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a b s t r a c t

Motivated by cloud-based computing resources operating with relative priorities, we in-
vestigate the strategic interaction between a fixed number of users sharing the capacity of
a processor. Each user chooses a payment, which corresponds to his priority level, and sub-
mits jobs of variable sizes according to a stochastic process. These jobs have to be completed
before some user-specific deadline. They are executed on the processor and receive a share
of the capacity that is proportional to the priority level. The users’ goal is to choose prior-
ity levels so as to minimize their own payment, while guaranteeing that their jobs meet
their deadlines. We fully characterize the solution of the game for two classes of users and
exponential service times. For an arbitrary number of classes and general service times,
we develop an approximation based on heavy-traffic and we characterize the solution of
the game under the heavy-traffic assumption. Our experiments show that the approximate
solution captures accurately the structure of the equilibrium in the original game.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in the equilibria that arises in queueing games where a common resource is shared among multiple
concurrent users. The study of strategic behaviour in queueing systems has a long history and there is by now a broad litera-
ture, cf. [1,2] formonographs. A particular problemwhich has received a lot of attention dealswith the strategic behaviour of
users in parallel servers, see for example [3–5]. In recent years, motivated by the rise of paid resource sharing systems like in
cloud computing, researchers have investigated pricing schemes,where capacity of the server is shared simultaneously by all
jobs present in the system, see for example [6] or [7]. For the case in which the underlying queueing model has no priorities
we refer to [8,9]. Another related work is [10], where the authors study the spot price history of Amazon and they introduce
a model where a cloud provider with fixed capacity can update the spot price dynamically according to market demand.
They present a pricing mechanism to study the provider’s revenue maximization and they give the optimality conditions.

In this paper we analyse the equilibria in a scenario where a fixed number of users share the capacity of a processor.
Each user submits jobs of variable size that need to be completed before some user-specific deadline. Motivated by cloud-
based computing resources, we propose a model with relative priorities, where each user chooses a payment (per job) that
corresponds to his relative priority level. The share of the capacity that a job gets is proportional to its priority level.More pre-
cisely, we assume that the capacity is shared according to the Discriminatory Processor Sharing (DPS) discipline. Introduced
by [11], the DPS model is a versatile multi-class generalization of the egalitarian Processor Sharing (PS) queue that captures
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the essential features of a system that implements service differentiation (see [12] for a survey). The users’ goal is to select
the minimum possible payment for its jobs, while guaranteeing that their performance is satisfactory. This is a distinctive
feature of our model, since most of the literature deals with a situation in which users’ objective is to maximize their net
utility, measured as the difference between performance and cost.

Our pricing mechanism captures some of the fundamental properties arising when sharing a common resource
among selfish users with potential applications in cloud-computing and networking. A possible application domain is in
Infrastructure-as-a-Service (IaaS) cloud-computing platforms that are based on priority level differentiation. For instance,
in the Amazon EC2 cloud users can bid for unused capacity using the so-called Spot Instances, see [13]. Amazon fixes the
Spot Price which depends on the capacity demand of the users and the available resources. As an application in networking
we can mention file hosting web providers where the upload/download speed depends on the subscription price and also
information-centric networking, a problem that has been recently modelled using the DPS queue, see [14]. We observe that
in these instances a higher payment leads to a higher speed of service and that our model also satisfies this property.

The main goal of the paper is to study the properties of the non-cooperative game that arises from the interaction of
the various users. We are interested not only in characterizing the prices paid by users in the Nash equilibrium, but also in
understanding the equilibrium performance perceived by users. A central difficulty in the analysis of the game comes from
the absence of a closed-form expression for the mean processing times of the jobs in a DPS system. For example, the mean
unconditional sojourn time in a DPS queue is only known in the case of two classes with exponentially distributed service
requirements, see [15]. This explains partly why results on strategic behaviour of users in systems with relative priorities
are so scarce. Two exemptions are [16,17]. In [16] the authors consider two types of applications in a DPS queue that com-
pete to be served and they analyse how optimal prices can be found. A more recent work is [17], where the authors define
a game for the DPS queue where each user seeks to minimize the sum of the expected processing cost and payment. Given
the difficulty in analysing the model, the authors propose a heavy-traffic approximation, i.e. when the system is critically
loaded, of the problem. Indeed, in the heavy-traffic limit the analysis of DPS simplifies considerably, see for example [18,19],
which renders the analysis of the game more tractable. Even though we also assume the DPS model for the sharing of the
capacity, the problem we consider is very different from [16,17], since in our formulation each user aims at minimizing its
payment while ensuring its jobs to be served before a certain deadline.

The main contributions of the article are summarized in Table 1. We give the necessary and sufficient conditions for the
existence of the equilibrium of the game for exponential service times and arbitrary number of classes. For general service
times and two classes of users, we show that the equilibrium is unique and that the Price of Anarchy is one. When the num-
ber of classes is two and exponential service times, we characterize the unique equilibrium of the game. We prove that the
dynamics of best-response (BR) converge in two settings: (i) for two users, exponential service times and any initial point
and (ii) arbitrary number of users, general service times and feasible initial point. For the rest of the cases, given the difficulty
of this model, we use heavy-traffic results for DPS from [18,19] to obtain tractable expressions for the mean response time
in the system. Even though of approximate nature, we believe that the heavy-traffic approach allows to derive interesting
insights into the performance of the system. Using the heavy-traffic approximation,we characterize the sufficient and neces-
sary conditions for the game to have a Nash equilibrium, and then show that this equilibrium is unique and fully characterize
it. Interestingly, we show that classes can be ordered in a decreasing order with respect to the ratio between the mean size
requirement and their constraints on the response time and that in equilibrium, the prices that users pay decrease as this
ratio decreases. Furthermore, we prove that the Price of Anarchy of the heavy-traffic game is always one. We then explain
how the heavy-traffic solution can be used to obtain an approximate solution to the original problem. The numerical exper-
iments illustrate that when the various users have a similar ratio between the mean size and response time constraint, then
the heavy-traffic approximation predicts satisfactorily the outcome (both in terms of equilibrium prices and performance)
of the original game. However, when the disparity of the users increases the error in predicting the equilibrium prices can
be very significant, but in spite of this, the heavy-traffic approximation remains quite accurate regarding the performance.
The numerical results show that the dynamics of the best-response also converge outside the two settings described above.

The rest of the paper is organized as follows. In Section 2 we describe the model. We present the game with constraints
on the mean response time in Section 3. In Section 4 we analyse the game for the heavy-traffic regime and in Section 5
we study the game for an arbitrary load of the system. We discuss the accuracy of our approximation using the numerical
experiments of Section 6. Finally, in Section 7 we summarize the main conclusions of this paper.

2. Game description

Consider a game in which a single server of unit capacity is shared among R classes (or users). Let C = {1, 2, . . . , R}
be the set of classes. We assume that the arrival process of jobs of each class i is Poisson with rate λi and that the service
requirements of jobs are i.i.d. and have an arbitrary distribution with mean E(Bi) and secondmoment E


B2
i


. For the case of

exponential service time distributions, wewill use the notationE(Bi) = µ−1
i andE


B2
i


= 2/µ2

i . We define the total incom-
ing traffic of the systembyλ =

R
i=1 λi. Letρi = λiE(Bi) be the load of class i and the total load of the systembeρ =

R
i=1 ρi.

The processing capacity of the server is shared amongst jobs according to the DPS discipline, that is, all jobs present in
the system are served simultaneously at rates controlled by a vector of weights g = (g1, . . . , gR). If there are Ni jobs of class
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Table 1
Summary of the main contributions of the article.

Contributions Original game Heavy-traffic game
N. classes Serv. times Result N. classes Serv. times Result

Feasibility Arbitrary Exponential Section 3.1 Arbitrary General Section 4.1
Existence of NE Arbitrary General Section 3.2 Arbitrary General Section 4.2
Uniqueness of NE 2 General Section 3.3 Arbitrary General Section 4.3
NE characterization 2 Exponential Section 3.4 Arbitrary General Section 4.3
Price of Anarchy 2 General Section 3.5 Arbitrary General Section 4.4
BR convergence (feasible point) Arbitrary General Section 3.2 Arbitrary General Section 4.2
BR convergence (any point) 2 Exponential Section 3.4 2 General Section 4.3

i present in the system, then class-i jobs are served at rate

ri(N1, . . . ,NR) =
gi

R
j=1

gjNj

. (1)

In the case of identical weights gi, the DPS queue is equivalent to the well-known egalitarian PS, which has been thor-
oughly studied, see for example [20] or [21]. By changing the weights, one can effectively control the instantaneous service
rates of different job classes. For example, by setting the weight of a class close to infinity, one can give preemptive priority
to this class. The possibility of providing different service rates to users of various classes makes DPS an appropriate model
to study the performance of heterogeneous time-sharing systems.

The payoff function of the game that we analyse depends on the response time of jobs under the DPS discipline. Given
the complexity of this queueing model, before describing the game in Section 2.2, we briefly mention the main results on
DPS that we need in this paper.

2.1. Main results on DPS

We denote by Ti(g; ρ) the random variable corresponding to the response time of a class-i job in a DPS queue for the
vector of weights g = (g1, . . . , gR) when the load in the system is ρ < 1. The mean response time is denoted by T i(g; ρ) =

E(Ti(g; ρ)).
In a seminal paper, Fayolle et al. proved that for exponential service time distributions, the mean response time is the

solution of a system of equations. For completeness we state their result:

Proposition 1 ([15]). In the case of exponentially distributed required service times, the unconditional average response times
satisfy the following linear system of equations:

T k(g; ρ)


1 −

R
j=1

λjgj
µjgj + µkgk


−

R
j=1

λjgjT j(g; ρ)

µjgj + µkgk
=

1
µk

, with k = 1, . . . , R. (2)

A solution to this system of equations is only known for the case R = 2. In this case the solution is:

T 1(g; ρ) =
1

µ1(1 − ρ)


1 +

µ1ρ2(g2 − g1)
µ1g1(1 − ρ1) + µ2g2(1 − ρ2)


, (3)

T 2(g; ρ) =
1

µ2(1 − ρ)


1 +

µ2ρ1(g1 − g2)
µ1g1(1 − ρ1) + µ2g2(1 − ρ2)


. (4)

For general service time distributions the results are scarce. In [15] the authors showed that the derivative of the mean con-
ditional (on the service requirement) response time of the various classes satisfies a system of integro-differential equations.
Unfortunately a closed-form solution of this system of equations has been obtained only in the case of exponential distri-
butions. To the best of our knowledge, there is no known tractable results on the distribution of the response time Ti(g; ρ).

To overcome this difficulty, in our approach we will approximate Ti(g; ρ) using a heavy-traffic characterization. It turns
out that the scaled response time (1 − ρ) Ti(g; ρ) has a proper distribution as ρ → 1. The DPS queue in heavy-traffic was
first considered in [18] (see also [19,22]). The result we require reads:

Proposition 2 ([18]).When scaled with 1 − ρ , the response time of class-i jobs has a proper distribution as ρ → 1.

(1 − ρ) Ti(g; ρ)
d

→ Ti(g; 1) = X ·
E(Bi)

gi
, i ∈ C, (5)
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where
d

→ denotes convergence in distribution and X is an exponentially distributed random variable with mean

E(X) =


k

λkE

B2
k



k

λkE

B2
k

 1
gk

. (6)

Proposition 2 implies that for sufficiently high load, the response time distribution in a DPS queue can be approximated by
an exponential random variable, that is,

Ti(g; ρ) u
Ti(g; 1)
1 − ρ

d
=

E(Bi)

gi(1 − ρ)
X, (7)

and for the mean response time we obtain that

T i(g; ρ) ≈
E(Bi)

gi(1 − ρ)


k

λkE

B2
k



k

λkE

B2
k

 1
gk

. (8)

In the above derivation, we have ignored a technical subtlety. Indeed, in order for (8) to be valid, one needs to establish
that the heavy-traffic limit and expectation can be interchanged, namely, limρ→1 T i(g; ρ) = E(limρ→1 Ti(g; ρ)). In [22]
the authors performed numerical experiments to validate the validity of this interchange. In the rest of the paper we will
assume that the interchange is valid. In particular, for PS, it holds that T i(g; ρ) = E(Bi)/(1 − ρ). Thus, from (5) and (6) we
get T i(g; 1) = E(Bi), and it follows that the approximation T i(g; ρ) =

T i(g;1)
1−ρ

is exact.

2.2. Game formulation

We assume that the service provider (or the server) proposes to each class i ∈ C the choice of its weight gi in exchange of
a payment per-unit-of-work proportional to the chosen weight. The quality-of-service metric of class i is the probability of
its jobs missing a given deadline di. Class i then wants to ensure that this probability is below a certain threshold αi ∈ (0, 1)
while paying as little as possible for this service. Formally, class-i solves the problem

min
gi≥ϵ

ρigi (OPT-P)

subject to P (Ti(g; ρ) > di) ≤ αi.

The quantity ϵ is theminimumprice a class has to pay in order to get access to the service. It follows from (1) that the service
rate every class gets for a vector θ g is independent of the common factor θ > 0 and as a direct consequence of this, we
have that at least one user pays ϵ in the Nash equilibrium (if it exists). We emphasize that the constraint in (OPT-P) is a
soft constraint on the deadlines. In other words, even if some jobs miss their deadlines, these jobs stay in the system until
completion, but in the long term at most a fraction αi of class-i jobs will miss their deadline. As explained in Section 2.1
the probability of jobs missing a deadline in a DPS queue has no easy-to-compute closed-form expression. One could then
consider a game in which the constraints are based on the mean response time of tasks. The optimization problem above
then gets modified as follows

min
gi≥ϵ

ρigi (OPT-M)

subject to T i(g; ρ) ≤ ci.
The modified game (OPT-M) is not completely unrelated to the original game (OPT-P) as we shall argue next. Assuming the
load is high enough, we invoke the heavy-traffic approximation

P (Ti(g; ρ) > di) = P (Ti(g; 1) > (1 − ρ)di) = e
−

(1−ρ)di
T i(g;1) ,

implying that

P (Ti(g; ρ) > di) ≤ αi ⇐⇒ −
(1 − ρ) di
T i(g; 1)

≤ logαi.

Since αi ∈ (0, 1), we have logαi < 0 and, hence, we obtain the following equivalent constraint T i(g; 1) ≤ c̃i = −
(1−ρ)di
logαi

.
We propose to use the heavy-traffic result of Proposition 2 as an approximation to (OPT-P) and (OPT-M).

min
gi≥ϵ

ρigi (OPT-HT)

subject to T i(g; 1) ≤ c̃i.

In the case c̃i = −
(1−ρ)di
logαi

we will be approximating (OPT-P), and if c̃i = (1 − ρ)ci we will approximate (OPT-M). Our
hope is that the solution of the game (OPT-HT) will give useful insights into the equilibrium properties of (OPT-P) and (OPT-
M). We emphasize that the benefit of the heavy-traffic approximation is that the mean response time formulae have a nice
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closed-form expressions even for general service time distributions whereas (OPT-M) has a simple structure only in case of
exponentially distributed service times, while (OPT-P) does not appear to be tractable even for that case. In Section 6 we
investigate the accuracy of the approximation, and show that it always gives us the structure of the equilibrium and our
approach is accurate when the users have similar mean size and mean service time characteristics. Before going further, we
give some definitions.

Definition 1 (Achievability). A vector t of mean response times is said to be achievable if there exists a vector of weights
g > 0 for which the vector of mean response times is t, i.e., ti = T i(g; ρ), for all i ∈ C. Let T = {t : t is achievable} denote
the set of achievable vectors.

Definition 2 (Deadline Feasibility). A vector of deadlines c ∈ RR
+
is feasible if and only if ∃t ∈ T such that t ≼ c, where ≼ is

the componentwise order.

In the following, we say that a game is feasible if its vector of deadlines is feasible.Wewill also use the notion of a feasible
weight vector, as defined below.

Definition 3 (Weight Feasibility). A vector of weights g ∈ RR
+
is feasible if and only if T i(g, ρ) ≤ ci for all i ∈ C.

Definition 4. A class i will be considered fair if E(Bi)/ci ≤ (1 − ρ), i.e., if the response time it would obtain under PS,
E(Bi)/(1 − ρ), would satisfy its own constraint on the mean performance ci.

It is known, see [12], that T i(g; ρ) is decreasing with gi and increasing in gj for j ≠ i. This implies that for the particular
case when c ∈ T , the unique performance point that satisfies all the constraints is c . To see this, observe that if c is achiev-
able then T i(g, ρ) = ci for all i, and that reducing T i(g, ρ) for one user implies that T j(g, ρ) increases for another user j.
It can similarly be shown that if the game is feasible and c ∉ T , then the number of performance vectors satisfying all the
constraints is always larger than one.

Without loss of generality, when studying (OPT-M) we assume that the classes are ordered in decreasing order of
E(Bk)/ck, i.e., if i < j, then E(Bi)/ci ≥ E(Bj)/cj. We observe that the ratio E(Bk)/ck is the minimum acceptable throughput of
a class-k job with a service requirement equal to the mean. In the case of exponential service time distribution, it becomes
c1µ1 ≤ c2µ2 ≤ · · · ≤ cRµR. Equivalently, when studying (OPT-HT) we will assume that classes are ordered in decreasing
order of E(Bk)/c̃k.

3. Solution of (OPT-M)

This section is devoted to the analysis of the game (OPT-M). We first establish in Section 3.1 a necessary and sufficient
condition for the game (OPT-M) to be feasible. Assuming that the game is feasible, we then prove in Section 3.2 that there
exist at least one Nash equilibrium, that is a point where no user has an incentive to unilaterally deviate and change his
weight. We then study the uniqueness of the Nash equilibrium in Section 3.3. We provide an explicit characterization of the
Nash equilibrium for the two-player game in Section 3.4. Finally, we address the question of the inefficiency of the Nash
equilibrium from a user’s perspective in Section 3.5. The proofs of this section are in Appendix A.

3.1. Feasibility of the game

For fixed traffic conditions, the game is feasible if the vector c of deadlines is such that there is an achievable vector t of
performances such that ti ≤ ci for all i ∈ C. For exponential service times, the set of achievable vectors for the DPS queue
was characterized in [23]. In order to present their result, we first need to introduce some notations. Let R = P (C) \ ∅,
where P (C) is the power set of C, be the set of all subsets of C except the empty set. We define ρ̄r =


i∈r ρi, and

Wr =
1

1 − ρ̄r


i∈r

ρi

µi
, (9)

for all r ∈ R. With these notations, the result reads as follows. A vector t of performances is achievable if and only if
i∈C

ρiti = WC, (10)
i∈r

ρiti ≥ Wr , ∀r ∈ R \ {C} . (11)

The following result gives a necessary and sufficient condition for the game (OPT-M) to be feasible.

Theorem 1. Assuming exponential service times, the game (OPT-M) is feasible if and only if
i∈r

ρici ≥ Wr , ∀r ∈ R. (12)
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Observe that the achievability and feasibility conditions are similar, the difference being that the constraint on the whole
set has to be satisfied as an equality for achievability, whereas it can hold as a strict inequality for feasibility.

3.2. Existence of the Nash equilibrium

Assuming that the game is feasible, a vector of weights gNE
= (gNE

1 , . . . , gNE
R ) is a Nash equilibrium (NE) for the game

(OPT-M) if each class is paying the least possible amount while ensuring that its mean response time does not exceed its
deadline. Thus, we can say that a vector of weights gNE is a Nash equilibrium if gNE

i = argmin

gi ≥ ϵ : T i(gi, gNE

−i ; ρ) ≤ ci

,

for all i ∈ C, where gNE
−i =


gNE
1 , . . . , gNE

i−1, g
NE
i+1, . . . , g

NE
R


. Using that T i(g; ρ) is decreasing with gi and increasing in gj for

j ≠ i, it follows that, for a given i,

gNE
i > ϵ ⇒ T i(gNE

; ρ) = ci, (13)

gNE
i = ϵ ⇒ T i(gNE

; ρ) ≤ ci. (14)

Since T i(g; ρ) is decreasing in gi, a class which is paying more than ϵ is necessarily satisfying its constraint with equality.
Otherwise, if it were to be satisfying the constraint with strict inequality, then it could pay less and still satisfy its deadline.
On the other hand, a class which is paying the least possible price could be satisfying its deadline with strict inequality.

We notice that the dynamics of best-response are given by increasing the weight of class i when T i(g; ρ) > ci and de-
creasing the weight of class i when T i(g; ρ) < ci and gi > ϵ. Assume that we start the best-response dynamics from a
feasible point g . If all constraints T i(g; ρ) ≤ ci are satisfied as equality constraints (implying that the deadline vector c is
achievable), then g is clearly a Nash equilibrium since no class can unilaterally decrease its weight and still satisfy its con-
straint. If on the contrary there is a nonempty subsetA ⊂ C such that T i(g; ρ) < ci for all classes i ∈ A, thenwe have either
gi = ϵ for all i ∈ A or there are some classes i ∈ A such that gi > ϵ. In the former case, g is again an equilibrium since clearly
no class can decrease its weight. In the latter case, the best-response for each class i ∈ A such that gi > ϵ is to decrease
its weight. Moreover, after each best-response, the current vector of weights remains feasible because by decreasing its
weight a class can only improve themean response times of the other classes. Thus, in that case the best-response dynamics
generate a sequence of feasible weight vectors which is strictly decreasing in the lexicographic order. Since feasible weight
vectors belong to the set [ϵ, ∞)R which is closed on the left, we can conclude that the dynamics of best-response converge
to a Nash equilibrium when started from a feasible point. As a direct consequence, we immediately obtain the following
corollary which holds whatever the service time distributions of the users.

Proposition 3. With general service time distributions, if the game is feasible, then there exists a Nash equilibrium, and the
dynamics of best-response converge to a Nash equilibrium if the starting point is feasible.

3.3. Uniqueness of the Nash equilibrium

If the game (OPT-M) is feasible, there exists at least one Nash equilibrium. In the following result we summarize themain
results of this section that hold for general service times:

Proposition 4. For an arbitrary number of classes, if c ∈ T , then there is an infinite number of equilibria. For a two-player
feasible game such that c ∉ T , there is a unique Nash equilibrium.

We recall that the case c ∈ T is very particular, since it implies that c will be the only performance point that satisfies
all the constraints.

3.4. Characterization of the equilibrium

Explicit expressions of themean response times in a DPS queue are known only in the case of two classes and exponential
service times (see (3) and (4)). This restricts the set of cases in which an explicit solution to the game can be computed.

Proposition 5. For the two-player game with exponential service times and c1µ1 ≤ c2µ2, if the game is feasible and c ∉ T , then
the unique equilibrium is gNE

= (ϵ, ϵ) if class 1 is fair and, otherwise, gNE
= (gNE

1 , ϵ), where gNE
1 = ϵ

−µ1ρ2+µ2(1−ρ2)[µ1c1(1−ρ)−1]
−µ1ρ2−µ1(1−ρ1)[µ1c1(1−ρ)−1] .

We explain briefly the structure of the Nash equilibrium. Assuming feasibility, at least class 2 is fair. If class 1 is also fair,
then (g1, g2) = (ϵ, ϵ) is the equilibrium; however, if themean response time of class 1 for PSweights exceeds its deadline c1,
the class 1 must pay g1 > ϵ per unit-of-work to ensure that its time constraint is satisfied. We also show that the dynamics
of the best-response converge to the Nash equilibrium if starting from any point.

Proposition 6. For the two-player game with exponential service times, if the game is feasible and c ∉ T , the best-response
dynamics converge to the Nash equilibrium for any starting point.

We now study how the equilibrium of (OPT-M) changes with the total load in the system. For an arbitrary number of users,
we define ρE and ρF as the threshold values such that if ρ ≤ ρE then all classes are paying theminimum price ϵ, if ρE < ρ ≤

ρF the game is feasible and there is at least one class paying more than ϵ and if ρ > ρF the game is not feasible.
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3.4.1. Characterization of ρE

From the ordering of the classes, it follows that if class 1 is fair, that is if E(B1)
c1

≤ 1 − ρ, then all the users are fair and the
equilibrium is (ϵ, . . . , ϵ). We observe that the minimum value ρE such that at least one user pays more than ϵ is obtained
when E(B1)

c1
= 1 − ρE , that is for ρE = 1 −

E(B1)
c1

. We emphasize that this expression of ρE holds for general services times.
We also note that if E(B1)/c1 is close to 0, then ρE is close to 1, implying that the PS solution (ϵ, . . . , ϵ) corresponds to the
equilibrium for a large range of utilization rates.

3.4.2. Characterization of ρF
Wepresent the value of the system load thatmakes the gamenot feasible. For exponential service times,we use the result

of Theorem 1 to state that ρF is the minimum value of the system load verifying that ∃r ∈ R such that


i∈r ρici < Wr .

3.4.3. Identical minimum acceptable throughput
A particular case of interest is obtained when all classes have the sameminimum acceptable throughput. In this case, we

characterize the equilibrium of the game and the value of ρF for general service times.

Proposition 7. If E(Bi)/ci = k < 1 for all i ∈ C, then the unique equilibrium of the game is the PS solution (ϵ, . . . , ϵ) for ρ ≤

1 − k, and the game is not feasible for ρ > 1 − k.

We thus have that for identical minimum acceptable throughput ρE = ρF = 1 − k.

3.5. Price of Anarchy

In this section, we address the following question: if the userswere coordinating, could each one pay less than at theNash
equilibriumwhile still satisfying his constraint?We define the social welfare (or social optimum) of the system as the strat-
egy of the users such that the total payment is minimum. It is the vector of weights that solves the following minimization
problem:

min
(g1,...,gR)

R
i=1

ρigi (SOC-M)

subject to Ti(g; ρ) ≤ ci, for all i = 1, . . . , R,
and gi ≥ ϵ, for all i = 1, . . . , R.

The main difference with respect to the game is that in the latter each user minimizes its own payment while in the so-
cial optimum the users coordinate to choose the weights that minimize the total payment. By its very definition, the total
payment at the social optimum cannot be larger than that at a Nash equilibrium.

The sub-optimality of the game (OPT-M) can bemeasured using the notions of Price of Stability (PoS) and Price of Anarchy
(PoS) which are defined as:

PoS = min
g∈GM

R
i=1

ρigi

R
i=1

ρigSOC
i

, (15)

PoA = max
g∈GM

R
i=1

ρigi

R
i=1

ρigSOC
i

, (16)

where GM denotes the set of Nash equilibria of (OPT-M) and gSOC is any vector of weights that is socially optimal. From
these definitions, it follows that PoA ≥ PoS ≥ 1, and PoA = PoS in particular when the Nash equilibrium is unique. Even
more, when the vector c is achievable we have that PoA = ∞ since in this case there is an infinite number of equilibria, see
Proposition 4.

Let gSOC be a social optimum. If it would exist i such that gSOC
i > ϵ and T i(gSOC

; ρ) < ci, then it would be possible to
decrease gSOC

i while still satisfying the constraint T i(gSOC
; ρ) ≤ ci, implying that gSOC would not be the solution of (SOC-M).

We thus conclude that any social optimum is a vector of weights gSOC such that each component verifies one of the following
equations:

if gSOC
i > ϵ, ⇒ T i(gSOC

; ρ) = ci, (17)

if gSOC
i = ϵ, ⇒ T i(gSOC

; ρ) ≤ ci. (18)
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Eqs. (17) and (18) give the necessary conditions for a vector to be the social optimum. They are, in fact, the same as (13)
and (14) which are the necessary and sufficient conditions for a vector to be a Nash equilibrium. It then follows that a social
optimum is also a Nash equilibrium. An immediate consequence of this result is that the PoS is 1 for the DPS game.Moreover,
from Proposition 4 it follows that:

Corollary 1. If the Nash equilibrium is unique, then the PoA = 1. In particular, for a two-player game with general service times
such that c ∉ T , PoA = 1.

4. Solution of (OPT-HT)

In this section we investigate the solution of the game (OPT-HT). Even though some of the results follow using the same
arguments as in Section 3, we emphasize that the results of this section hold for general service times and an arbitrary num-
ber of players. In Section 4.1 we give a necessary and sufficient condition for the feasibility of the game (OPT-HT). Assuming
this condition hold, we focus on the existence of a Nash equilibrium in Section 4.2. We then consider the uniqueness of the
equilibriumand explicitly characterize itwhen it is unique in Section 4.3. Finally, we study the inefficiency of the equilibrium
using the concept of Price of Anarchy in Section 4.4. The proofs of this section are in Appendix B.

4.1. Feasibility of the game

Before presenting our results on the feasibility of the game (OPT-HT), let us first characterize the achievability in heavy-
traffic. A vector of performance t is achievable in heavy-traffic if there exists a vector ofweights g > 0 forwhich T i(g; 1) = ti,
for all i ∈ C, where T i(g; 1) is the mean response time in heavy-traffic of a class-i job which is given by

T i(g; 1) =
E(Bi)

gi


k

λkE

B2
k



k

λkE

B2
k

 1
gk

. (19)

We denote by T HT the set of all the performance vectors that are achievable in heavy-traffic. The following proposition
characterizes the achievability of a vector of mean response times:

Proposition 8. A vector of performances t ∈ T HT if and only if

R
k=1

λk
E(B2

k)

E(Bk)
tk =

R
j=1

λjE

B2
j


. (20)

We now give a sufficient and necessary condition for the game (OPT-HT) to be feasible.

Proposition 9. The game (OPT-HT) is feasible if and only if


i λiE

B2
i

  c̃i
E(Bi)

− 1


≥ 0.

We observe that a sufficient condition for the game to be feasible is that in heavy-traffic all classes be fair. Note that
T i(gPS

; 1) = E(Bi), thus from Proposition 9 if T i(gPS
; 1) ≤ c̃i, ∀i, then the game is feasible.

4.2. Existence of the Nash equilibrium

A vector gNE is a Nash equilibrium for (OPT-HT) if gNE
i = argmin


gi ≥ ϵ : T i(gi, gNE

−i ; 1) ≤ c̃i

, for all i ∈ C, where gNE

−i =
gNE
1 , . . . , gNE

i−1, g
NE
i+1, . . . , g

NE
R


. We observe from (19) that themean response time in heavy-traffic of a class-i job is decreas-

ing with gi and increasing with gj, for all j ≠ i. Using the same reasoning as in Section 3.2 we conclude that each component
of the equilibrium of this game satisfies (13) or (14). With exactly the same arguments as in Section 3.2 for the game (OPT-
M), we can also prove that the best-response dynamics converge to a Nash equilibrium for the game (OPT-HT). We thus
conclude to the existence of an equilibrium for this game.

Corollary 2. If the game is feasible, there exists a Nash equilibrium for (OPT-HT) and the dynamics of best-response converge to
a Nash equilibrium if the starting point is feasible.

4.3. Characterization of the Nash equilibrium and uniqueness

In this section, we assume that the game (OPT-HT) is feasible andwe study the equilibrium of this game.We recall that it
is assumed that the classes are ordered in decreasing order of E(Bi)

c̃i
. Again, with the same arguments as in the proof of Propo-

sition 4, we can show that if c ∈ T HT , there is an infinite number of equilibria. We shall thus assume that c is not achievable,
i.e., c ∉ T HT . Under this assumption, the following theorem provides a complete characterization of Nash equilibria.
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Theorem 2. If the game is feasible and c ∉ T HT , the unique Nash equilibrium is

gNE
i = ϵ

˜tm/E(Bm)

c̃i/E(Bi)
, for all i < m,

gNE
i = ϵ, for all i ≥ m,

where m ∈ C is the minimum value such that there exists a value ˜tm ≤ c̃m verifying

˜tm
E(Bm)

=

R
k=1

λkE

B2
k


−

m−1
k=1

λk
E

B2k


E(Bk)
c̃k

R
k=m

λkE

B2
k

 . (21)

In the particular case where all classes are fair, we notice that m = 1 and thus the equilibrium is gNE
= (ϵ, . . . , ϵ). The

following corollary shows that the price paid by classes at the Nash equilibrium decreases as the ratio E(Bk)/c̃k decreases
and follows from Theorem 2 and our assumption on the ordering of the classes.

Corollary 3. If the game is feasible and c ∉ T HT , let gNE
= (gNE

1 , . . . , gNE
R ) be the vector of weights at equilibrium. We have

gNE
1 ≥ gNE

2 ≥ · · · ≥ gNE
R−1 ≥ gNE

R = ϵ.

It is interesting to observe that the ordering of classes at equilibrium do not depend on the arrival or second moment
of the distributions. Instead, the key parameter is the ratio E(Bk)/c̃k, which can be interpreted as the throughput of a class
k. Thus, classes will deviate from the minimum weight in decreasing order with respect to the throughput they expect to
obtain from the system.

With the same arguments as in Proposition 6, we can prove that the dynamics of the best-response converge to the
equilibrium for two classes with general service time distributions and any starting point.

4.4. Price of Anarchy

We can also define the social optimum of the system for (OPT-HT):

min
(g1,...,gR)

R
i=1

ρigi (SOC-HT)

subject to Ti(g; 1) ≤ c̃i, for all i = 1, . . . , R,
and gi ≥ ϵ, for all i = 1, . . . , R.

Assuming the game is feasible, the Price of Anarchy is defined as the ratio between themaximumpayment of the users in the
equilibria and the payment of the users in the social optimum. Again, if c ∉ T HT , we know that there is an infinite number
of equilibria and we can conclude that in this case PoA = ∞. We shall thus assume in the following that c ∉ T HT . Since we

have shown in Theorem 2 that the equilibrium is unique, it follows that PoA =

R
i=1 ρigNEiR
i=1 ρigSOCi

, where gNE is the unique Nash

equilibrium of (OPT-HT), while gSOC is any optimal solution of (SOC-HT). Using the same arguments as in Section 3.5 for the
game (OPT-M), we can prove that any social optimum is also a Nash equilibrium for (OPT-HT). An immediate consequence
of the uniqueness of the equilibrium is that the PoA is 1 for the DPS game in heavy-traffic, whatever the number of classes.

Proposition 10. If the game is feasible and c ∉ T HT , PoA = 1 for the game (OPT-HT).

5. Approximating (OPT-M)

In this section we explain how the results of Section 4 can be used to obtain insights into the solution of games (OPT-
P) and (OPT-M). As explained in Section 2.2, provided thatρ is sufficiently large for the approximation T i(g; ρ) =

T i(g;1)
1−ρ

to be
valid, the results established for game (OPT-HT) can be applied to approximate the solution of (OPT-P) by setting c̃i = −(1−

ρ)di/ logαi and the solution of (OPT-M) by setting c̃i = (1 − ρ)ci. We will focus on (OPT-M). This choice allows to evaluate
numerically the accuracy of the approximation using the formulas of Section 2.1. The proofs of this section are in Appendix C.

5.1. Feasibility and existence when ρ < 1

As we said above, using the relation T i(g; ρ) =
T i(g;1)
1−ρ

, we can define an instance of (OPT-HT) approximating the original
game (OPT-M). This approximation allows us analyse the (approximated) equilibrium with an arbitrary number of classes
and general service time distributions.
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We first study the feasibility of the approximation. Assuming exponential service times, the characterization of the
feasibility of (OPT-M) is given in Theorem 1. However, for general service times, we can characterize the (approximate)
feasibility. It follows directly from Proposition 9 that a necessary and sufficient condition for the (approximate) feasibility
of (OPT-M) is

i

λiE

B2
i

  ci
E(Bi)/(1 − ρ)

− 1


≥ 0. (22)

This implies that if all users are fair, then the game is feasible. Besides, using (22), we can approximate the value of ρF , as

defined in section (OPT-M), for general service times by ρF =

R
i=1 λiE


B2i


ci
E(Bi)

−1


R
i=1 λi

E(B2i )
E(Bi)

ci

.

Wenow focus on the existence of the approximated equilibrium.We observe that the characterization of existence of the
equilibrium of the previous games also holds for the approximated game. Thus, we say that there exists an approximated
equilibrium if the approximated game is feasible.

5.2. The Nash equilibrium for ρ < 1

Extending Theorem 2 to the case ρ < 1 with c̃i = ci(1 − ρ) and t̃i = ti(1 − ρ), we obtain that the Nash-equilibrium
of (OPT-M) can be approximated by gNE

i = ϵ
tm/E(Bm)

ci/E(Bi)
, for all i < m, and gNE

i = ϵ, for all i ≥ m, where m = 1, . . . , R is the
minimum value such that there exists a value tm ≤ cm verifying

tm
E(Bm)

=

R
k=1

λkE

B2k


(1−ρ)
−

m−1
k=1

λk
E

B2k


E(Bk)
ck

R
k=m

λkE

B2
k

 . (23)

Note that if class 1 is fair, then all users are fair. In this case, the right-hand side of (23) is upper-bounded by (1 − ρ)−1,
implying that c1 ≥

E(B1)
1−ρ

≥ t1, so that m = 1. Thus, if class 1 is fair, the approximate equilibrium corresponds to the PS
solution gNE

i = ϵ for all i, which is clearly the exact equilibrium.
It is interesting to compare the above approximate characterization of the Nash equilibrium with the exact result given

in Proposition 5 in the case of two users and exponential service time distributions. As discussed above, if class 1 is fair, then
the approximate and exact equilibria coincide and correspond to the PS queue. Otherwise, the equilibrium in both cases
have the same form, i.e., gNE

= (gNE
1 , ϵ), with gNE

1 > ϵ.

5.3. The Price of Anarchy for ρ < 1

We measure the sub-optimality of the approximated equilibrium using the Price of Stability and Price of Anarchy, as
defined in (15) and (16). We observe that a social optimum is the Nash equilibrium in the approximated game. Hence, we
claim that the PoS of the approximated game is always one. Besides, it follows from the uniqueness of the approximated
equilibrium that the Price of Anarchy is also one.

6. Numerical experiments

In this section, we numerically study the most important properties of the results of this paper. We first present several
numerical experiments to compare the equilibrium of the game (OPT-M) (which we call the original problem) with that
of the heavy-traffic approximation (OPT-HT). We then show that the dynamics of the best-response converge to the Nash
equilibrium of (OPT-M) from any starting point.

6.1. Validation of the approximation

We analyse numerically the accuracy of the approximated equilibrium. Our main observation from the experiments that
we conducted is thatwhile in certain cases the error inweights can be substantial, the proposed heavy-traffic approximation
is good at predicting the set of classes that pay a higher price thanminimumprice at the equilibrium, and themean response
times of the classes paying the minimum price. Without loss of generality, the minimum weight ϵ is set to 1 in all the
following experiments.

6.1.1. Exponential service time distribution
First, we present the results for exponentially distributed service times. In the first set of experiments, there are two

players with deadlines c1 = 5 and c2 = 6, and the mean service times µ1 = 2 and µ2 = 3. Note that c1µ1 = 10 < c2µ2 =

18. We now vary the total system load starting from 0.8 until the system becomes unfeasible while maintaining ρ1 = 0.3ρ
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Fig. 1. Comparison of equilibrium weights (above) and the corresponding percentage relative error (below) as a function of the total system load. R = 2
and exponential service time distribution.

and ρ2 = 0.7ρ. For each value of load, the equilibrium is computed using the best-response algorithm. In order to compute
the best-response of a class for the original problem, the mean response time is computed from the system of equations
presented in Proposition 1. In the top subfigure of Fig. 1, we plot the equilibrium weights for both the original problem and
the HT approximation as a function of the total system load. The percentage relative error1 between the two is shown in the
bottom subfigure of the same figure. Both problems become unfeasible for ρ > 0.93, so the data is restricted to ρ ≤ 0.93.
When the load of the system is between 0.9 and 0.93 we observe in Fig. 1 (above) that the equilibrium of the heavy-traffic
result approximates verywell the equilibrium of the original problem. In particular, the heavy-traffic approximation follows
the same increasing trend of the equilibrium weight of class 1 as that of the original problem. The error of class 1 users is
small,while there is no error for theusers of class 2.We see in Fig. 1 (below) that themaximumpercentage relative error is 9%.

In the second set of experiments, we present a scenario where the approximation becomes accurate when ρ is close to
1. We scale the deadlines by (1 − ρ)−1, that is, the deadline of user i, ci =

c̃i
(1−ρ)

for some fixed c̃i. This reflects that class
i is aware that the performance worsens as ρ increases, and is willing to adjust its deadline correspondingly. When the
deadlines are scaled with (1− ρ)−1, the constraint on the mean response time of player i for the original problem becomes
T i(g; ρ) ≤

c̃i
1−ρ

, and that for the heavy-traffic approximation becomes T i(g; 1) ≤ c̃i. Note that the latter constraint does not
change with ρ. We set the parameters to: µ1 = 2 and µ2 = 3, ρ1 = 0.3ρ, and ρ2 = 0.7ρ, with the scaled deadlines being
c̃1 = 0.3 and c̃2 = 0.7. In Fig. 2, we present the accuracy of the heavy-traffic approximation as ρ → 1. We observe that the
error in the weight of class 1 reduces as the load tends to 1 which means that in heavy-traffic.

In the next set of experiments, we look at a four-player game with exponential service times. In Fig. 3 the users have
similar value of throughput, i.e., similar cµ, and in Fig. 4 they are more heterogeneous. The parameters of the users of each
case are listed below each figure. In both figures, the equilibriumweights are plotted in the top subfigure, the corresponding
error is plotted in the middle subfigure, and in the bottom subfigure we plot the error in the mean response times of the
classes. The trend in the four-player plots is similar to that of the two-player example in which the deadlines are not scaled,
i.e., the payment of all the classes is ϵ if ρ ≤ ρE , at least one class paysmore than ϵ if ρE ≤ ρ ≤ ρF and if ρ ≥ ρF the problem
is not feasible, where ρE and ρF are as defined in Section 3. We observe that the error in the weights is acceptable when the
users are homogeneous (see middle subfigure of Fig. 3) and the error in the weights can increase when the disparity of the
users increases (see middle subfigure of Fig. 4). A similar observation on the negative impact of heterogeneity on the error
was also made in [17]. However, we conclude that, in both instances, the approximation captures correctly the set of users
that pay more than ϵ and the prediction in the mean response times is acceptable.

6.1.2. Hyper-exponential service requirements
Finally, in this subsection, we compare the approximation for a two-player game with hyper-exponentially distributed

service times. While there is no explicit expression for mean response time in DPS with service time distributions other
than the exponential distribution, for the hyper-exponential distribution, a simple trick can be used to compute the mean
response times using those of the exponential distribution. For example, consider a two-class DPS queue with hyper-
exponential distribution of two phases each. The service rates of the phases are (µ1, µ2) for class 1 and (µ3, µ4) for class

1 The percentage relative error for class i is given by
 gSYSi −gHTi

gSYSi

× 100, where gSYS
i (resp., gHT

i ) is its equilibrium weight for the original problem (resp. HT

approximation).
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Fig. 2. Comparison of equilibrium weights (above) and the corresponding percentage relative error (below) as a function of the total system load. R = 2
and exponential service time distribution.

Fig. 3. Comparison of equilibrium weights (above), the percentage relative error of the weights (middle) and the percentage relative error of the time
(below) as a function of the total system load. R = 4 and exponential service time distribution. c = [10, 15, 25, 45], µ = [1, 2, 4, 9].

2, and the arrival rates to these phases are (λ1, λ2) for class 1 and (λ3, λ4) for class 2. In order to compute the mean re-
sponse time in this queue when the weights are g = (g1, g2), one first computes the mean response time in a four-class
DPS queue with exponential distribution and weights g = (g1, g1, g2, g2). The arrival rate of class i in this queue is λi, and
the rates of the exponential distribution of class i is taken to be µi. The mean response time of class i in the DPS queue with
hyper-exponential distribution is then T

HEXP
1 (g; ρ) =

λ1
λ1+λ2

T 1(g; ρ) +
λ2

λ1+λ2
T 2(g; ρ), and T

HEXP
2 (g; ρ) =

λ3
λ3+λ4

T 3(g; ρ) +

λ2
λ3+λ4

T 4(g; ρ).

Using the above trick, the equilibrium weights were computed for the two-player DPS game with parameters: µ1 = 1,
µ2 = 3, µ3 = 5, µ4 = 7, and deadlines c1 = 5 and c2 = 7. The fraction of the load of class 1 was (ρ1, ρ2) = (

ρ

6 ,
ρ

3 ), and
for class 2 it was (ρ3, ρ4) = (

ρ

4 ,
ρ

4 ). In Fig. 5 we depict variation of the weights and the relative error when the total load of
the system changes. Finally, we observe that the error on the equilibrium is similar to that of the exponentially distributed
service times.
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Fig. 4. Comparison of equilibrium weights (above), the percentage relative error of the weights (middle) and the percentage relative error of the time
(below) as a function of the total system load. R = 4 and exponential service time distribution. c = [5/3, 5/4, 10, 100], µ = [1, 2, 8, 12].

Fig. 5. Comparison of equilibrium weights (above) and the corresponding percentage relative error (below) as a function of the total system load. R = 2
and hyper-exponential service time requirements.

6.2. Convergence to the Nash equilibrium

In this section, we analyse the convergence to the Nash equilibrium of the game (OPT-M). In particular, we focus on
the dynamics of the users under the best-response algorithm. We consider exponential service times and three classes of
users with the following parameters: the load of each class is (ρ1, ρ2, ρ3) = (0.1, 0.5, 0.2), the mean job sizes are given
by (µ1, µ2, µ3) = (1, 2, 3) and the deadlines are (c1, c2, c3) = (2, 2.5, 100). As before, we fix the value of ϵ to 1. We
are interested in observing the dynamics of the best-response for different not feasible starting points. In the left column
of Fig. 6 the best-response starts from the point g = (1, 1, 1), in the middle column from g = (3, 4, 5) and in the right
column from g = (1, 15, 15). In the top subfigure of each column we depict the evolution of the weights over time and in
the bottom subfigure the evolution of the mean response times over time. The x-axis of all the figures is in the logarithmic
scale for a more clear illustration of the dynamics of the best-response algorithm. We observe that in all the instances the
best-response algorithm convergences in at most 200 iterations to the point (13.4, 2.5, 1) which is the Nash equilibrium.
We leave the proof of the convergence for future work.
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Fig. 6. The evolution of the weights (up) and the mean response times (down) with the Selfish Priority Adaptation Algorithm for three different starting
points: g = (1, 1, 1) (left column), g = (3, 4, 5) (middle column) and g = (1, 15, 15) (right column). X-axis in logarithmic scale.

7. Conclusions

We presented a priced model that studies the strategic behaviour of users that share the capacity of a processor with
relative priorities. Each user chooses a price which corresponds to priority level and receives a share of the capacity that
increases with its payment. The objective of a user is to choose its priority level so as to minimize its own payment, while
guaranteeing that its jobs are served before its deadline.We fully characterized the solution of this gamewhen the number of
users is two and the service timedistribution is exponential. Besides,wedefined a game in the heavy-traffic regimewhichwe
solved for the general instance and we use it as an approximation of the original problem. We performed several numerical
experiments to study the accuracy of the approximated equilibrium. On the one hand, we observed the approximation is
accurate when the minimum acceptable throughput of the users is similar. On the other hand, if the heterogeneity of the
throughput expectation of the users increases, we concluded that the accuracy of the approximation can diminish. However,
we derived that, in all the instances, the heavy-traffic approximation captures the correct structure of the equilibrium and
gives us a negligible error in the mean response time prediction.
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Appendix A. Proofs of Section 3

A.1. Proof of Theorem 1

As in Definition 1, we let T be the set of achievable vectors. Define the set

U =


c ∈ RK

+
:


i∈r

ρici ≥ Wr , ∀r ∈ R


.

Before giving a formal proof of Theorem 1, we briefly explain the main arguments behind the proof. It is easy to see from
(10)–(11) and Definition 2 that if c is a feasible vector, then c ∈ U. However, the converse is less clear. In order to show that
each element c of U is a feasible vector, the idea is to construct from c a vector t ∈ U such that t ≼ c and for which WC ≤

i∈C ρiti holds as an equality (whereas the inequality can be strict for c). This vector t is obtained as the limit of a strictly de-
creasing sequence


c(n)


n≥0 which, starting from c(0)

= c , converges in a finite number of steps. The key argument to gener-
ate this sequence is that, unless c(n)

∈ T , there always exists at least one component of c(n) that appears only in inequalities.
By decreasing this component, we can obtain a vector c(n+1)

∈ U such that c(n+1)
≺ c(n) and 0 ≤


i∈C ρic

(n+1)
i − WC <

i∈C ρic
(n)
i − WC , which implies the convergence to an achievable vector. We shall first prove that if c is not an achievable

http://www.panacea-cloud.eu
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vector, then there is at least one of its components which is involved only in inequalities. Our first step in this direction is
stated in Lemma 1.

Lemma 1. If r ⊆ s then Wr ≤ Ws.
Proof. From (9),

Ws =
1

1 − ρ̄s


i∈s

ρi

µi
≥

1
1 − ρ̄s


i∈r

ρi

µi
≥

1 − ρ̄r

1 − ρ̄s
Wr ≥ Wr . �

For c ∈ U, let us define the sets S=
=

r :


i∈r ρici = Wr

and S>

=

r :


i∈r ρici > Wr

. We have omitted the

dependence of the sets on c . The second result we need is the following.

Lemma 2. If r1, r2 ∈ S=, then r1 ∪ r2 ∈ S=.
Proof. Let s = r1 ∪ r2 and v = r1 ∩ r2. In order to prove the desired result, we shall show that if r1, r2 ∈ S= then Ws ≥

i∈s ρici. Since c ∈ U, we know thatWs ≤


i∈s ρici. Therefore, the only possible outcome isWs =


i∈s ρici. From (9),

Ws =
1

1 − ρ̄s


i∈s

ρi

µi

=
1

1 − ρ̄s


i∈r1

ρi

µi
+


i∈r2

ρi

µi
−


i∈v

ρi

µi


=

1
1 − ρ̄s


1 − ρ̄r1


Wr1 +


1 − ρ̄r2


Wr2 − (1 − ρ̄v)Wv


= Wr1 + Wr2 +

1
1 − ρ̄s


ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 − (1 − ρ̄v)Wv


=


i∈r1

ρici +

i∈r2

ρici +
1

1 − ρ̄s


ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 − (1 − ρ̄v)Wv


=


i∈s

ρici +

i∈v

ρici +
1

1 − ρ̄s


ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 − (1 − ρ̄v)Wv


≥


i∈s

ρici + Wv +
1

1 − ρ̄s


ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 − (1 − ρ̄v)Wv


≥


i∈s

ρici +
1

1 − ρ̄s


ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 − (ρ̄s − ρ̄v)Wv


.

In order to complete the proof it is sufficient to show that the second term on the RHS is non-negative, whichwill then imply
thatWs ≥


i∈s ρici. Since v = r1 ∩ r2, from Lemma 1, it follows thatWr1 ≥ Wv andWr2 ≥ Wv . Thus,

ρ̄s − ρ̄r1


Wr1 +


ρ̄s − ρ̄r2


Wr2 ≥


ρ̄s − ρ̄r1 + ρ̄s − ρ̄r2


Wv = (ρ̄s − ρ̄v)Wv,

where the last inequality follows from the fact that ρ̄r1 + ρ̄r2 = ρ̄s + ρ̄v . �

Corollary 4. The set S= is closed under finite unions.

We are now in position to prove Theorem 1.
Proof of Theorem 1. If c is feasible then it is easy to see that c ∈ U. We now prove that if c ∈ U, then c is feasible. Towards
this end, for every c , we shall construct a finite sequence of vectors c = c(0)

≻ c(1)
≻ · · · ≻ c(n), with n ≤ R, c(i)

∈ U, ∀i
and c(n)

∈ T . Also, nwill depend upon c . The vector c(n) is then an achievable vector which makes c feasible.
Consider the vector c(n) obtained at step n. Define the corresponding sets S=

n and S>
n which contain the indices of the

equalities and the strict inequalities that define c(n). Also, define En =


r∈S=
n
r, the set of classes that appear in at least one

equality.We shall show that the sequence of En associated to the componentwise decreasing vectors will eventually contain
C, and this will happen in a finite number of steps.

If En = C, it follows from Corollary 4 that C ∈ S=
n , and that c(n) is achievable. Otherwise, take some i ∈ C \ En, that is, a

class which appears only in inequalities.
Define

c(n+1)
i = max

s : i∈s

Ws −


j∈s,j≠i
ρjc

(n)
j

ρi

c(n+1)
j = c(n)

j , ∀j ≠ i.

Note that c(n+1)
i ≥ W{i}/ρi > 0, and that c(n)

i > c(n+1)
i . Therefore c(n)

≻ c(n+1).
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With this definition class iwill appear in at least one equality, and this class will be added to En. Therefore, En ⊂ En+1, and
S=
n ⊂ S=

n+1. Since there are R classes, after at most R steps all the classes will appear in at least one equality, that is, there is
an n ≤ R such that En = C. From Corollary 4, it follows that C ∈ S=

n , and c(n) is an achievable vector such that c(n)
≼ c . �

A.2. Proof of Proposition 4

If c is achievable, there exists a weight vector g such that T i(g; ρ) = ci for all i ∈ C. This weight vector is an equilibrium
since no class can decrease its weight and still satisfy its constraint. To conclude the proof, it is enough to observe that the
weight vector θ g is such that T i(θ g; ρ) = ci for all i ∈ C and is thus an equilibrium for any value of θ ≥ min


ϵ
g1

, . . . , ϵ
gR


.

We now focus on the case where If c is not achievable. Assume that there exist two equilibria g and h ≠ g . If h1 = g1,
then we can assume without loss of generality that h2 < g2. This implies that g2 > ϵ, and thus, according to (13), that
T 2(g; ρ) = c2. Since T 2(g; ρ) is strictly decreasing in g2, it yields T 2((h1, h2); ρ) = T 2((g1, h2); ρ) > c2. Hence, h is not
a feasible point for class 2 and thus cannot be an equilibrium. This is a contradiction, and therefore we cannot have two
different equilibria g and h such that h1 = g1.

Assume therefore that h1 < g1. This implies that g1 > ϵ, and thus, from (13), that T 1(g; ρ) = c1. Since T 1(g; ρ) is strictly
decreasing in g1, h1 < g1 implies that T 1(g; ρ) = c1 < T 1((h1, g2); ρ). However, for h to be an equilibrium, we need to have
T 1((h1, h2); ρ) ≤ c1 < T 1((h1, g2); ρ). Since T 1(g; ρ) is increasing in g2, it yields h2 < g2, which in turn implies that g2 > ϵ.
The equilibrium g is therefore such that g1 > ϵ and g2 > ϵ. However, since we have assumed that c is not achievable, we
know that there exists i ∈ {1, 2} such that T i(gNE

; ρ) < ci. According to (13), this implies that gi = ϵ. This is a contradiction.
We thus conclude that we cannot have two different equilibria.

A.3. Proof of Proposition 5

According to the order of the classes, if class 1 is fair, then c2 µ2 ≥ c1 µ1 ≥ (1 − ρ)−1. Therefore the Processor Sharing
weights satisfy both time constraints. The point gNE

= (ϵ, ϵ) is clearly the unique Nash equilibrium since both classes have
the minimum weight possible and the time constraints are satisfied.

If class 1 is not fair, i.e., c1 µ1 < (1 − ρ)−1, then the feasibility of the game implies that (1 − ρ)−1
≤ c2 µ2. In this case,

the equilibrium is achieved in g = (g1, ϵ), where g1 is such that T 1(g; ρ) = c1 and T 2(g; ρ) ≤ c2. Indeed g1 is theminimum
weight satisfying class-1 time constraint and ϵ is theminimumweight possible for class 2whose time constraint is satisfied.

From (3), it results that

T 1(g; ρ) = c1 ⇐⇒
g2
g1

=
−µ1ρ2 − µ1(1 − ρ1) [µ1c1(1 − ρ) − 1]
−µ1ρ2 + µ2(1 − ρ2) [µ1c1(1 − ρ) − 1]

,

which yields the desired result since g2 = ϵ.

A.4. Proof of Proposition 6

We first note from (10) and (12) that for any weight vector g it holds that

ρ1T 1(g; ρ) + ρ2T 2(g; ρ) ≤ ρ1c1 + ρ2c2. (A.1)
Let g0

= (g0
1 , g

0
2 ) be the starting point of the Best-Response algorithm. If this point satisfies that T i(g0

; ρ) ≤ ci for i =

1, 2, then, as we said in Section 3.2, best-response convergences to the equilibrium. Otherwise, (A.1) implies that we have
either T 1(g0

; ρ) > c1 or T 2(g0
; ρ) > c2, but not both.

Assume that T 1(g0
; ρ) > c1. Then, the best response of class 1 is to increase its weight to a value g1

1 such that at point
g1

= (g1
1 , g

0
2 ) its constraint T 1(g1

; ρ) ≤ c1 is satisfied as an equality. At this point, we have from (A.1) that ρ1T 1(g1
; ρ) +

ρ2T 2(g1
; ρ) = ρ1c1 + ρ2T 2(g1

; ρ) ≤ ρ1c1 + ρ2c2 and thus that T 2(g1
; ρ) ≤ c2. We conclude that the weight vector g1 is

feasible. Hence, using Proposition 3, we can claim that the best-response algorithm converges to the equilibrium.

Appendix B. Proofs of Section 4

B.1. Proof of Proposition 8

It can be easily proven that if a vector of performance t is achievable in heavy-traffic then it satisfies (20). For the other
implication, we show that a vector t ∈ RR

+
satisfying (20) is achievable in heavy-traffic, i.e., there exists a vector of weights

g such that T i(g; 1) = ti for all i ∈ C. Let g be a weight vector such that gi
gj

=
tj/E(Bj)
ti/E(Bi)

for all i ≠ j. With (19), we have

T i(g; 1) = E(Bi)


k

λkE

B2
k



k

λkE

B2
k

 gi
gk

= E(Bi)


k

λkE

B2
k



k

λkE

B2
k

 tk/E(Bk)
ti/E(Bi)

= ti


k

λkE

B2
k



k

λk
E

B2k


E(Bk)
tk

= ti,

for all i ∈ C, where the last inequality follows from (20). We thus conclude that the vector t is achievable.
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B.2. Proof of Proposition 9

If the problem is feasible in heavy-traffic there exists an achievable vector in heavy-traffic t = (t1, . . . , tR) such that

ti ≤ c̃i, for all i. Then, since ti ≤ c̃i for all i, it follows from Proposition 8 that


i λi
E

B2i


E(Bi)
c̃i ≥


k λkE


B2
k


.

We now focus on the other implication of the proposition. Given a vector of deadlines c̃ = (c̃1, . . . , c̃R) such that
k λk

E

B2k


E(Bk)
c̃k ≥


k λkE


B2
k


, we show that there exists a vector of performances t achievable in heavy-traffic. Let t =

(t1, . . . , tR) be such that

ti = c̃i


k

λkE

B2
k



k

λk
E

B2k


E(Bk)
c̃k

,

for all i. We observe that ti is positive for all i and from


k λk
E

B2k


E(Bk)
c̃k ≥


k λkE


B2
k


we derive that ti ≤ c̃i for all i. Moreover


k

λk
E

B2
k


E(Bk)

tk =


k

λk
E

B2
k


E(Bk)

c̃i


i

λiE

B2
i



i

λi
E

B2i


E(Bi)
c̃i

=


i

λiE

B2
i


,

and we thus conclude with Proposition 8 that the vector t is achievable.

B.3. Proof of Theorem 2

Let us first introduce some results that will be used to prove Theorem 2. Let gm be a vector of the form

gm
= (gm

1 , gm
2 , . . . , gm

m−1, ϵ, . . . , ϵ), (B.1)
where gm

i > ϵ, if i < m. We now show the following property of the vector gm.

Lemma 3. If Tm(gm
; 1) ≤ c̃m, then, for all j > m, T j(gm

; 1) ≤ c̃j.

Proof. From (19) and Tm(gm
; 1) ≤ c̃m, we obtain for all j > m,


k λkE


B2k



k λkE


B2k

/gk

≤ c̃mgm
m/E(Bm) = c̃m ϵ/E(Bm) ≤ c̃j ϵ/E(Bj),

where the last inequality holds since the ordering of the classes we assume. We now notice that the result follows directly

from (19) since


k λkE

B2k



k λkE


B2k

/gk

≤ c̃j ϵ/E(Bj) ⇐⇒ T j(g; 1) ≤ c̃j. �

We are now in position to proof the result of Theorem 2.
Proof of Theorem 2. Let m be the minimum value such that Tm(gm

; 1) ≤ c̃m, where gm is as defined in (B.1). According to
Lemma 3, we have that T k(gm

; 1) ≤ c̃k, for k ≥ m. On the other hand, we choose gk such that T k(gm
; 1) = c̃k for all k < m.

It then results that gm is the equilibrium since in case any of the firstm− 1 coordinates of gm diminishes its weight its time
constraint is not satisfied and the rest of the coordinates of gm are ϵ.

We now characterize the first m − 1 components of the equilibrium. From (19), it follow that gmi
gmj

=
T j(gm;1)/E(Bj)
T i(gm;1)/E(Bi)

for all

i ≠ j. Since T i(gm
; 1) = c̃i for all i < m, we can state that for all i < m

gm
i

gm
m

=
˜tm/E(Bm)

c̃i/E(Bi)
⇐⇒ gm

i = ϵ
˜tm/E(Bm)

c̃i/E(Bi)
.

Finally, we prove that Tm(gm
; 1) = ˜tm ≤ c̃m is equivalent to (21). Using (19), we obtain

c̃m ≥ ˜tm = E(Bm)

R
k=1

λkE

B2
k


R

k=1
λkE


B2
k

 gmm
gmk

= E(Bm)

R
k=1

λkE

B2
k


m−1
k=1

λkE

B2
k

 c̃k/E(Bk)
˜tm/E(Bm)

+

R
k=m

λkE

B2
k

 .
And rearranging both sides of the equation we derive the expression (21)

˜tm
E(Bm)

=

R
k=1

λkE

B2
k


−

m−1
k=1

λk
E

B2k


E(Bk)
ck

R
k=m

λkE

B2
k

 .
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We now show this equilibrium is unique proving that if the equilibrium is gm, then gm+i is not the equilibrium, for i =

1, . . . , R − m. We thus consider that there exists a valuem satisfying

c̃m
E(Bm)

≥
tm

E(Bm)
=

R
k=1

λkE

B2
k


−

m−1
k=1

λk
E

B2k


E(Bk)
c̃k

R
k=m

λkE

B2
k


which is equivalent to

tm
E(Bm)

R
k=m

λkE(B2
k) =

R
k=1

λkE

B2
k


−

m−1
k=1

λk
E

B2
k


E(Bk)

c̃k. (B.2)

We will see that for any i = 1, . . . , R − m, gm+i that satisfies (21) is not the equilibrium. To do so, we show that there is no
vector gm+i with weights as defined in Theorem 2 that verifies

We suppose that there exist a value i = 1, . . . , R − m such that

˜cm+i

E(Bm+i)
≥

tm+i

E(Bm+i)
=

R
k=1

λkE

B2
k


−

m+i−1
k=1

λk
E

B2k


E(Bk)
c̃k

R
k=m+i

λkE

B2
k

 (B.3)

is verified.

It thus follows that ˜cm+i
E(Bm+i)

≥
tm+i

E(Bm+i)
=

R
k=1 λkE


B2k

−
m−1

k=1 λk
E(B2k)
E(Bk)

c̃k−
m+i−1

k=m λk
E(B2k)
E(Bk)

c̃kR
k=m+i λkE


B2k
 .

Taking into account the equality of (B.2) and that ˜tm
E(Bm)

≤
˜cm

E(Bm)
≤

c̃k
E(Bk)

for all k > m, we derive

tm+i

E(Bm+i)
=

tm
E(Bm)

R
k=m

λkE(B2
k) −

m+i−1
k=m

λk
E

B2k


E(Bk)
c̃k

R
k=m+i

λkE

B2
k

 ≤

˜cm
E(Bm)

R
k=m+i

λkE(B2
k)

R
k=m+i

λkE

B2
k

 =
c̃m

E(Bm)
.

From the relation gk
gj

=
T j(g;ρ)/E(Bj)
Tk(g;ρ)/E(Bk)

and using that Tm(gm+i
; ρ) = c̃m and Tm+i(gm+i

; ρ) = tm+i if gm+i is an equilibrium,
we obtain that

tm+i

E(Bm+i)
≤

c̃m
E(Bm)

⇐⇒ gm+i
m+i ≥ gm+i

m

which is not possible since gm+i
m+i = ϵ and gm+i

m > ϵ if gm+i is an equilibrium. �

Appendix C. Proofs of Section 5

C.1. Proof of Proposition 7

If all users had the same weights (so the equilibrium were PS), we would have that E(Bi)/ci = 1 − ρ, for all i. Since
E(Bi)/ci = k < 1, we conclude that if ρ ≤ 1 − k then (ϵ, . . . , ϵ) is the unique equilibrium. When ρ = 1 − k we have ci =

E(Bi)/(1−ρ), ∀i, that is, the vector (c1, . . . , cR) is achievable and as soon as ρ increases further the game becomes infeasible.
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