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Abstract—We consider a parallel-server system with K ho-

mogeneous servers where incoming tasks, arriving at rate �,

are dispatched by n dispatchers. Servers are FCFS queues and

dispatchers implement a size-based policy such that the servers

are equally loaded. We compare the performance of a system with

n > 1 dispatchers and of a system with a single dispatcher. Every

dispatcher handles a fraction 1/n of the incoming traffic and

balances the load to K/n servers. We show that the performance

of a system with n dispatchers, K servers and arrival rate �

coincides with that of a system with one dispatcher, K/n servers

and arrival rate �/n. Therefore, the performance comparison

can be interpreted as the economies of scale in a system with

one dispatcher when we scale up the number of servers and

the arrival rate proportionately. We consider two continuous

service time distributions: uniform and Bounded Pareto that

have increasing and decreasing failure rates, respectively; and

a discrete distribution with two values, which is the distribution

that maximizes the variance for a given mean. We show that the

performance degradation is small for uniformly distributed job

sizes, but that for Bounded Pareto and two points distributions

it can be unbounded.

I. INTRODUCTION

We are interested in measuring the performance of parallel-
server systems formed by K homogeneous servers. For these
systems, the exact analysis of the mean response time of
some routing policies such as Join the Shortest Queue is
known to be a difficult task and, as a consequence, in this
work we focus on a size-based dispatching policy called Size
Interval Task Assignment policy with Equal Load (SITA-E)
[1]. In the SITA-E scheduling the service time distribution is
divided into intervals, all the jobs whose size fall in a given
interval are dispatched to the same server and the servers are
equally loaded. It is known that, when the variability of jobs
increases, SITA-E policy improves the performance comparing
with other task assignment policies such as Round Robin or
Bernoulli. Another important property of SITA-E policy with
respect to other popular routing policies in the literature, such
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Fig. 1: SYS-(4,1,�). There is one dispatcher that receives all
the traffic and sends it to all the servers.
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Fig. 2: SYS-(4,2,�). There are two dispatchers and each of
them controls a half of the total incoming traffic and balances
the load to two servers.

as Power of two, is that it does not require signaling between
dispatchers and servers.

In this work, we compare the performance of SYS-(K,n,�),
which is formed by n > 1 dispatchers, where each of
them handles a traffic equal to �/n and balances it to K/n

queues, with the performance of SYS-(K,1,�). We present in
Figure 1 and in Figure 2 an example of the multiserver systems
under comparison in this paper. As a metric to measure the
difference on the performance of these systems, we define the
degradation factor as the ratio of the mean waiting time of
SYS-(K,n,�) over the mean waiting time of SYS-(K,1,�).



Degradation Factor (D) Result

Uniform Distribution: 1  D  1.138. Prop 2
K = 2

Uniform Distribution: 1  D  4/3. Prop 3
K > 2 Servers, n Groups.

Bounded Pareto: ↵ = 1, D� 1 and D! 11 Prop 4
K Servers, n Groups.

Bounded Pareto: ↵ 6= 1, 1  D  n

1
|1�↵| . Prop 5

K Servers, n Groups.
Two Point: K = 2, D� 1 and D! 11 Prop 6

Equally Loaded Jobs
Two Point: K = 2, D� 1 and D! 11 Prop 7

Unequally Loaded Jobs Prop 8

TABLE I: Summary of the main results of this article.

We show in Section III that the performance of SYS-(K,n,�)
is equal to the performance of SYS-(K/n,1,�/n). Thus, the
analysis of the degradation factor can be interpreted as the
economies of scale a multiserver system when we scale up
the number of servers and the arrival rate proportionately.

This work can potentially have an impact in the design of
data centers. Indeed, the architecture of modern data centers
has a tree-based topology where the knowledge of how to split
jobs is given in the edges nodes. This architecture corresponds
to SYS-(K,n,�) [2]. However, if the routing policies are
implemented in the core nodes, data centers consist of SYS-
(K,1,�) and the performance difference could be assessed
using the results of this article.

We assume that the servers are First-Come-First-Served
(FCFS), which is a common model, for example, in super-
computing systems [3]. We denote by � the ratio between the
smallest and the largest job size. The main contributions of
this work are presented in Table I. We analyze the degradation
factor for three representative distributions. We first consider
two job size distributions, uniform and Bounded Pareto, whose
failure rates are respectively increasing and decreasing.

• Uniform Distribution. For uniformly distributed job
sizes and two servers, we show that the degradation factor
is lower bounded by one and upper bounded by 1.138.
For more than two servers, assuming that the degradation
factor decreases with �, we prove that this ratio is lower
bounded by 1 and upper bounded by 4/3.

• Bounded Pareto Distribution. For Bounded Pareto dis-
tributed job sizes with parameter ↵ = 1, we show that
the degradation factor is lower bounded by one and
unbounded from above. When ↵ 6= 1, assuming that the
degradation factor decreases with �, we prove that this
ratio is lower bounded by 1 and upper bounded by n

1
|1�↵| .

We know that for the distributions with bounded and fixed
support, (i.e., fixed lower and upper bound) the distribution
that maximizes the variance (with a given mean) concentrates
on these two extreme points. Therefore, we study the degrada-

1We show that the degradation factor is lower bounded by one and that
there exist parameters of the system such that D ! 1.

tion factor for a discrete job size distribution that concentrates
on two points, the smallest and the largest job size.

• Two Point Distribution. For a discrete job sizes distri-
bution that consists of two points, the smallest and the
largest job size, we consider a two-server system and,
when the load of both types of jobs is equal or unequal,
we show that the degradation factor is lower bounded by
one and unbounded from above.

According to our results, the degradation is small for
uniformly distributed job sizes, but for Bounded Pareto and
two point distributions the degradation can be non negligible
and increases as the variability of the distribution increases.
We present simulations where we consider the Degenerate
Hyperexponential distribution that confirm that as the vari-
ability of the service time increases, so does the degradation.
Using numerical experiments, we validate the monotonicity
assumptions on the degradation factor.

Given the complexity of the analysis, our modeling assump-
tions have various limitations. For instance, we study SITA-E
dispatching policy rather than SITA policy where the cutoffs
optimize the system performance. Unfortunately, the analytical
computation of the optimal cutoffs is known to be impossible
even for a system with two servers [4]. Therefore, the analysis
of SITA-E seems to be a tractable approach that allows us to
get insights in the performance degradation of the systems
under study.

The rest of the paper is organized as follows. The related
work is presented in Section II. In Section III, we describe the
model and give some preliminary results. We study the degra-
dation factor for uniformly distributed job sizes in Section IV
and, in Section V, for Bounded Pareto distributed job sizes.
Then, in Section VI we analyze the degradation for a discrete
job sizes distribution that concentrates on two points. Finally,
we present the numerical experiments in Section VII.

Due to lack of space we have omitted the proofs of our
main results and for full details we refer to [5].

II. RELATED WORK

Many researchers in Computer Science have been interested
in analyzing how to balance the load in a system with
parallel queues optimally, that is, in order to minimize a
certain objective function, for example the mean response time
of jobs, see the survey [6] and the book [7]. The typical
architecture of the routing policies that are studied in the
literature is formed by one dispatcher that receives all the
incoming traffic, which distributes the load among the set of
servers. In the Join-the-Shortest-Queue [8], [9] the dispatcher
sends the job to the queue with least number of customers.
This routing policy is very popular since it minimizes the mean
response times of jobs when the number of customers in all the
servers is known. Another important routing policy is Power
of Two [10], [11], where for all incoming jobs, the dispatcher
selects two servers independently and uniformly at random and
applies the Join-the-Shortest-Queue policy among the chosen
two servers. When the service demand is known and the
servers are FCFS, the SITA policy with optimal thresholds



is shown to optimize the performance of the system [12]. In
this policy, each host serves jobs whose service demand is in
a designated range. The SITA-E policy has been introduced in
[1], [13] and, under this routing policy, the cutoffs are chosen
to equalize the load in all the servers. This dispatching policy
has been also studied in [14], where the authors apply SITA-
E to web server farms. In [15] the author introduces the task
assignment by guessing size, which is a variant of SITA-E
policy where knowledge of the job sizes is not required. Under
the SITA routing policy with optimal thresholds, asymptotic
analysis for the Bounded Pareto distribution has been done in
[16], [17]. The authors in [18] consider a system where the
coefficient of variation of incoming tasks is high and they show
that the performance of SITA can be much worse than the
performance of the Least-Work-Left policy. Another related
work is [4], where authors consider a two server system and
they give conditions that establish in which direction the load
should be unbalanced in order to optimize the performance.
Furthermore, for Bounded Pareto distributed job sizes, they
show that when (i) ↵ < 1, the short job server must be
underloaded, (ii) ↵ = 1, the load is equally balanced and
(iii) ↵ > 1, the long job server must be underloaded.

The problem of how to balance the load in a server farm has
been extensively studied also in the context of game theory,
see [19]–[24]. An important assumption in these models is that
jobs can decide individually where to get service.

III. MODEL DESCRIPTION

We consider a system with K servers with equal capacity
and n dispatchers. The servers are FCFS queues and the
dispatchers implement the SITA-E routing policy. We assume
that service times of incoming jobs form an i.i.d. sequence
with a common distribution denoted by X , and let E(X) and
E(X2) denote its first and second moment, respectively. Let
F (x) = P(X  x) denote the service time distribution. We
assume F (x) to be differentiable and we denote f(x) = dF (x)

dx

.

We denote by x

m

and x

M

the minimum and maximum size
of the incoming jobs to the system, and let � = x

m

x

M

2 [0, 1].
We denote by � the total incoming traffic to the system.

The traffic that each dispatcher controls arrives to the system
according to a Poisson process of rate �/n. Since each server
receives traffic from only one dispatcher, a server is said to be
of group i if it receives traffic from dispatcher i. We assume
that the number of servers in each group is the same and
equal to K/n.2 The total load in the system is denoted by
⇢ = � · E(X)/K. For stability reasons, we assume ⇢ < 1.

We denote by W (K,n, x

m

, x

M

,�) the random variable
corresponding to the waiting time of jobs in SYS-(K,n,�). We
observe that when n = 1 it is the waiting time of jobs of SYS-
(K,1,�) and when n = K we analyze K independent M/G/1
queues with arrival rate �/K.

We know that in SYS-(K,n,�) there are n groups and, in
each group, there are K/n servers. Moreover, the traffic that
each dispatcher of SYS-(K,n,�) handles is the same and equal

2It is implicitly assumed that n is a divisor of K.

to �/n and every dispatcher applies SITA-E policy. Besides,
all the n groups are exactly equivalent and, as a result, the
mean waiting time in SYS-(K,n,�) satisfies

E(W (K,n, x

m

, x

M

,�)) =
nX

i=1

1

n

E(W (
K

n

, 1, x
m

, x

M

,

�

n

))

= E(W (
K

n

, 1, x
m

, x

M

,

�

n

)). (1)

This result means that SYS-(K,n,�) and SYS-(K/n,1,�/n)
have the same performance. Therefore, the performance degra-
dation studied can be interpreted as the economies of scale in a
parallel-server system when we scale up the arrival rate and the
number of servers proportionally. We shall use the degradation
factor to assess the degradation on the performance of parallel-
servers systems. We define the degradation factor as follows:

D(K,n, x

m

, x

M

) =
E(W (K,n, x

m

, x

M

,�))

E(W (K, 1, x
m

, x

M

,�))

=
E(W (K

n

, 1, x
m

, x

M

,

�

n

))

E(W (K, 1, x
m

, x

M

,�))
. (2)

We have not included � as a parameter of the degradation
factor since, as we will see in Section III-D, the degradation
factor does not depend on the arrival rate. When the degrada-
tion factor is close to one, we conclude that the performance
of both systems is very similar. Besides, when the degradation
factor is upper bounded by M , the performance of SYS-
(K,n,�) is, in the worst case, M times the performance of
SYS-(K,1,�).

Remark 1 (Randomized Load Balancing): As an example,
let us calculate (2) in the case of a load balancing scheme
without sized-based information. We consider a system with
K homogeneous servers and one dispatcher that operates
under Bernoulli routing policy. The probability of a job to be
executed in a given server is 1/K and, therefore, the arrival
rate to that server is �/K. Thus, we obtain that the mean
waiting time of jobs in this system is (�/K) E(X2)

2 (1�⇢) . We now
consider a system with K/n homogeneous servers and an
incoming traffic �/n. We observe that the probability of a
job to be executed in a given server is n/K and the arrival
rate to that server is �/K. Hence, the mean waiting time in
this system is also (�/K) E(X2)

2 (1�⇢) . As a result, the degradation
factor for randomized load balancing policies is equal to one.

From Pollaczek-Khinchine formula [25], we know that the
waiting time of jobs depends on the second moment, which is
related to the variability of the service time distribution. With
SITA-E, as the number of servers increases, the size variability
in each server decreases. Hence, we can expect that the perfor-
mance of SYS-(K,n,�) to be worse than that of SYS(K,1,�).
Likewise, when x

m

and x

M

coincide, the jobs arrive to the
system following a deterministic distribution. Therefore, size-
based scheduling can not improve the performance and there
is no performance degradation in this case.

Lemma 1: If x

m

= x

M

, then the performance degradation
is equal to one.



From (2), we see that to analyze the degradation factor we
need to compare two systems with one dispatcher, where one
system has K servers and arrival rate �, so SYS-(K,1,�),
and the other K/n servers and arrival rate �/n, so SYS-
(K/n,1,�/n). In the next subsection, we consider a generic
system with one dispatcher, R servers and arrival rate �, and
we analyze its performance under SITA-E routing policy.

A. Waiting Time in SYS-(R,1,�)
From the Pollaczek-Khinchine formula, it follows that in a

system formed by R servers, arrival rate � and one dispatcher
that implements SITA-E policy, the mean waiting time is

E(W (R, 1, x
m

, x

M

,�)) =
�

2(1� ⇢)

RX

j=1

q

2
j

E(X2
j

), (3)

where ⇢ = �E(X)
R

, q
j

is the probability of a job to be executed
in server j and E(X2

j

) is the second moment of the service
time distribution of the tasks executed in server j.

When the job sizes distribution is continuous, there are R+1
thresholds c0, c1, . . . , cR satisfying that x

m

= c0 < c1 <

· · · < c

R�1 < c

R

= x

M

and jobs ranging in size from c

j�1

to c

j

are executed in server j. Furthermore, it is required that
Z

c1

x

m

xf(x)dx =

Z
c2

c1

xf(x)dx = · · · =
Z

x

M

c

R�1

xf(x)dx. (4)

We note that the load in server j is given by

� · (F (c
j

)� F (c
j�1)) ·

Z
c

j

c

j�1

x

f(x)

F (c
j

)� F (c
j�1)

dx,

and, thus, (4) implies that the load is the same in each server.
Let z

j

= c

j

/x

M

denote the scaled thresholds. In the particular
cases where j = 0 and j = R, we have respectively that
z0 = � and z

R

= 1.
Using conditional probability theory, we obtain that the

second moment of the jobs to be executed in server j is

E(X2
j

) =

Z
c

j

c

j�1

x

2 f(x)

F (c
j

)� F (c
j�1)

dx. (5)

Therefore, using (3), (5) and also that q
j

= F (c
j

)�F (c
j�1),

we obtain the following expression for the mean waiting time
of SYS-(R,1,�) for continuously distributed job sizes:

E(W (R, 1, x
m

, x

M

,�)) =

�

2 (1� ⇢)

RX

j=1

(F (c
j

)� F (c
j�1)) ·

Z
c

j

c

j�1

x

2
f(x)dx. (6)

B. Continuous Distributions: Uniform and Bounded Pareto
For uniformly distributed job sizes, if x

m

 x  x

M

,
we have that f(x) = 1

x

M

�x

m

, and f(x) = 0 otherwise.
Furthermore, the cumulative distributed function of the job
sizes is

F (x) =

8
><

>:

0, x  x

m

,

x�x

m

x

M

�x

m

, x

m

 x  x

M

,

1, x � x

M

.

The thresholds of SYS-(R,1,�) can be obtained from (4)
and using that f(x) = 1

x

M

�x

m

, for all x 2 [x
m

, x

M

], and are

given by c

j

=
q

(R�j) x

2
m

+j x

2
M

R

, j = 0, . . . , R.

For Bounded Pareto distributed job sizes, we have that, if
x

m

 x  x

M

, f(x) = ↵ x

↵

m

1�(x
m

/x

M

)↵ x

�↵�1
, and f(x) = 0

otherwise, where ↵ > 0. The cumulative distributed function
of the job sizes is

F (x) =

8
><

>:

0, x  x

m

,

1�(x
m

/x)↵

1�(x
m

/x

M

)↵ , x

m

 x  x

M

,

1, x � x

M

.

The value of the thresholds for Bounded Pareto distributed
job sizes of SYS-(R,1,�) is given in [13] and it is

c

j

=

8
><

>:

⇣
R�j

R

x

1�↵

m

+ j

R

x

1�↵

M

⌘ 1
1�↵

, if ↵ 6= 1,

x

m

⇣
x

M

x

m

⌘ j

R

, if ↵ = 1.

In the rest of the article, we denote by D

U

(K,n, x

m

, x

M

)
and D

BP (↵)(K,n, x

m

, x

M

) the degradation factor when the
job sizes are uniformly distributed and Bounded Pareto dis-
tributed with parameter ↵, respectively. Since, in both cases,
the degradation factor depends on x

m

and x

M

only through
� (see Lemma 3 and Lemma 8), we use the notation
D

U

(K,n, �) and D

BP (↵)(K,n, �).

C. Discrete Distribution: Two Point Distribution
Here we assume that the job sizes are distributed in two

points and hence with probability p an incoming task is of
size x

m

and with probability 1 � p it is of size x

M

. The
jobs of size x

m

(resp. of size x

M

) are said to be short jobs
(resp. long jobs). Since the distribution under consideration is
discrete, (4) does not determine the load balancing for this
distribution. Therefore, we define how the load is balanced in
SYS-(R,1,�) when the job sizes are distributed in two points.

Let l = R

1+
(1�p)x

M

px

m

. If l is an integer, the short jobs are

executed in l servers and the load is balanced among these
servers using the Bernoulli routing policy. On the other hand,
the long jobs are executed in R � l servers, where it is also
applied the Bernoulli scheduling. Indeed,

l =
R

1 + (1�p)x
M

px

m

() px

m

l

=
(1� p)x

M

R� l

,

and, as a consequence, the load in all the servers is the same.
If l is not an integer, we have three different possibilities:

• If l > R�1, there is one server that executes all the long
jobs and a proportion p1 of short jobs. In the rest of the
servers only short jobs are executed. The value of p1 is
chosen so as to equalize the load of the servers, that is,
it is the solution of the following equation: (1�p1)pxm

R�1 =
p1pxm

+ (1� p)x
M

.

• If l < 1, there is one server that executes all the short jobs
and a proportion p2 of long jobs. In the rest of the servers
only long jobs are executed. The value of p2 is chosen
so as to equalize the load of the servers, that is, it is the



solution of the following equation: px
m

+p2(1�p)x
M

=
(1�p2)(1�p)x

M

R�1 .

• If 1 < l < R� 1, there are blc servers that execute only
short jobs and R�dle servers3 that execute only long jobs,
while in the other server a proportion p1 of short jobs and
a proportion p2 of long jobs. The values of p1 and p2 are
chosen in order to equalize the load of the servers, that
is, (1�p1)pxm

blc = p1pxm

+p2(1�p)x
M

= (1�p)(1�p2)xM

R�dle .

We analyze in Section VI the degradation factor when the
job sizes are distributed in two points and we denote it by
D

TP (l)(K,n, x

m

, x

M

).

D. Preliminary Results
We present how the results obtained in Section III-A can be

used to give the expression for the degradation factor. We first
observe that, from (3), we can obtain the mean waiting time of
SYS-(K,1,�) when R = K and � = � and the mean waiting
time of SYS-(K/n,1,�/n) when R = K/n and � = �/n.
We observe that, for both systems, ⇢ coincides and that the
factor �

2(1�⇢) appears in the numerator and denominator of the
degradation factor. Hence, we conclude that the degradation
factor does not depend on the arrival rate �.

We now concentrate on continuously distributed job sizes.
Let x0, . . . , xK

denote the thresholds of SYS-(K,1,�) and
y0, . . . , yK

n

denote the thresholds of SYS-(K/n,1,�/n). Sub-
stituting these values in (6) gives:

D(K,n, x

m

, x

M

) =

1

n

P
K/n

j=1 (F (y
j

)� F (y
j�1))

⇣R
y

j

y

j�1
x

2
f(x)dx

⌘

P
K

j=1 (F (x
j

)� F (x
j�1))

⇣R
x

j

x

j�1
x

2
f(x)dx

⌘
. (7)

As it can be observed, the degradation factor depends on the
thresholds of SYS-(K/n,1,�/n) and of SYS-(K,1,�). We now
show that the thresholds of both systems are related.

Lemma 2: If f(x) > 0 for all x 2 [x
m

, x

M

], then y

j

= x

n·j .

From this result and (7), it follows directly the expression for
the degradation factor for continuously distributed job sizes.

Proposition 1: If f(x) > 0 for all x 2 [x
m

, x

M

],

D(K,n, x

m

, x

M

) =

1
n

P
K/n

j=1

�
F (x

n·j)� F (x
n·(j�1))

� ⇣R
x

n·j
x

n·(j�1)
x

2
f(x)dx

⌘

P
K

j=1 (F (x
j

)� F (x
j�1))

⇣R
x

j

x

j�1
x

2
f(x)dx

⌘
, (8)

where the thresholds x

m

= x0, x1, . . . , xK�1, xK

= x

M

sat-
isfy

R
x1

x

m

xf(x)dx =
R
x2

x1
xf(x)dx = · · · =

R
x

M

x

K�1
xf(x)dx.

IV. UNIFORMLY DISTRIBUTED JOB SIZES

In this section, we focus on the degradation factor when the
job sizes are uniformly distributed. It is trivial to check that
the scaled thresholds are z

j

=
q

(K�j)�2 +j

K

, j = 0, . . . ,K.

We now observe that this distribution satisfies that f(x) > 0
for all x 2 [x

m

, x

M

]. Therefore, we can use the result of

3bxc and dxe denote respectively the floor and the ceil of x 2 R.

Proposition 1 to compute the degradation factor when the job
sizes are uniformly distributed. In the following result, we
give an expression of the degradation factor for uniformly
distributed job sizes, which, as expected, depends on x

m

and
x

M

only through �.
Lemma 3: The degradation factor for uniformly distributed

job sizes only depends on K, n and � and it is given by

D

U

(K,n, �) =
1

n

P
K/n

j=1 (zn·j � z

n·(j�1))(z
3
n·j � z

3
n·(j�1))

P
K

j=1(zj � z

j�1)(z3
j

� z

3
j�1)

.

(9)

A. The case K = 2

We study the degradation factor for a two-server system and
uniformly distributed job sizes. From (9) and noting that z1 =q

�

2+1
2 , we obtain that the degradation factor for uniformly

distributed job sizes in a system with two servers is

D

U

(2, 2, �) =
1

2

(1� �)(1� �

3)

(1� z1)(1� z

3
1) + (z1 � �)(z31 � �

3)
.

We now show that D
U

(2, 2, �) decreases with �.
Lemma 4: For � < 1, D

U

(2, 2, �) is decreasing with �.
We use this result and Lemma 1 to give a lower bound and

an upper bound of D
U

(2, 2, �).
Proposition 2: 1  D

U

(2, 2, �)  lim
�!0 DU

(2, 2, �) =
1
2

1

(1�( 1
2 )

1
2 )(1�( 1

2 )
3
2 )+1/4

⇡ 1.138.

B. The case K > 2

In this section, we study the degradation
factor for arbitrary K. When � ! 0, we have
z

j

!
q

j

K

. Therefore, it follows from (9) that
lim

�!0 DU

(K,n, �) = n s(K/n)
s(K) ,where, for all integers

m, s(m) =
P

m

j=1 (j
3/2 � (j � 1)3/2)(j1/2 � (j � 1)1/2).

1) Fixed Number of Servers in Each Group: We study the
value of lim

�!0 DU

(K,n, �) when the number of servers in
each group p = K

n

is fixed. We first give the following lemma.
Lemma 5:

(a) s(m)� s(m� 1) is a decreasing function of m.
(b) s(m)

m

is decreasing with m.
(c) Fix p, lim

�!0 DU

(K,n, �) increases with K.
(d) lim

K!1
s(K)
K

= 3
4 .

(e) Fix p, then lim
K!1 lim

�!0 DU

(K,n, �) = 4
3 · s(p)

p

.

(f) For all integers m, s(m+ 1)� s(m) � 3/4.
Using Lemma 5(c) and Lemma 5(e), we give an upper

bound of lim
�!0 DU

(K,n, �) when the number of servers in
each group is fixed.

Lemma 6: Fix p. Then, lim
�!0 DU

(K,n, �)  4
3 · s(p)

p

.

2) Fixed Number of Groups: We analyze the be-
havior of lim

�!0 DU

(K,n, �) when n is fixed. Using
Lemma 5, we show that, when we fix n, the maximum of
lim

�!0 DU

(K,n, �) is achieved when K = n.
Lemma 7: Fix n. Then lim

�!0 DU

(K,n, �) 
lim

�!0 DU

(n, n, �) = n

s(n) .



3) Degradation Factor: We now present how, using the
results of Section IV-B1 and Section IV-B2, we can study
the performance degradation for arbitrary K and uniformly
distributed job sizes.

We assume that D
U

(K,n, �) decreases with � when K > 2
and any n. Unfortunately, given the difficulty of the expression
(9), we have not succeeded to generalize the result of Lemma 4
to a system with more than two servers. From extensive
numerical experiments, we conjecture that the degradation
factor decreases with � for K > 2 and any n.

Conjecture 1: D

U

(K,n, �) decreases with �, for K > 2
and any n.

In the following result, we give a lower bound and an upper
bound for D

U

(K,n, �), where K > 2 under this conjecture.
Proposition 3: Assume Conjecture 1 holds. Then, 1 

D

U

(K,n, �)  4/3.
Using Lemma 5(b) and Lemma 5(d), we show that the

upper bound is tight when K = n and K ! 1.

Corollary 1: Assume Conjecture 1 holds. When K = n and
K ! 1, the degradation factor for uniformly distributed job
sizes equals 4/3.

V. BOUNDED PARETO DISTRIBUTED JOB SIZES

In this section, we concentrate on the degradation factor for
Bounded Pareto distributed job sizes.

We now present the values of the scaled thresholds for
Bounded Pareto distributed job sizes:

z

j

=

8
<

:

⇣
K�j

K

�

1�↵ + j

K

⌘ 1
1�↵

, ↵ 6= 1,

�

1� j

K

, ↵ = 1.
(10)

Since f(x) > 0 for all x 2 [x
m

, x

M

], the result of Proposi-
tion 1 can be used to obtain the expression of the degradation
factor for Bounded Pareto distributed job sizes. Moreover, the
proof of Lemma 3 applies mutatis mutandis to show that the
degradation factor for Bounded Pareto distributed job sizes
depends on x

m

and on x

M

only through �.
Lemma 8: The degradation factor for Bounded Pareto dis-

tributed job sizes only depends on K, n, ↵ and � and it is given

by D

BP (↵)(K,n, �) = 1
n

P
K/n

j=1 (z2�↵

n·j �z

2�↵

n·(j�1)
)(z�↵

n·(j�1)
�z

�↵

n·j )P
K

j=1(z
2�↵

j

�z

2�↵

j�1 )(z�↵

j�1�z

�↵

j

)
.

A. The case ↵ = 1

We first analyze the degradation factor for Bounded Pareto
distributed job sizes with ↵ = 1. As we said in Section II, the
authors in [4] show that SITA-E optimizes the performance
of a system with two servers and Bounded Pareto distributed
jobs sizes with ↵ = 1. From Lemma 8 and (10), it results that

D

BP (1)(K,n, �) =
1

n

2
· �

�n

K (1� �

n

K )2

�

�1
K (1� �

1
K )2

. (11)

We show that this expression decreases with �.
Lemma 9: D

BP (1)(K,n, �) is a decreasing function of �.
Using this result and Lemma 1 and noting, from (11), that

D

BP (1)(K,n, �) tends to infinity when � ! 0, we give the
following result.

Proposition 4: D
BP (1)(K,n, �) � 1 and it tends to infinity

when � ! 0.
From this result, we state that the performance of SYS-

(K/n,1,�/n) is, in the worst case, infinite times worse that the
performance of SYS-(K,1,�). In particular, this ratio equals
infinity when x

M

! 1, in which case we know that the
Bounded Pareto distribution is very skewed and the variance
goes to infinity.

B. The case ↵ 6= 1

We now study the degradation factor for Bounded Pareto
distributed job sizes with ↵ 6= 1. We first give the value of
D

BP (↵)(K,n, �) when � ! 0, i.e., when the ratio between
x

m

and x

M

tends to zero.
Lemma 10: If ↵ 6= 1, lim

�!0 D
BP (↵)(K,n, �) = n

1
|1�↵|

.

It is important to note that, when � ! 0, the degradation
factor for Bounded Pareto distributed job sizes with ↵ 6= 1
does not depend on K.

We observe, see numerical section, that the degradation
factor for Bounded Pareto distributed job sizes with ↵ 6= 1
decreases with �. Given the difficulty of the expression (8)
as well as the scaled thresholds (10), we have not succeeded
in showing this monotonicity property when ↵ 6= 1. We have
performed many numerical experiments to conjecture that the
degradation factor decreases with � when ↵ 6= 1.

Conjecture 2: When ↵ 6= 1, D
BP (↵)(K,n, �) is a decreas-

ing function of �, for all K and n.
Under this assumption, the minimum of the degradation

factor is achieved when � ! 1 and the maximum when � ! 0.
From the results of Lemma 1 and Lemma 10, we give a lower
bound and an upper bound of D

BP (↵)(K,n, �) when ↵ 6= 1.
Proposition 5: Assume Conjecture 2 holds. Then, when ↵ 6=

1, 1  D

BP (↵)(K,n, x

m

, x

M

)  n

1
|1�↵|

.

We observe that n

1
|1�↵| is infinite when ↵ ! 1 for

any n. Therefore, we conclude from Proposition 4 and
Proposition 5 that the limits when � goes to zero and
when ↵ tends to one interchange for Bounded Pareto job
sizes distribution, i.e., lim

�!0 lim↵!1 D
BP (↵)(K,n, �) =

lim
↵!1 lim�!0 D

BP (↵)(K,n, �).

VI. TWO POINT DISTRIBUTED JOB SIZES

In this section, we assume that the job sizes are distributed
in two points with parameter p, i.e., p = P(X = x

m

) and
P(X = x

M

) = 1 � p. We recall that the load balancing of
SYS-(K,1,�) for this distribution depends on l = K

1+
(1�p)x

M

px

m

.

A. The Case K = 2

We first study the degradation factor for this distribution in a
two-server system. Hence, we aim to compare the performance
of SYS-(2,1,�) with the performance of SYS-(1,1,�/2). SYS-
(1,1,�/2) is a M/G/1 queue with arrival rate �/2 and, accord-
ing to the Pollaczek-Khinchine formula, its expected waiting
time is

�

2 E(X2)
2(1�⇢) . We now analyze the degradation factor for

different values of l.



1) Equally Loaded Jobs (l = 1): We assume that l = 1,
which occurs when px

m

= (1� p)x
M

, i.e., the load of short
jobs and of long jobs is equal. We note that for any � 2 [0, 1],
there exists a value p 2 [0.5, 1] such that p� = (1� p) holds.

When l = 1, in SYS-(2,1,�), the short and long jobs
are executed in different servers. From (3), it follows that
the expected waiting time of SYS-(2,1,�) when l = 1 is
given by �

2(1�⇢) (p
2
x

2
m

+ (1 � p)2x2
M

). Using that px

m

=

(1 � p)x
M

and also that E(X2) = px

2
m

+ (1 � p)x2
M

, we
obtain the following expression for the degradation factor:
D

TP (1)(2, 2, �) =
(1+�)2

4� . It is easy to see that this expression
is decreasing with � for all � 2 [0, 1] and, as a result, an upper
bound and a lower bound are given when � ! 0 and � ! 1,
respectively. From Lemma 1 and since the degradation factor
tends to infinity when � ! 0, it implies the following result:

Proposition 6: D

TP (1)(2, 2, �) � 1 and it tends to infinity
when � ! 0.

2) Unequally Loaded Jobs (l 6= 1): We assume that l > 1.
For this case, in SYS-(2,1,�), we have that px

m

> (1� p)x
M

,
i.e., the load of small jobs is higher that the load of large
jobs, and also that there exists a proportion p1 such that
(1 � p1)pxm

= p1pxm

+ (1 � p)x
M

, holds. This means that
there is one server that executes all the large jobs and a propor-
tion p1 of small jobs, while in the other server only small jobs
are executed. From (3) and using conditional probability prop-
erties, we have that the expected waiting time of SYS-(2,1,�)
is �

2(1�⇢) ((1�p1)2p2x2
m

+(p1p+(1�p))(p1px2
m

+(1�p)x2
M

)),
which gives

D

TP (l)(2, 2, �, p1) =

1

2

p�

2 + (1� p)

p

2(1� p1)2�2 + (p1p+ (1� p))(p1p�2 + (1� p))
. (12)

We show that (12) decreases with �.
Lemma 11: When l > 1, D

TP (l)(2, 2, �, p1) is a decreasing
function of �.

From this result and Lemma 1, we conclude that
D

TP (l)(2, 2, �, p1) is lower bounded by one when l > 1.
We now observe that when p1 ! 0, (12) coincides with
D

TP (1)(2, 2, �). Besides, executing long jobs and short jobs
in different servers leads to a performance improvement in
SYS-(2,1,�) with respect to the case l > 1. As a consequence,
since SYS-(1,1,�/2) does not vary with l, we have that when
l > 1, D

TP (l)(2, 2, �, p1)  lim
p1!0 D

TP (l)(2, 2, �, p1) =
D

TP (1)(2, 2, �). Thus, from Proposition 6, it follows that
D

TP (1)(2, 2, �) is unbounded from above.
Proposition 7: When l > 1, D

TP (l)(2, 2, �, p1) � 1 and it
tends to infinity when � ! 0 and p1 ! 0.

When l < 1, the situation is very similar to that of
l > 1. In this case, we have that D

TP (l)(2, 2, �, p2) 
lim

p2!0 D
TP (l)(2, 2, �, p2) = D

TP (1)(2, 2, �) and the same
techniques as in Lemma 11 show that the degradation factor
is decreasing with � when l < 1. As a consequence, we give
the following result.

Proposition 8: When l < 1, D
TP (l)(2, 2, �, p2) � 1 and it

tends to infinity when � ! 0 and p2 ! 0.

B. The case K > 2

We show that there are instances where there is no perfor-
mance degradation for arbitrary K. We assume that l is an
integer. Hence, we know that in SYS-(K,1,�) the short jobs
are executed in l servers using Bernoulli policy, while the long
jobs are executed in K � l servers, also applying Bernoulli
policy. Therefore, the arrival rate to a server that executes
short jobs is �

p

l

and the arrival rate to a server that executes
long jobs is �

1�p

K�l

.
We now analyze the performance of SYS-(K/n,1,�/n) when

l is a multiple of n. Thus, for SYS-(K/n,1,�/n), we define l⇤ =
K/n

1+ (1�p)
px

m

and, if l

⇤ is an integer, the short jobs are executed

in l

⇤ servers and the long jobs in K/n � l

⇤. Note that l⇤ =
l/n and therefore l

⇤ is an integer since l is a multiple of n.
Hence, the arrival rate to a server that executes short jobs is
�

n

p

l

⇤ = �

p

l

and the arrival rate to a server that executes long
jobs is �

n

1�p

K/n�l

⇤ = �

1�p

K�l

. It follows directly thus that the
performance of SYS-(K/n,1,�/K) coincides with that SYS-
(K,1,�) when l is a multiple of n.

When l is not a multiple of n, in SYS-(K/n,1,�/n) there is
one server where jobs of both types are executed. Therefore,
the performance of both systems do not coincide for this
instance and we can claim that there exists a performance
degradation. Given the difficulty of the expressions of the
degradation factor for arbitrary K and when l is not a multiple
of n, we did not succeed in performing the analytical study
of the performance degradation.

VII. NUMERICAL COMPUTATIONS

A. Monotonicity Assumptions

We aim to check that the properties of Conjecture 1 and
Conjecture 2 hold. We have performed a large number of
simulations modifying the parameters of the system. In all
the cases, we have observed that the monotonicity property is
satisfied. We now present a few results that are illustrative of
the general pattern.

In Figure 3, we represent the evolution of D

U

(K,n, �)
over � when K = 1000 and different values of n (note
that the x-axis is in the logarithmic scale). We observe that,
in all the instances, the degradation factor decreases with �.
Furthermore, we see that, when n = 1000 and � ! 0, the
degradation factor tends to 4/3, which is the upper-bound
given in Proposition 3. However, in the other cases, the
degradation factor is strictly less than 4/3, when � ! 0.

We also investigate the degradation factor for Bounded
Pareto distributed job sizes with ↵ 6= 1. In Figure 4, we
consider a system with 1000 servers and ↵ = 1.5 and we plot
the evolution of the degradation factor with respect to � for
different values of n. We observe that the degradation factor
in all the instances is always decreasing with �, as stated in
Conjecture 2. In addition, we observe that D

BP (↵)(K,n, �)
tends to n

2 when � ! 0, which coincides with the value given
in Lemma 10.



Fig. 3: Evolution of the degradation factor for uniformly
distributed job sizes with respect to �(x-axis in logarithmic
scale).

Fig. 4: Evolution of the degradation factor for Bounded Pareto
distributed job sizes with parameter ↵ = 1.5 with respect to
� (x-axis and y-axis in logarithmic scale).

B. Degradation Factor

1) Bounded Pareto: We now study the degradation factor
for Bounded Pareto. We know from the results of Section V
that the degradation factor can be very large, for example when
� is zero and ↵ is close to one. We consider a system with K =
1000 servers and we set � to 9/1014, which is the value used
by [13]. As we saw in Lemma 8, the performance degradation
does not depend on the arrival rate of the system. Hence, we
do not specify the value of this parameter in these experiments.

In Table II, we show the degradation factor when n = 100,
n = 500 and n = 1000 for different values of ↵. We also
present in Table II the evolution over ↵ of the value n

1
|1�↵| ,

which is the degradation factor when � is zero. We observe
that the degradation factor is always far from the value of the
upper bound achieved when � is zero. However, there are some
values of ↵ where the degradation factor is high. An example
is ↵ = 1.25, which is a typical value found in computer and
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Fig. 5: Evolution over p of the degradation factor for Degen-
erated Hyperexponential distributed job sizes.

networking systems [4]. As it can be seen, for this instance, the
degradation factor is equal to 4149 for n = 100, to 2.537 ·107
for n = 500 and to 4.0481·108 for n = 1000. We also observe
that the upper bound gets tighter when n = 1000. Besides,
when ↵ = 1, the upper bound is infinity and the degradation
factor is 1.2311 · 1010 for n = 1000.

2) Degenerate Hyper-exponential: We consider a system
with SITA-E policy and Degenerate Hyper-exponential dis-
tributed job sizes. This distribution with probability p is an
exponential of rate µp and with probability 1 � p it is an
exponential with rate infinity. Interestingly, the mean of the
Degenerate Hyperexponential distribution is 1/µ, which does
not depend on p and the second moment is 1

pµ

2 . The coefficient
of variation is C = 2/p � 1 and it belongs to [1,1) as p

varies. Therefore, we study the degradation factor (8) for this
distribution when p varies.

In Figure 5, we consider � = µ = 1 and we depict the
evolution of the degradation factor when p varies from 0.01 to
0.99 in a system with: (i) two servers and two groups; (ii) four
servers and four groups, (iii) eight servers and eight groups;
(iv) eight servers and four groups and (v) eight servers and two
groups. We observe that the degradation factor decreases with
p in all the cases. In fact, when p decreases, the variability
of jobs increases and this implies that the difference in the
performance of both systems increases. We also see that, as
expected, the degradation factor is always higher than one,
which means that the performance of both systems never
coincides. Furthermore, when p = 0.01, the coefficient of
variation is 199 and the degradation obtained in a system
with eight servers and eight groups for this case is 41.4. We
have done more experiments changing the value of the system
parameters, for example µ, and the obtained results confirm
that the performance degradation is significant, and that the
degradation increases as the variability of jobs increases.

C. Optimal SITA Degradation Factor
We now consider a system with two servers and we compare

SYS-(2,2,�) and SYS-(2,1,�) for Bounded Pareto distributed



n = 100 n = 500 n = 1000

D

BP (↵)(K,n, �) n

1
|1�↵|

D

BP (↵)(K,n, �) n

1
|1�↵|

D

BP (↵)(K,n, �) n

1
|1�↵|

↵ = 0.25 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103
↵ = 0.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

↵ = 0.75 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

↵ = 1 2.0183 1 1.4775 · 104 1 1.2311 · 1010 1
↵ = 1.25 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

↵ = 1.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

↵ = 1.75 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103

TABLE II: Degradation factor for Bounded Pareto distributed job sizes when K = 1000 and � = 9
1014 compared with n

1
|1�↵| .

Optimal SITA Degradation Factor
⇢ = 0.005 ⇢ = 0.5 ⇢ = 0.8

↵ = 0.25 333.74 87.77 8.6594
↵ = 0.5 2.2476 · 104 4219.9 18.7679
↵ = 0.75 3.3604 · 105 1.3187 · 105 133.8889
↵ = 1.25 3.3604 · 105 1.3187 · 105 133.8889
↵ = 1.5 2.2476 · 104 4219.9 18.7679
↵ = 1.75 333.74 87.77 8.6594

TABLE III: Degradation factor in a system with two servers.

job sizes when the SITA thresholds are chosen to optimize the
performance. In this case, the ratio of performances is said
to be the optimal SITA degradation factor. According to the
result of [4], in a two server system, the degradation factor
coincides with the optimal SITA degradation factor when
↵ = 1. Besides, the analytical computation of the optimal
thresholds seems to be intractable even in a system with two
servers. Therefore, we explore here the case where ↵ 6= 1.

Our objective is to know whether the optimal SITA degrada-
tion is high or not. We use the numerical results of [4], where
they consider a two-server system and they obtain numerically
the ratio of the performance of SITA-E policy over the
performance of the optimal SITA policy. In our computations,
we compute the optimal SITA degradation factor for the same
parameters as theirs. To do so, we multiply the performance
ratio they obtain in their simulations with the degradation
factor obtained in (8). Hence, in Table III, we represent the
optimal SITA degradation factor for low load (⇢ = 0.005),
medium load (⇢ = 0.5) and high load (⇢ = 0.8) and for
different values of ↵. As it can be seen in Table III, the optimal
SITA degradation factor is very high in some instances. For
example, if ⇢ = 0.005, when ↵ = 1.25 and when ↵ = 1.5, the
optimal SITA degradation factor is, respectively, 3.3604 · 105
and 2.2476 · 104.
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