(0.375 − 1.75δ + δ2)2

×
(
−2.22045 · 10−16 − 3δ + 33.25δ2 + 45.25δ3 − 41.0937δ4 − 38.0625δ5

+27δ6 + 1.6875δ7 − 9.90625δ8 + 3.125δ9 − 0.25δ10
)

.

123



Queueing Systems (2024) 107:257–293 285

Fig. 10 Evolution of the
expected number of items over δ

We note that (0.375 − 1.75δ + δ2)2 > 0 when 0 < δ ≤ 0.1. Thus, since

1

δ3(−4 + δ)3(0.375 − 1.75δ + δ2)2
< 0

when 0 < δ ≤ 0.1, the sign of E[M(K4, α
δ, FCFM)] − E[M(K4 −

(3, 4), αδ, FCFM)] is the opposite of the sign of the polynomial of degree 10:

− 2.22045 · 10−16 − 3δ + 33.25δ2 + 45.25δ3 − 41.0937δ4 − 38.0625δ5

+ 27δ6 + 1.6875δ7 − 9.90625δ8 + 3.125δ9 − 0.25δ10.

Using Wolfram Mathematica, we know that this polynomial has one real root
between 0 and 0.1, which is 0.0818369. Also, if 0 < δ ≤ 0.0818369, the polynomial
is negative and positive otherwise. Therefore, the desired result follows.

A.2 Representation of the expected number of items as a function of ı

In Fig. 10, we plot the mean number of items for K4 and K4 − (3, 4) for the arrivals
under consideration, when δ ∈ (0.03, 0.1).

Appendix B Proofs of Sect. 2.4

B.1 Proof of Proposition 1

Using (5), we obtain from the definition of αδ that the mean number of items of the
complete graph under any greedy policy is

E[M(K4 − (1, 2), αδ, FCFM)] =
(0.5−2δ)(0.5+2δ)

(4δ)2
+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

1 + 0.5−2δ
4δ + 0.5−δ

2δ + 3δ
1−6δ

.
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Likewise, using (10) and the definition αδ , it results

E[M(K4, α
δ, FCFM)] =

2 (0.25−δ)(0.75+δ)

(0.5+2δ)2
+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

1 + 20.25−δ
0.5+2δ + 0.5−δ

2δ + 3δ
1−6δ

.

We now study the sign of E[M(K4 − (1, 2), αδ, FCFM)] −
E[M(K4, α

δ, FCFM)], which is the same as the sign of

(
(0.5 − 2δ)(0.5 + 2δ)

(4δ)2
+ (0.5 − δ)(0.5 + δ)

(2δ)2
+ 3δ(1 − 3δ)

(1 − 6δ)2

)

(

1 + 2
0.25 − δ

(0.5 + 2δ)
+ 0.5 − δ

2δ
+ 3δ

1 − 6δ

)

−
(

2
(0.25 − δ)(0.75 + δ)

(0.5 + 2δ)2
+ (0.5 − δ)(0.5 + δ)

(2δ)2
+ 3δ(1 − 3δ)

(1 − 6δ)2

)

(

1 + 0.5 − 2δ

4δ
+ 0.5 − δ

2δ
+ 3δ

1 − 6δ

)

. (B1)

Simplifying this expression using Wolfram Mathematica, we obtain the following
equivalent one:

54

δ3(0.25 + δ)2(−1 + 6δ)3

×
(
4.52112 · 10−6 − 0.0001808δ + 0.0026222δ2 − 0.0180845δ3

+0.0640914δ4 − 0.133102δ5 + 0.30556δ6 − 0.8333δ7 + δ8
)

.

We note that −1 + 6δ < 0 when 0 < δ ≤ 0.1. Thus, since

54

δ3(0.25 + δ)2(−1 + 6δ)3
< 0

when 0 < δ ≤ 0.1, the sign of E[M(K4 − (1, 2), αδ, FCFM)] −
E[M(K4, α

δ, FCFM)] is the opposite of the sign of the polynomial of degree 8:

4.52112 · 10−6 − 0.0001808δ + 0.0026222δ2 − 0.0180845δ3 + 0.0640914δ4

−0.133102δ5 + 0.30556δ6 − 0.8333δ7 + δ8.

Using Wolfram Mathematica, we know that this polynomial has one real root
between 0 and 0.1, which is 0.0563. Besides, if 0 < δ ≤ 0.0563, the polynomial
is positive and negative otherwise. Therefore, the desired result follows.

B.2 Representation of the expected number of items as a function of ı

In Fig. 11, we plot the mean number of items for K4 and K4 − (1, 2) for the arrivals
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Fig. 11 Evolution of the
expected number of items over δ

under consideration, when δ ∈ (0.03, 0.1).

B.3 Proof of Proposition 2

In Appendix B.1, we show that, for this matching model, we have that

E[M(K4 − (1, 2), αδ, FCFM)] =
(0.5−2δ)(0.5+2δ)

(4δ)2
+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

1 + 0.5−2δ
4δ + 0.5−δ

2δ + 3δ
1−6δ

and

E[M(K4, α
δ, FCFM)] =

2 (0.25−δ)(0.75+δ)

(0.5+2δ)2
+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

1 + 20.25−δ
0.5+2δ + 0.5−δ

2δ + 3δ
1−6δ

.

The desired result follows if we show that

(a) δ2
(

(0.5−2δ)(0.5+2δ)
(4δ)2

+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

)
tends to 5 · 0.56 when δ → 0,

(b) δ2
(
2 (0.25−δ)(0.75+δ)

(0.5+2δ)2
+ (0.5−δ)(0.5+δ)

(2δ)2
+ 3δ(1−3δ)

(1−6δ)2

)
tends to 0.54 when δ → 0,

(c) 1
δ

(
1 + 0.5−2δ

4δ + 0.5−δ
2δ + 3δ

1−6δ

)−1
tends to 8

3 when δ → 0,

(d) 1
δ

(
1 + 20.25−δ

0.5+2δ + 0.5−δ
2δ + 3δ

1−6δ

)−1
tends to 4 when δ → 0,

since when δ → 0,
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δ
(
E[M(K4 − (1, 2), αδ, FCFM)] − E[M(K4, α

δ, FCFM)]) →
0.54 · 4 − 5 · 0.56 · 8

3
= 1

24
.

We first show (a).

δ2
(

(0.5 − 2δ)(0.5 + 2δ)

(4δ)2
+ (0.5 − δ)(0.5 + δ)

(2δ)2
+ 3δ(1 − 3δ)

(1 − 6δ)2

)

= (0.5 − δ)(0.5 + 2δ)

16
+ (0.5 − δ)(0.5 + δ)

4
+ 3δ3(1 − 3δ)

(1 − 6δ)2
,

and the first and second terms tend, respectively, to 0.56 and 0.54 = 4 · 0.56 when
δ → 0, whereas the third one tends to zero.
We now show (b).

δ2
(

2
(0.25 − δ)(0.75 + δ)

(0.5 + 2δ)2
+ (0.5 − δ)(0.5 + δ)

(2δ)2
+ 3δ(1 − 3δ)

(1 − 6δ)2

)

= 2δ2
(0.25 − δ)(0.75 + δ)

(0.5 + 2δ)2
+ (0.5 − δ)(0.5 + δ)

4
+ 3δ3(1 − 3δ)

(1 − 6δ)2
,

and the first and third terms tend to zero when δ → 0, whereas the second one tends
to 0.54.
We also show (c).

1

δ

(

1 + 0.5 − 2δ

4δ
+ (0.5 − δ)

2δ
+ 3δ

1 − 6δ

)−1

=
(

δ + (0.5 − 2δ)

4
+ (0.5 − δ)

2
+ 3δ2

1 − 6δ

)−1

,

and when δ → 0, the last expression tends to
( 1
8 + 1

4

)−1
, which equals 8

3 .
Finally, we show (d).

1

δ

(

1 + 2
(0.25 − δ)

0.5 + 2δ
+ (0.5 − δ)

2δ
+ 3δ

1 − 6δ

)−1

=
(

δ + 2δ
(0.25 − δ)

(0.5 + 2δ)
+ (0.5 − δ)

2
+ 3δ2

1 − 6δ

)−1

,

where all the terms tend to zero when δ → 0, except for 0.5−δ
2 , which tends to 0.25.
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Appendix C Proofs of Sect. 4

C.1 Proof of Proposition 7

We have to prove that the blocks L2,C2 and P2 are the same as in block decomposition
of matrix M and give the value of c2.

• From state (1,∅), all the arrivals match letter s1 and the transitions leads to (0,∅).
Thus due to the uniformization rate, this transition has probability 1/2 and there
is a loop on state (1,∅) with probability 1/2.

• The transition from (0,∅) leads to (1,∅) for an arrival of letter s1 (i.e., with a
probability equal to ‖λ‖1

�
). Therefore, c2 = ‖λ‖1

�
and there is a loopwith probability

1/2 on this state.
• The transition from (0,∅) to a state in S2 for an arrival of a letter of G2 (i.e., block

L2). This is the same transition probability as in Matrix M as it is based on the
same arrival rates, the same uniformization rate and the same discipline.

• The transition from a state in S2 to state (0,∅) for an arrival of a letter of G1
or G2 (i.e., block C2). All letters of G1 have the same effect as item s1 due to a
consistent discipline and all letters of G2 have the same effect in M and in M2.
The uniformization rate is the same in both models. Therefore, both matrices have
the same block C2 to model these transitions.

C.2 Proof of Theorem 3

The proof is based on some decomposition and matrix formulation for discrete-time
Markov chains and censored Markov chains (see [27] for censored Markov chains).
First we write the global balance equation for M at the block level:

πM
0 = πM

0 /2 + πM
S1C1 + πM

S2C2, (C2)

and

πM
S1 = πM

0 L1 + πM
S1 P1, (C3)

and finally

πM
S2 = πM

0 L2 + πM
S2 P2. (C4)

We do the same for M1:

π
M1
1 = π

M1
0 c1 + π

M1
1 /2, (C5)

π
M1
0 = π

M1
1 /2 + π

M1
0 /2 + π

M1
S1

C1, (C6)

and finally,

π
M1
S1

= π
M1
0 L1 + π

M1
S1

P1 (C7)
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One can considered the censored Markov chain extracted from M1 with censored set
{s2}. According to Lemma 6.6 in [27],

∑∞
i=0 P

i
1 converges and we obtain:

π
M1
S1

= π
M1
0 L1

∞∑

i=0

Pi
1 , (C8)

and as π
M1
0 is a scalar, we get:

π
M1
S1

π
M1
0

= L1

∞∑

i=0

Pi
1 . (C9)

With the same argument, Eq.C3 gives:

πM
S1

πM
0

= L1

∞∑

i=0

Pi
1 . (C10)

Taking info account Eq.C9 and Eq.C10, we obtain after substitution:

πM
S1 = πM

0

π
M1
0

π
M1
S1

.

With a similar approach, we have for matrix P2:

π
M2
S2

π
M2
0

= L2

∞∑

i=0

Pi
2 , (C11)

and

πM
S2 = πM

0

π
M2
0

π
M2
S2

.

The first two results of the theorem are now established. For the computation of
πM
0 , it is not possible to use Eq.C2 because it is not independent. Therefore, we use

normalization.

πM
0 + ‖πM

S1 ‖1 + ‖πM
S2 ‖1 = 1.

After substitution:

πM
0 (1 + 1

π
M1
0

‖πM
S1 ‖1 + 1

π
M2
0

‖πM
S2 ‖1) = 1.
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Clearly, ‖πM
S1

‖1 = 1 − π
M1
0 − π

M1
1 and ‖πM

S2
‖1 = 1 − π

M2
0 − π

M2
1 . Thus

πM
0 =

(

1 + 1 − π
M1
0 (1 + 2c1)

π
M1
0

+ 1 − π
M2
0 (1 + 2c2)

π
M2
0

)−1

.

After simple algebraic manipulation, taking into account that 2(c1 + c2) = 1, we
finally obtain the relation for πM

0 .
Let us now consider the expectation of the number of letters. The discipline D is

based on discipline D1 for G1 and D2 for G2 as explained in Sect. 4. Let π(m1,m2)

be the steady-state probability of state (m1,m2). We decompose the summation on
the state space:

E[M(G1 �� G2), (λ, μ), D)] =
∑

x∈S1
|x |πM (x,∅) +

∑

y∈S2
|y|πM (∅, y).

And

E[M(G ′
1, λ, D1)] =

∑

x∈S1
|x |πM1(x,∅) + π

M1
1 ,

with a similar relation for E[M(G ′
2, μ, D2)]. After substitution and factorization, we

get:

E[M(G1 �� G2), (λ, μ), D)] = πM
0

π
M1
0

∑

x∈S1
|x |πM1(x,∅) + πM

0

π
M2
0

∑

y∈S2
|y|πM2(∅, y).

As π
M1
1 = 2c1π

M1
0 , π

M2
1 = 2c2π

M2
0 and 2(c1 + c2) = 1, we get the results after

simple algebraic manipulations.
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