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Abstract—We consider an epidemic model formed by N ele-
ments, where N < co. More precisely, we analyze the susceptible-
infected-recovered-susceptible (SIRS) with vaccinations, an ex-
tension of the susceptible-infected-recovered (SIR) model where
the susceptible population can be vaccinated and a recovered
element is again susceptible after a random time. In our model,
susceptible elements can avoid getting the infection with some
probability (i.e., with a lockdown probability). We assume that
each infected element incurs a cost per unit of time and the
susceptible population incurs a cost that is decreasing and linear
on the lockdown probability. We investigate a non-cooperative
game where each player is an element of the population that
can select its lockdown probability and aims to minimize its
expected cost. Our first contribution consists of formulating the
best response lockdown strategy of one player to the strategy of
the rest of the players as a Markov Decision Process, which
combined with a simple fixed-point algorithm, allows us to
compute a solution to this decentralized setting (i.e., a symmetric
Nash equilibrium of the game under analysis). We also formulate
the centralized problem of finding the global optimum of this
model, i.e., the lockdown strategy that minimizes the cost of the
whole population, as a Markov Decision Process. We establish
some analytical results on the structure of the solution of the
centralized and the decentralized problems. Furthermore, our
numerical results show that both strategies have a switching
curve. We also conclude that the derived Nash equilibria and
the global optimum are very similar, i.e. the decentralized
architecture is very close to optimal. Finally, we conclude that
the global optimum strategy confines more than the solution of
the decentralized system (i.e. than the Nash equilibrium).

Index Terms—SIRS model; Symmetric Nash equilibria;
Markov Decision Process; Efficiency;

I. INTRODUCTION

A. Motivation

The susceptible-infected-recovered (SIR) model is one of
the simplest and most studied stochastic models. It allows
us to model the dynamics of a virus spread in complex
networks. The recent COVID-19 pandemic has shown the
great importance of carrying out research on this topic. A
crucial aspect in this context is to obtain analytical results
about how the dynamics of the population change according to
the diverse actions that can be selected, for instance, according
to how the population gets confined, how it gets vaccinated, or
how to allocate the resources of a hospital to provide service
to the infected population.

If we consider that each of the elements of the population
can make self-interested decisions, then non-cooperative game

theory becomes a crucial tool for analyzing the performance
of decentralized epidemic models. The solution to a non-
cooperative game is known as the Nash equilibrium, which
is defined as the set of strategies of the players such that none
of them can benefit from a unilateral deviation. A natural
question in non-cooperative games is to know whether the
Nash equilibria are efficient, i.e., if the performance of Nash
equilibria is equal to the strategy that minimizes the cost of the
whole population. In the positive case, one can conclude that
decentralized and self-interested decisions lead to an optimal
performance setting.

B. Contributions

We consider an epidemic model in continuous time with
a finite number of elements N. Our model is an extension
of the SIR model, in which the susceptible population gets
vaccinated at some rate and the recovered population becomes
susceptible again after a random time. We consider that
susceptible elements can choose the probability of avoiding to
get the infection (i.e., its confinement probability). We assume
that there is a cost per unit of time associated to each of the
elements of the infected population. Moreover, we assume that
each element of the susceptible population incurs a cost, which
is decreasing and linear on the confinement probability.

We formulate a non-cooperative game where each element
of the population is a player. We consider that each player
can choose its confinement probability and aims to minimize
its expected cost, i.e., the sum of the cost of being infected
plus the cost of choosing the lockdown strategy. We formulate
a Markov Decision Process to find the best-response strategy
of this game and, use a fixed-point algorithm, to compute a
symmetric Nash equilibrium of the game.

We also consider the problem of finding the global optimum
of this problem, i.e., of determining the lockdown strategy
that must follow all the elements of the population so that the
expected cost of the population is minimized. The solution
to this is found by formulating this problem as a Markov
Decision Process.

Our first contribution consists of providing several struc-
tural analytical results on both strategies. For instance, we
show that, when the number of infected elements is zero,
the Nash equilibrium and the global optimum consist of
being completely exposed to the infection. Then, we present
numerical experiments that show that both strategies under



consideration have a switching curve, and we study the shape
of the obtained switching curves. We also study the efficiency
of Nash equilibria by comparing the performance of the system
under the Nash equilibrium and the global optimum. We
observe that both strategies are very similar, but the proportion
of states where it is optimal to be confined is less for the Nash
equilibrium. This implies that the solution to the decentralized
setting (i.e. the Nash equilibrium) confines less than the global
optimum.

C. Related Work

The SIR model was introduced in [8] and it considers that
each of the elements of the population belongs to one of the
following three groups: susceptible, infected, and recovered.
This model has a very large number of applications and,
therefore, it has been studied from different perspectives in
the last century; however, due to the COVID-19 epidemic,
the interest of researchers in this model has increased a lot
recently. In this section, we discuss lockdown strategies in non-
cooperative games and optimization problems. A full overview
of epidemic models is provided in [12] and recent works about
COVID-19 in [4].

Some researchers analyze the existence of lockdown strate-
gies that consist of a Nash equilibrium. For example, the au-
thors in [6] formulate a non-cooperative game in an epidemic
model with asymptomatic infections where agents can choose
social distancing, vaccination, and testing. Moreover, mean
field games have been formulated to study how the population
takes social distancing measures [13] and how the players
choose the transition rates from states [2].

Other authors have been interested in studying the optimal
lockdown policy considering variations of the SIR model:
dividing the population into groups of different ages [1],
considering contacts between populations of different regions
[9], splitting the susceptible population into two groups (that
is, the confined and those that are not confined) [10] and
including deaths [3]. The authors in [7] show that the SIR
model fits the data of COVID-19 during the lockdown. Mean
field theory has been used in [15] to determine optimal
confinement policies. Other works formulate the problem of
finding the optimal lockdown policy using Markov Decision
Processes in complex epidemic models [11], [14] and solve the
problem numerically. In our work, we present partial analytical
results of the optimal lockdown strategy and we compare it
with the Nash equilibrium.

D. Organization

The rest of the paper is organized as follows. In Section II,
we describe the model under study in this article as well as
the optimization problems we investigate. In Section III, we
present how we have formulated Markov Decision Processes
to deal with the optimization problems under study. In Sec-
tion IV, we provide the efficiency results of this work. Finally,
in Section V, we present the main conclusions of this article.

II. MODEL DESCRIPTION
A. The SIRS model with vaccinations

We consider a population of N homogeneous elements that
evolve in continuous time. Each of the elements can be in
one of the following states: susceptible (S), infected (I) or
recovered (R).

The dynamics of one element is a continuous-time Markov
chain that can be described as follows. An element encounters
another element at a rate . If a susceptible element encounters
an infected element, then it becomes infected. An infected
element gets recovered at rate p. A recovered individual cannot
be infected until it gets susceptible again at rate (5. Moreover,
with a vaccination rate «, a susceptible individual becomes
recovered directly without being infected.

We uniformize the continuous-time Markov chain with a
uniformization constant 2 < (N (y+p+8+«))~! and obtain
a discrete-time Markov chain.

In this model, susceptible elements follow a confinement
strategy 7 : N — [0, 1], where 7 (¢) indicates the confinement
probability of that element at time ¢. More precisely, when
m(t) = 1, susceptible elements are completely exposed to the
epidemic at time ¢, whereas when 7(¢t) = 0 they are protected
from taking the infection, i.e., they are confined.

B. Social optimum

Let us consider the dynamics of the SIRS model with
vaccinations described previously. We consider that there is a
confinement cost that applies to each susceptible element. We
assume that the confinement cost of a susceptible element at
time ¢ is ¢z, — w(t), where ¢y, > 1. We also consider that there
is a cost associated to each infected element; more precisely,
each infected element leads to a cost of ¢; > 0 per unit of
time.

Thus, if Mg(t) and M;(t) denote the number of susceptible
and infected elements, respectively, at time ¢ among the
population of size N, the global cost of the system when all
elements follow the same confinement strategy 7 is:

W(r) = Zét ((cp —m(t)) Mg (t) + cr M (t))
t=0

(GLOBAL-COST)
where § € (0,1) is the discount factor.
The social optimum (or global optimum) is the confinement
strategy that minimizes the cost along the whole population,
that is the confinement strategy 7°* that satisfies

7' € arg min W ()
s

In Section III-B, we formulate this problem as a Markov
Decision Process and show that it can be solved using the
Bellman equations.

C. Symmetric Nash equilibrium

We now formulate a non-cooperative game the model pre-
sented in Section II-A. Let us pick one element of the popu-
lation, that we call it Player 0. We consider that Player O can



choose his confinement strategy 7°(t), where 7°(t) € [0, 1] for
all t € [0,00). Moreover, the rest of the players, except for
Player 0 will follow the confinement strategy . Let wgo’”(t)
and x}ro’”(t) be the indicator functions for Player O being
susceptible and infected, respectively, at time ¢ if it follows
confinement strategy 7° and the rest of the players follow
strategy 7. Then, the expected individual cost of Player O is
given by

Co(n®,m) = o ((cL — 20(t)2 T T (t) + clx}ro’“(t)> ,
t=0

where § € (0,1).

The Best Response of Player O is a strategy that minimizes
its cost for a given strategy of the rest of the population ,
that is,

BR(7) = argmin C(°, 7). (BR)
T

A symmetric Nash equilibrium for this game is defined as a
fixed point strategy for the Best Response operator, i.e., 7°™¢
is a symmetric Nash equilibrium when

7_[_577,6 c BR('R'S”E).

In this work, we apply the following fixed-point algorithm
to compute a symmetric Nash equilibrium: 7341 = BR(7g),
with 7y an arbitrary initial strategy for all players except for
one. Clearly, when this algorithm converges, i.e., when 71 =
Ty, a symmetric Nash equilibrium is found.

In Section III-A, we formulate the problem of finding the
Best Response as a Markov Decision Process. This will be
used to analyze the efficiency of Nash equilibria, i.e., to
compare the performance of symmetric Nash equilibria with
the optimal performance.

III. MARKOV DECISION PROCESS FORMULATION

In this section, we address the problem of finding the best-
response strategy as well as the global optimum of this model.
In Section III-A, we formulate the problem of finding the best
response as a Markov Decision Process and, in Section III-B,
we find the solution of the global optimum by formulating the
problem as a Markov Decision Process.

A. Markov Decision Process formulation for (BR)

To obtain the Best Response strategy of Player 0 to the
confinement strategy m, we formulate the problem as a Markov
Decision Process.

We consider the state of the system as a triplet
(X, Mg, M;), where X € {S, I, R} is the state of Player 0,
and Mg and M; are the number of susceptible and infected
players, respectively, among the rest of the population. It
immediately follows that Mg + M; < N — 1 since the pop-
ulation size is N. The action is 7°, which is the confinement
probability of Player 0. We assume that there exists d € N
such that 7 € Ay, where 4y = {0, é, e %, 1}. Following
what we said in Section II-C, when Player O gets infected, it

incurs a cost per unit of time c; and, when Player O selects
the strategy 7°, it incurs a cost of ¢z, — 7%, If all the players
except for Player O follow the confinement strategy , then the
best-response of Player O to 7 is the solution of the following
Bellman equations:

V(S,Ms,MI): (CLfTFO(MS,M]))

min
70(Ms, M1)€ Ao
+d(prV (I, Ms, My)
+pvV (R, Ms, My)
+ 1 ars1yqv V(S Ms — 1, Mj)
+ 1 areen—2pasV (S, Ms + 1, M)
+ Tins>1,m<N—2}41
V(S,Mg—1,M;+1)
+ Lgar,>139rV (S, Mg, My — 1)
+psV (S, Ms, Mr)),
V(I,Msg, M) =cy
+ 6(L{nrg>1,m,<N—2}47
V(I,Mg—1,M;+1)
+ sy avV (L Ms — 1, M)
+ L my<N—2)4s
V(I,Mg+1, M)
+prV (R, Mg, Mr)
+ L, =1parV (L Ms, My — 1)
+p1V (I, Mg, Mr)),
V(R, Mg, My) = 0(psV (S, Ms, M)
+ L+ mr<N—2)9s
V(R, Mg+ 1, My)
+ 1mg>1yavV(R, Ms — 1, M)
+ L1, <N—2) 01
V(R,Mg —1,M;+1)
+ ]l{JWIZl}QRV(Ra Mg, My —1)
+prV (R, Mg, Mr)),

(1a)

(1b)

(Ic)
for Mg, M =0,...,N—1, Mg+ M; < N — 1, where

pr = Qyn®(Mg, M;)M;/(N —1)

pr = p
ps = QB
pV:QOz

qr = Q’yMsﬂ'(Ms,MI)MI/UV — 1)
¢ = QyMgm(Ms, Mr)(M; +1)/(N — 1)

qr = QMip
qs = QB(N — 1 — Mg — M)
qv = QaMg

ps=1—pr—qr—qr—4qs —pv —qv
pr=1—pr—q; —qr —qs — qv
Pr=1-ps—qs —qr —qr — qv



Let us first comment on the probability transitions related to
the movement of Player 0. The transition probability p; is
the probability that, when Player O is susceptible, it becomes
infected. When Player 0 is susceptible, it is vaccinated with
probability py-, in which case it moves to the recovered state.
The transition probability pr is the probability that Player
0 gets recovered from the infection (i.e., the probability that
Player 0 moves from the infected state to the recovered state),
and pg of becoming susceptible when it is in the recovered
state.

We now focus on the transition probabilities of the rest of
the players. When Player O is either susceptible or recovered,
the probability that a different player (i.e., one of the rest
of the players) is infected is g;. For the same event, but
with Player O being infected, the transition probability is ¢7.
Both transition probabilities, ¢; and q’I, depend on the fixed
confinement strategy m followed by all players different from
Player 0.

For any state of Player 0, gr is the probability that a player
different from Player O gets recovered from an infection (i.e.,
it moves from the infected state to the recovered state) in the
next time-step. Analogously, gg is the probability that a player
that is not Player 0 becomes susceptible after being recovered,
and gy is the probability that a player different to Player O
gets vaccinated (i.e., it moves from the susceptible state to the
recovered state).

Finally, pg (resp. pr and pg) is the probability that, when
Player O is susceptible (resp. infected and recovered), none
of the players (Player O or the rest of the players) change its
state.

For any (Mg, M), let 78R be the solution of the Bellman
equations defined in (1). Thus, for Mg and M positives such
that My, M; > 0, and Mg + M; < N — 1,, we have that:

mPB(Mg,M;) = argmin (¢ — 7°(Ms, M7))

70(Ms, M1)€ Ao

+6(prV (I, Ms, M)

+pvV (R, Mg, Mj)

+ Lms>13qvV (S, Ms — 1, My)

+ Lpg<n—2yasV (S, Mg + 1, M)

+ Lnre>1,M,<N—2}41
V(S,Mg—1,M;+1)

+ 1, 51yqrV (S, Ms, My — 1)

+psV (S, Ms, Mr)). 2

From the equations (1), we can extract the following prop-
erties of a strategy that solves the Bellman equations, or in
other words, the Best Response strategy when the other N — 1
players follow strategy .

Proposition 1. Let 78R be the solution to equations (1). Then,
forany Mg =0,1,...N — 1,

78R (Mg,0) = 1.

Proof. Consider the equation (la). If M; = 0, then p; = 0,
which is the only transition probability in which the optimiza-

tion term 7°

that

arises. Thus, we have for Mg =0,1,...

7PR(Mg,0) = argmin (cy — 7°(Ms,0))
TI'O(Ms,O)EAO

+d(pvV (R, Ms,0)

+]l{MSZl}qvv(S, Mg — 170)

+ ll{MSSN_g}qSV(S, Mg +1,0)

+ LagsnyarV (S, Mg — 1,1)

+ (1 —pv —qv —qs —qr)V(S, Ms,0)),

We now note that the above expression can be alternatively
written as

mP8(Mg,0) = argmin (—7°(Msg,0)),
w0 (Ms,0)€A0
for Ms = 0,1,...,N — 1. As a result,we conclude that

7BR(Mg,0) =1 for any Mg =0,...,N — 1.
O

The above result says that, when the rest of the players, dif-
ferent from Player O are not infected, then the Best Response
of Player 0 is to be completely exposed (i.e. 72 = 1).

The last result says that the Best Response of Player O to the
confinement strategy  is either to confine or to be completely
exposed (i.e., 7% € {0,1}.)

Proposition 2. Let w8R be the solution to equations (1). Then,
for any Mg, M7 with Mg, My =0,1,...,N — 1 and Mg +
M; <N -1,

(Mg, M) € {0,1}

Proof. The result follows immediately because the mini-
mization problem is linear in 7°(Mg, M;) and Ay =
{o,%,..., =11} O

B. Markov Decision Process formulation of the solution of
(GLOBAL-COST)

We now focus on the social optimum strategy. We model the
problem as a Markov Decision Process, similar to what we did
with the Best Response strategy computation. Let us consider
(Mg, M1),1 < Mg, M; < N with Mg+ M; < N the states
that represent the number of susceptible and infected elements,
respectively. We know that 7°" is the solution of the following
Bellman equations: for Mg, M; = 0,1,...,N, Mg+ M; <
N, we have that

V(Ms,M[) = (CL—TF(Ms,M[))Ms-FC]M[

_min
m(Ms,Mr)€Ao

+ 6 (Inzg>1ywvV (Ms — 1, My)

+ Latss1am<v-1ywiV(Ms — 1, My + 1)

+ Lz, >1ywrV (Mg, My — 1)

+ ]1{MS§N—1,MS+M,gN—1}wSV(MS +1, My)
+ @V (Ms, My)), (3)



with transition probabilities

wy = QO{Ms
wr = QyMgm(Mg, Mr)Mr/(N —1)
WR = QIDM[

wg = QB(N — Mg — M)

w=1—wy —wy —wWRr — Wg

We now describe the probability transitions of the system.
The transition probability wy is the probability that an element
is vaccinated and reaches the recovered state. The probability
wy is the probability that a susceptible element becomes
infected. This probability depends on the confinement strategy
m. The probability that one element gets recovered from
infection is wpr and the probability that a recovered element
becomes susceptible again is wg. Finally, w is the probability
that no changes in the state of any element occur.

From the Bellman equations for V (Mg, M), we extract
the following properties of the social optimum confinement
strategy.

Proposition 3. Let m" be the solution to equations (3). Then,
for any Mg =0,1,...N,

TI'Opt(Ms,O) =1

Proof. Consider the equation (3). If M; = 0, then w; = 0,
which results:

,ﬂ_opt —

argmin (¢ —7(Ms,0))Ms
W(Ms,O)EAO
+ ) (]]‘{MSZI}U}VV(MS - 1,0)
+ ]I{A?SSNfl}wSV(MS +1,0)
+ (1 —wy —wg)V(Ms,0)),

570))5

Ms=0,1,...,N

= argmin (—7( Mg =0,1,...,N
m(Ms,0)€Ap

where the second equality holds since wy and wg do not

depend on 70, Therefore, for any Mg = 0,..., N, it holds

that 7°P' (Mg, 0) = 1. O

The above result says that, when there are no infected ele-
ments, the optimal strategy is to be completely exposed (i.e.,
m°Pt = 1). The next result deals with the case where Mg = 0
and states that 7°P*(0, M) € Ay, for any M; € {0,1,...,N}
(i.e., every confinement strategy is optimal when there are no
susceptible elements).

Proposition 4. Let m be a confinement policy for the
(GLOBAL-COST) problem. Then, for any other policy ' with
7' (Mg, M) = n(Mg, My) for each Mg > 1, My > 0, where
Ms + My < N,

W(r) =W (')

Proof. From equation (3), if Mg = 0 the variable of
the minimization problem, that is in the elements (c; —
(Mg, M7))Ms + c;M; and wy, is removed. Therefore,
the cost of the global optimization problem is the same

independent of the action taken by the policy in states where
Mg = 0. O

Our last result shows that 7°P! is either to confine or to be
completely exposed.

Proposition 5. Let 7w be the solution to equations (3). Then,
for any Mg, My with Mg, My =0,1,...,N and Mg+ M <
N,

(Mg, M;) € {0,1}.

Proof. The result follows immediately because the min-
imization problem 1is linear in 7(Mg,M;) and Ay =
{0,4,... =L 1} O

We would like to establish further analytical results for
the solution of the considered problems to compare their
performance and to study the optimality of the solution to
the decentralized setting. Unfortunately, due to the complexity
of the obtained equations, we have not been able to provide
more analytical results, but in the next section, we present our
numerical work as well as the conclusions we derive from it.
The code to reproduce the experiments of the next section can
be found at [5].

IV. EFFICIENCY ANALYSIS

In this section, we compare the cost of the Nash equilibria
and the cost of the social optimum. We say that a Nash equi-
librium is efficient when its cost coincides with the optimal
cost (i.e., the cost of the social optimum).

We recall that 7°" is the global optimal strategy, i.e.,
the strategy that minimizes (GLOBAL-COST) and 7" the
symmetric Nash equilibrium strategy. By definition, we have
that W (7°P") < W (™). Thus, a symmetric Nash equilibrium
is said to be efficient when W (75"¢) = W (7°P"). In this work,
we will say that a symmetric Nash equilibrium is efficient
when both strategies coincide for all the states.

According to Proposition 2 and Proposition 5, we know
that the global optimum and a symmetric Nash equilibrium
are either not to confine or to be completely exposed to the
epidemic, i.e., 7°P* € {0,1} and 7°"¢ € {0,1}. Despite this
simplification, given the difficulty of the Bellman equations,
we have not been able to obtain an analytical solution to 7°"¢
and 7°Pt. As a consequence, we have obtained 7°"¢ and 7°P?
by solving (1) and (3) using value iteration for a wide range
of parameters, from which we have obtained the conclusions
that we discuss in this section.

The main difficulty in the comparison of w°P! and m°"¢
is that the domain of both strategies is different. Indeed, the
domain of 7w°P¢ is

SZ{(MS,M[) €N2:M5+M5§N},

whereas the domain of 75"¢ is S = {(Mgs, M) € N? : Mg+
Mg < N—1} (note that the domain of 7°™¢ coincides with the
domain of w2%). To overcome this difficulty, we perform the
efficiency analysis in two different manners: (a) by graphical
visualization of the obtained results and (b) by comparing the



proportion of states for which the solution is to be completely
exposed.

An important conclusion of our work is that, even though
both strategies are very similar, the symmetric Nash equilib-
rium policy is more exposed to the epidemic (or equivalently,
the global optimum is more confined). From our numerical
experiments, we also conclude that both strategies have a
switching curve. We now present and discuss some illustra-
tions that are representative of the general pattern. In the
following plots, we represent with a green point the states
where the global optimum or the Nash equilibrium is to be
completely exposed (that is, 75™¢ = 1 or m°P! = 1) and with
a red cross when 75"¢ = 0 or P! = 0.

In Figure 1, we consider N = 30, v = 0.7, p = 0.3,
a=0.2, 3=0.2, c; =1 and ¢y = 5.5. Our first observation
consists of noting that the Nash equilibrium strategy is more
completely exposed than the global optimum. Indeed, the
proportion of states for which the 7°P* = 0 is equal to 0.658,
whereas the proportion of states for which 7°"¢ = 0 is equal
to 0.594. These figures also show that there exists a switching
curve for both strategies; indeed, if w°P*(Mg, M;) = 0, then
7Pt (Mg, M; + 1) = 0, for M; + Mg < N — 1, and if
7Pt (Mg, M;) = 1, then 7°P* (Mg, M; — 1) = 1, for M} > 0
(likewise for 7°7¢).

We have carried out further experiments to understand better
the shape of the switching curve of 7°™¢ and 7°P!. For this
purpose, in Figure 2, we consider v = 0.34 and p = 0.7 and
the rest of the parameters as in Figure 1. From this illustration,
we conclude that the switching curve of 7°"¢ is increasing with
respect to Mg, while the switching curve of 7°P? is increasing
with respect to Mg (when Mg > 0).

For the instance of Figure 2, proportion of states in which
7Pt = ( is 0.090, while the proportion of states in which
7"¢ = 0 is 0.082. This is the same behavior shown in the
instance of Figure 1, that is, the social optimum policy confines
more than the Nash equilibrium policy.

We now further analyze the difference in the behavior of the
Nash Equilibrium policy 7*"® and the social optimum policy
P! for different configurations of the costs c¢; and cy,. We do
so by comparing how the proportion of confinement for each
strategy (i.e., for the global optimum, the proportion of states
where 7P = 0 and, for the symmetric Nash equilibrium, the
proportion of states where 7°"¢ = () varies when the cost
values change and the rest of the parameters are fixed. In
Figure 3, we consider the same scenario as Figure 1, except
for the costs ¢y and cr,. More precisely, we consider the model
under study in this article with the following parameters:
N =30,vy=07 p=03, a=02and g = 0.2. In all
these illustrations, the results related to the global optimum
are represented with a dotted line, whereas the results that are
associated with the symmetric Nash equilibrium with a solid
line.

In Figure 3a, we show the evolution of the proportion of
confinement for 7" and 7°" as c¢; varies from zero to 70.
The comparison is made for different values of cr,, that is, for
cr, = 1 (whose results are represented in blue), c;, = 5 (whose

results are represented in orange), and c;, = 20 (whose results
are represented in green). Our first observation is that each
of the curves shown is non-decreasing with c; and therefore,
both strategies confine more if the infection cost increases and
the rest of the parameters do not vary. For the three values of
cy, this illustration also shows that the curve of 7" is never
above its corresponding curve of 7°P', implying that in each
of the cases, the Nash Equilibrium strategy confines less than
or equal to the social optimum strategy. The difference in the
proportion of confinement is zero when c; is low, as both
strategies do not confine, and have with the same proportion
of confinement when c; is high, as both strategies confine all
the possible states in this case. We remark that the maximum
possible proportion of confined states will always be below
1; this is in line with the result of Proposition 1 and of
Proposition 3. When cy, is very large, the value of the cost c;
from which the proportion of confinement is not zero is higher.
This means that a high lockdown cost leads to a strategy that
prefers infection over confinement. For the analogous reason,
we can observe that for the high values of ¢y, the confinement
proportion reaches the maximum for higher values of c;.

We now consider the inverse situation as in the previous
representation, i.e., we vary the cost of lockdown and study
the proportion of confinement of both strategies. In Figure 3b,
we show the evolution of the proportion of confinement of
the two strategies as the lockdown cost increases from 0 to
70. We consider the following values of the cost of infection
cr: 15 (which we represent in blue), 30 (which we represent
in orange), and 70 (which we represent in blue). We observe
that the proportion of confinement of both strategies are now
decreasing with cy; indeed, the higher the lockdown cost, the
lower the number of states in which the confinement will be
applied. Moreover, we also observe that, as in the previous
illustration, the proportion of confinement of 7 is never
above its corresponding curve for 7°", driving to the same
conclusion that Nash Equilibrium strategy confines less than
the social optimum strategy.

We analyze whether this observation generalizes to a more
general setting. For this purpose, we randomly generated
different scenarios by fixing N = 30 and considering random
parameters among the rest of the parameters of the model.
We have considered more than 400 scenarios and, for each of
them, we compute the proportion of states in which 7"¢ =0
minus the proportion of states in which 7°Pt = 0. We
have checked that none of the scenarios satisfy the following
conditions: (a) 7°P* = 0 and 7°"° = 0 for all the states, and
(b) 7Pt and 7*"¢ get the maximum possible value (which is
%—1} for any N, and for N=30, we get 0.934) for all the states.
This has been done to focus only on non-trivial cases. In this
experiments, we observe that the value of the proportion of
states in which 7°"¢ = 0 minus the proportion of states in
which 7°P* = ( is always negative and they are, in most of
cases, very close to zero. From these experiments, we conclude
that these proportions are very close, but the decentralized
setting (i.e., the Nash equilibria policy) confines less than the
social optimum policy. We do not present an illustration of
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Fig. 1: Example of Nash equilibrium and social optimum policy for this model. Green dots represent completely exposed

policy and red crosses confinement.
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(b) Social optimum policy

Fig. 2: Example of Nash equilibrium and social optimum policy for v = 0.34 and p = 0.7 and the rest of the parameters as
in Figure 1. We observe that the proportion of states where it is optimal to confine increases in both instances.

this set of experiments here due to lack of space.

V. CONCLUSIONS AND FUTURE WORK

We consider the SIRS model with vaccinations, which
is a generalization of the traditional SIR model where the
susceptible population can be vaccinated and the recovered
population becomes susceptible after a random time. We
assume that time is continuous and that there are N < oo
elements. We study lockdown strategies from two different
perspectives: (i) a decentralized setting (i.e., a non-cooperative
game) where each element aims to minimize its own expected
cost, and (ii) a centralized setting where the goal is to find the
lockdown strategy that all the elements must follow so as to

minimize the overall population expected cost. We formulate
a Markov Decision Process to solve both problems, and we
derive analytical results on the structure of the solution. For
instance, we show that, when the number of infected elements
is zero, the Nash equilibrium and the global optimum consist
of being completely exposed to the infection. Moreover, we
study numerically the derived solution to both problems and
we provide the following conclusions:

o the symmetric Nash equilibria and the global optima
strategies have a switching curve,

« the decentralized setting solution confines less than the
solution to the centralized setting.

Our model presents several limitations that we plan to
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address as future work. For instance, we are interested in
providing analytical results about the observations we derive
from the numerical experiments; for instance, the existence
of a switching curve or that the proportion of confinement is
less for the solution of the decentralized setting than for that
of the centralized setting. Moreover, given that our approach
suffers from the curse of dimensionality, we want to investigate
numerical approaches that scale with the number of agents.
We are also planning to consider real data (for instance, from
the COVID-19 pandemic) to compare the real performance
of a system with the performance of the solution of the
decentralized problem and the centralized problem we study
in this work. Another possible future research is considering
studying the solution to both problems under analysis in
this work using methods from machine learning, such as
reinforcement learning; in this context, the goal would be
to develop efficient algorithms that find the solution to these
problems. Finally, an interesting future research is to consider
more complex models to analyze whether the presented results
generalize.
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