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Abstract—We present models of Energy Packet Net-
works with a single and multiple class of customers. Such
models were recently developed to study the interactions
between IT capabilities and its energy consumption. These
models are based on a discrete model of energy (the so
called Energy Packets), some assumptions on the stochastic
durations of energy production and consumption and the
explicit description of the interactions between energy
needed for computations or data transmission. These
stochastic models have, under some classical assumptions
on the arrivals processes, a steady-state distribution which
has a product form. Such a closed form solution allows
to optimize the design of the system and balance between
losses, delay and energy.

Index Terms—Energy, stochastic model, closed form
solution.

I. INTRODUCTION

Energy is one of the key problems for the termi-
nals in fog computing systems. Energy harvesting is a
promising solution for powering the IoT. It allows the
devices (terminals, censors, actuators) to operate for a
long period of time without providing new batteries.
However, such a new alternative requires that we are
able to study new network design problems related to the
balancing of energy harvesting capacity and storage and
the processing capacity. Energy is used to collect, store,
process and transmit datas in the whole systems and
the processes has to be balanced to proceed efficiently.
Therefore we need new modeling approaches to help
during this optimization process.

Energy Packet Networks (EPNs) is such a model. They
were introduced recently by Gelenbe and his colleagues
[11]–[14]. to explicitly represent the interactions between
energy and IT in a network of computers or sensors.
More precisely, it is used to model the flow of intermit-

tent sources of energy like batteries and solar or wind
based generators and their interactions with IT devices
consuming energy like sensors, cpu, storage systems and
networking elements.

The two key ideas of EPNs are the randomness
of energy harvesting and the discretization of energy
produced, consumed or stored in the model. Energy
is modeled by packets of discrete units called Energy
Packets (EPs). Each EP models a certain number of
Joules. Since the EPs are produced by an intermittent
source of energy (typically solar and wind), the flow of
EPs is associated with some random processes. We also
assume that the energy consumption by the devices are
associated with some random process modeling the du-
ration of the action. Typically if we model transmission
of data, one EP is the energy needed to move a Data
Packet between two adjacent nodes: one hop in the Data
plane.

The EP can also be stored in a battery from which
they can also leak after a random delay. Thus EPNs are
associated with discrete state random processes evolving
on continuous time. In the original EPN model presented
for instance in [14], one represents the energy as EPs and
the workload as Data Packets (DPs). To transmit a DP
between two cells, one must use one EP. Hence, each cell
in the network is associated with a server queue to store
the DPs and a battery (the EP queue) to keep the energy.
In this initial paper (i.e. [14]), the EPs are sent to the
DP queue and triggers the customer movement between
workload queues in the network. When an EP arrives
at a DP queue which is not backlogged, the energy is
lost. This is typically a network of queues with complex
interactions between queues.

Since the seminal papers by Gelenbe on networks
of queues with positive and negative customers [8],



queues with triggers [9], or queues with batch deletions
[10], the theory of networks of queues with customers
and signals has been developed [3], [16], [17]. In this
approach, at the completion of its service in a queue, the
customer can become a signal which migrates to another
queue. At the reception of the signal, the queue performs
some action. It can also deny the effect of the signal.
Access of failure of the action may be associated with
a fixed or state dependent probability. Such an approach
gives the opportunity to represent queues with complex
synchronisations provoked y the signals.

Many EPN models can also be described by a network
of queues with customers and signals. The importance
of these models resides on the existence of a product
form of the steady-state distribution of jobs in the queues.
With such an exact closed form solution, it is possible
to describe the optimization problems related to edge
computing and to design the system to balance some
utility functions like energy, losses or response time [5],
[14], [15].

It is worthy to remark that EPN models are not always
related to G-networks. They can be associated with
various stochastic processes and several models or tech-
niques. In [1] the authors use a diffusion approximation
to solve the interactions between IT and energy. while
the model in [13] is based on queues without signals.
In [18] and [20], the authors use a stochastic process
on Z to model the difference between DP and EP .
Indeed, if the EP are in excess, the process state is
negative. In these models the number of EP and DP are
not explicitly represented. Even though the authors can
obtain, under some probabilistic assumptions, the steady-
state distribution of the system.

Note that EPN are not only a theoretical model.
An independent approach has been presented in the
electrical engineering literature under the name ”power
packet”, see [23], [24]. In these papers, power packets
are modeled as a pulse of current and are associated with
a header and a protocol to control the routing using some
hardware switching.

In this article, we present some results on EPN models
with single and multiple classes of data packets. In
section II, we describe three models of interactions with
EP and DP with a single class of DP. These models
differ by the interaction between the EPs and the DPs
and the time needed for transfer. In a model the DP is the
initiator of the transfer, that is, the arrival of a DP at the
battery triggers the movement and, if a data packet does
not find enough energy packets, it is lost. In the other
models, the initiator is the EP. With the first model, the

represent losses of data due to the lack of energy. With
the second model, we represent the delay imposed by a
energy.

Then in section III, we present a model for networks
with multiple classes of data packets. The class of a
DP determines the number of EPs required to be sent
and the route it takes in the network. Furthermore, as
usual with queues with multiple classes of customers,
we consider several queuing disciplines: we consider
that the DP queues operate under one of the following
three scheduling disciplines: the First-Input-First-Output
(FIFO), Last-Input-First-Output with Preemptive (LIFO-
PR) and Processor Sharing (PS) queues as in [6]. Note
that all these disciplines have already been considered for
BCMP queues. We present the main results of the latter
model in Section IV, that is, we show that the steady-
state distribution of jobs in the queues has a product form
provided that a stable solution of a fixed point problem
exists.

In Section V, we focus on the stability of this model
and also on the particular case of feed forward networks.
More precisely, in Section V, we provide sufficient
conditions for the stability of the EPN with an arbitrary
topology. and, for feed forward networks, we show that
the loads of all the queues can be characterized following
the topological order of the network. Indeed, we observe
that the fixed point problem is reduced to compute the
roots of a polynomial.

We study in Section VI an example of a feed forward
network where the the stability of the network can
be easily characterized by computing the load of the
DPs and of the EPs of each cell. We also investigated
using an example the influence of the fragmentation of
packets that required large amount of EPs to smaller
packets with less energy requirements and we have
seen that the loss rate in a given route increases with
the energy requirements of the DPs and also that the
mean number of customers decreases with the number
of EPs required by the DPs to move to the following
cell. Finally, we give the conclusion of this work in
Section VII.

II. SINGLE CLASS MODEL

We study a EPN with N cells in an open network,
where each of the cells is formed by one server that
stores DPs and one battery that stores EPs. EPs and
DPs arrive following Poisson processes (with rate λi for
DP, αi for EP). Energy packets leak with an exponential
distribution with rate βi. To send a Data Packet to the
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Fig. 1. First model of a cell of a single class EPN.

next queue along the path, one Energy packet must
be used the travel time between two adjacent nodes is
exponentially distributed with rate µi. The routing matrix
for DP is denoted as P . Note that Data Packets can
be stored by the DP queue even if there is no energy
available at the node.

The first question is the identity of the initiator of
the data transfer. In the first model, we assume that the
battery initiates the action. As a consequence, if the EP
is sent to the DATA queue to carry the DP: the EP is
lost is there is no DP available and the DP is delayed
until the arrival of an EP. Thus this model represent the
losses of energy (lack of DP at an arrival of EP) and
delay for the DP (waiting for an EP to appear). This
model is depicted in Fig. 1.

Theorem 1: Consider Markov chain (Xi, Zi)i=1..N (t).
Xi is the number of DP and Zi the number of EP.
Assume ergodicity. We assume that the EPs initiate
the transfert and we do not consider the nodes on the
boundary of the network which send DP to the outside.
Let π(X,Y ) be the steady-state distribution:

π(X,Z) =

N∏
i=1

ρXi

i γZi

i (1− ρi)(1− γi)

where ρi and γi are solutions of the flow equations:

ρi =
λi +

∑
j µjρjγjP (j, i)

µiγi
,

and
γi =

αi

βi + µi
,

which must satisfy ρi < 1 and γi < 1 for all i.
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Fig. 2. Second model of a cell of a single class EPN.

It is worthy to remark that, unlike the Jackson networks,
the flow equations linking ρi and γi is not linear. Thus
we have to prove the existence of a solution and provide
an algorithm to find the values of ρi, and γi.

Let us now consider an alternative model. Now we
assume that the DP is sent to the ENERGY queue (i.e.
the battery) to get the energy and move to the next hop.
The DP is lost if there is no EP available and the EP is
waiting until the arrival of a DP. Therefore more leakage
may happen. Therefore this model may be used to study
the losses of data due to the lack of energy and the losses
of energy due to an excess of arrivals and leakage. Such
a model is represented in Fig. 2.

We also have a product form result for this model.
Theorem 2: Consider Markov chain (Xi, Zi)i=1..N (t).

Xi is the number of DP and Zi the number of EP, where
the DPs initiate the transfert. Assume ergodicity of that
chain. Again we do not consider here the nodes on the
boundary to simplify the notation. Let π(X,Y ) be the
steady-state distribution: if the flow equation

ρi =
λi +

∑
j µjρjγjP (j, i)

µi
,

and
γi =

αi

βi + µiρi
,

has a solution such that for all i, ρi < 1 and γi < 1,
then

π(X,Z) =

N∏
i=1

ρXi

i γZi

i (1− ρi)(1− γi)

Both theorems can be proved using global balance
equation or the quasi-reversibility property.
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Fig. 3. Model of the arrival at a battery.

Both models can also be extended to deal with battery
failures or ddos attacks agains the battery. We assume
that the arrivals of failure follow a Poisson process with
φi. The effect of the failure (or the attack) is to empty the
battery instantaneously. But the battery is still alive and
it can receive new EP. This action is sometimes denoted
as a catastrophe signal in the literature on G-networks.
We also have a closed form solution for both models.
We only give one of them.

Theorem 3: Consider Markov chain (Xi, Zi)i=1..N (t).
Xi is the number of DP and Zi the number of EP. We
consider the model where the DPs initiate the transfert.
Assume that the chain is ergodic. Let π(X,Y ) be the
steady-state distribution: if the flow equation

ρi =
λi +

∑
j µjρjγjP (j, i)

µi
,

and
γi =

αi

βi + µiρi + φi(1− γi)−1

have a solution such that for all i, ρi < 1 and γi < 1,
then

π(X,Z) =

N∏
i=1

ρXi

i γZi

i (1− ρi)(1− γi)

The term (1 − γi)
−1 at the denominator of γi makes

the numerical resolution ore complex but an algorithm
based on some equivalence of networks has been proved
to deal with that topology (it can be considered as an
instantaneous deletion loop) [7].

Let us now present a rather distinct approach [5]. First
we assume that batch arrivals of EPs. The arrivals of
new batteries still follow a Poisson process with rate
νi but a fresh battery contains several Energy Packets.
This batch size is constant. However when the battery
is empty, we add an auxiliary arrival process of battery
which are not completely filled (a kind of back pressure
mechanism from the sensor to ask for more energy). This
phenomenon is depicted in Fig. 3 with a batch size equal
to 3.

Data Packets

Energy Packets

Data Packets = Signals

Energy Packets = Customers

Immediate transmission

Fig. 4. Third model of a cell of a single class EPN. On the top,
the classical EPN model consisting of 2 queues dedicated to EPs and
DPs, respectively. The transmission of a DP is due to the movement
of an EP. On the bottom, a new model: the EPs are stored in one
queue modeling the battery and the DPs are modeled as instantaneous
signals which decrease the battery energy level.

We still have the same interaction between Data Pack-
ets and Energy Packets But the travel time is now sup-
posed to be instantaneous (i.e. typically short compared
to the average time for an EP leakage or production).
Thus the Data flows are represented by the footprints
they make on the Energy queues (i.e. the batteries) and
the model only represents the batteries (see Fig. 4).

One can find in [5] the product form result (which is
not given here to avoid introducing to much notation).
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Fig. 5. A cell of a multiple class EPN. The two classes of data
packets are represented in grey or black while the EP are in white.
Grey DPs route to the upper DP queue while black DPs go to the
lower DP queue. EP queues at the second stage are not represented
to simplify the picture.

III. MULTIPLE CLASSES MODEL

We now consider that there are K classes of DPs
represented by different colors in Fig. 5. DPs arrive to
each cell from outside the network following a Poisson
distribution and we denote by λ

(k)
i the arrival rate of

class-k DPs to cell i. Likewise, EPs arrive to cell i fol-
lowing a Poisson distribution with rate αi. We consider
that there are energy leakages with exponential delay
between losses of energy. Let βi > 0 be the leakage rate
of one EP in the battery of cell i. The service time of
DPs is assumed to be exponentially distributed but it is
now class-dependent. We denote by µ(k)i > 0 the rate of
the service time of class k jobs in the DP queue of cell
i.

We consider a EPN where the DPs initiates the trans-
fer. This means that, upon service in cell i, a DP of class
k is sent to the battery of the same cell. The transfer
is successful if there are at least c(k)i EPs, in which
case the DP is routed to the next cell and the c(k)i EPs
disappear. If the data packet finds less than c

(k)
i EPs,

then it is dropped. Furthermore we assume that there
is some energy consumption to send the DP even if it
fails. If there is a lack of energy before the end of the
DP emission, the DP is lost and the energy consumed for
the tentative is also lost. Thus, the battery gets empty.

Furthermore we assume that some nodes are on the
boundary of the network and send DP to applications on
the same machines or terminals. We assume that DPs
do not consume energy when they leave the network
because they stay on the same terminal but on the
application level. The DPs move from one cell to another

according to a fixed probability matrix, where P
(k)
i,j

represents the probability for a class k DP to move from
the DP queue of cell i to the DP queue of cell j in case
of a successful transfer, i.e., if there are more than c(k)i

EPs in the battery of cell i. Upon service in cell i, a DP
packet of class k leaves the system with probability d(k)i .
Hence, for all k and i, it follows that

d
(k)
i +

N∑
j=1

P
(k)
i,j = 1.

Like in [6], we consider three server types: First-Input-
First-Output (FIFO), Processor Sharing (PS) and Pre-
emptive Last-Input-First-Output (LIFO-PR). The FIFO
discipline consists of giving serving to jobs in order of
arrival. In the PS discipline all the jobs get a proportion
of the processing capacity of the server and, if the
number of jobs of class k jobs present in the system is
xk, the rate at which DPs of class k are served is given by

xk∑K
j=1 xj

. In the LIFO-PR discipline, the customers in the
system constitute a stack, and the system serves always
the customer that has been waiting for the shortest time.

A. State representation

We shall denote the state at time t of the queuing
network by the vector ( ~X, ~Z) where ~X = (x1, ..., xN )
and xi represents the state of DP service center of cell
i and ~Z = (z1(t), ..., zN (t)) and zi(t) is the number of
EPs in the battery of cell i. The vector xi depends on
the queuing discipline of the DP queue of cell i and ||xi||
will be the total number of DPs in that queue.

For FIFO and LIFO-PR servers, the instantaneous
value of the state xi of server of cell i is represented by
the vector (ri,j) whose length is the number of customers
in the queue and whose j-th element is the class index
of the j-th customer in the queue. Furthermore, the
customers are ordered according to the service order and
it is always the customer at the head of the list which
is in service. We denote by ri,1 the class number of the
customer in service and by ri,∞ the class number of the
last customer in the queue.

For the PS servers, the instantaneous value of the
state xi is represented by the vector (xi,k), where the
k-th element represents the number of customers of
class k at queue i.

IV. MAIN RESULTS

Let Π( ~X, ~Z) denote the stationary probability dis-
tribution of the state of the network, if it exists. The



following result states the product form solution of the
network.

Theorem 4: Consider the EPN previously defined. If
the system of non-linear equations:

ρ
(k)
i =

λ
(k)
i +

∑N
j=1 µ

(k)
j ρ

(k)
j P

(k)
j,i (γj)

c
(k)
j

µ
(k)
i

, (1)

and

γi =
αi

βi +
∑K

l=1 ρ
(l)
i µ

(l)
i

∑c
(l)
i −1
m=0 (γi)m

∑N
j=1 P

(l)
i,j

(2)

has a solution such that: for each pair i, k, 0 < ρ
(k)
i and

for each DP queue i,
∑K

k=1 ρ
(k)
i < 1 and EP queue i,

γi < 1, then the stationary distribution of the network
state is:

Π( ~X, ~Z) = G

N∏
i=1

gi(xi)

N∏
i=1

(1− γi)(γi)zi , (3)

where each gi(xi) depends on the discipline of the
service center of cell i. The gi(xi) in Eq. 3 have the
following form:

FIFO:
If the service center is FIFO, then

gi(xi) =

||xi||∏
n=1

[ρ
(ri,n)
i ] (4)

PS:
If the service center is PS, then

gi(xi) = ||xi||!
K∏
k=1

(ρ
(k)
i )xi,k

xi,k!
(5)

LIFO-PR:
If the service center is LIFO-PR, then

gi(xi) =

||xi||∏
n=1

[ρ
(ri,n)
i ] (6)

and G is the normalization constant. Since the network
is open, G has a closed form expression which is given
in Theorem 5.

The proof is based on simple algebraic manipulations
of global balance equations, since it is not possible to
use the “local balance” equations for customer classes
at servers (see [4] for a proof).

As in BCMP [2] theorem, we can also compute the
steady state distribution of the number of customers of
each class in each queue. Let yi be the vector whose
elements are (yi,k) the number of customers of class k

in the server of cell i. Let ~Y be the vector of vectors
(yi).

Theorem 5: If the system of equations (1), and (2) has
a solution then, the steady state distribution of the DPs
Π(~Y ) is given by

Π(~Y ) =

N∏
i=1

hi(yi) (7)

where the marginal probabilities hi(yi) have the follow-
ing form :

hi(yi) = (1−
K∑
k=1

ρ
(k)
i )|yi|!

K∏
k=1

(qi,k)yi,k

yi,k!
. (8)

This proves that the normalization constant is
G =

∏N
i=1(1 −

∑K
k=1 ρ

(k)
i ) and the desired result

follows.

V. STABILITY, FEED FORWARD NETWORKS, AND

ALGORITHM

A. Stability

We now investigate the stability of the EPNs we study
in this work. We know that the EPN is stable if and only
if γi < 1 and

∑K
k=1 ρ

(k)
i < 1 for all cell i. Due to the lack

of an explicit expression of the values of loads of EPs
and DPs, providing necessary and sufficient conditions
for the stability of this model seems to be an impossible
task. However, in this section, we succeed in showing
a sufficient condition for the stability of the EPN under
consideration.

We first define the reduced network as the Jackson
network that is formed by the servers only, i.e., without
considering the batteries. We define by q(k)i the load of
DPs of class k of cell i in the reduced network. We know
that the reduced network is stable if and only if for all i

K∑
k=1

q
(k)
i =

K∑
k=1

λ
(k)
i +

∑N
j=1 µ

(k)
j q

(k)
j P

(k)
j,i

µ
(k)
i

< 1.

We now focus on the batteries in isolation. For this
case, we consider that the battery of cell i, which has
arrival rate from outside αi and leakage rate βi, receives
a traffic

∑K
k=1 λ

(k)
i from the server of the same cell. We

denote by pi the load of the battery in isolation of cell i.
We know that the battery in isolation of cell i is stable
if and only if

pi =
αi

βi +
∑K

k=1 λ
(k)
i

< 1.

We now define the hyperstability of a EPN.



Definition 1: A EPN is hyperstable if its reduced
network and all the batteries in isolation are stable.

In [4], we have shown that hyperstabilty implies
stability.

Proposition 1: If a EPN is hyperstable, then it is stable.

From an algorithmic point of view, a simple iteration
initialized with zero for ρi and γi converges in all
the exemples we have studied. However we do not
have formal proof of convergence of this numerical
algorithm. To obtain stronger results one must consider
more restricted topology, for instance the feed-forward
networks.

B. Feed Forward Networks

We now focus on feed forward networks (i.e. networks
associated with directed graphs without directed cycles).
Thus a job that has been served by a given cell does
not return to that cell almost surely. These graphs are
associated with topological ordering of the nodes and
this ordering is used to solve the equations as we now
see.

We notice that, for a feed forward EPN, the load of
class k jobs in the server of cell i is given by

ρ
(k)
i =

λ
(k)
i +

∑
j∈PRE(i) µ

(k)
j ρ

(k)
j P

(k)
j,i (γj)

c
(k)
j

µ
(k)
n

, (9)

where PRE(i) is the set of predecessor cells of i. As
a result, one can compute the value of ρ(k)i using only
the values of the load of the servers and batteries of the
predecessor cells.

The load of the battery of cell i in an feed forward
network is given by

γi =
αi

βi +
∑K

k=1 µ
(k)
i ρ

(k)
i (1− d(k)i )

∑c
(k)
i −1
m=0 (γi)m

,

(10)
where the value of ρ(k)i are obtained from Eq. 9. Hence,
if the load of the batteries and of the servers of the
predecessor cells is known, the computation of the load
of the battery of cell i is reduced to calculate the roots
of a polynomial of degree max{c(1)i , . . . , c

(K)
i }.

Instead of solving a fixed point problem, one compute
the loads of the batteries and the servers according
to the topological order of the nodes in the network:
starting from the initial cells, i.e., those that do not have
any predecessor, and continuing using the topological
order of the network. This is described in Algorithm 1.

Algorithm 1 Algorithm to Compute the Loads of the
Nodes in an Acyclic Graph

1: SET PRE = ∅.
2: FOR i s.t. S−(n) = ∅.
3: COMPUTE ρ

(k)
i using (9) for all k.

4: COMPUTE γi using (10).
5: UPDATE PRE = PRE ∪ {i}.
6: WHILE ∪j∈PRES

+(j) 6= ∅
7: SET V = ∅.
8: FOR j ∈ PRE
9: FOR i ∈ S+(j)

10: COMPUTE ρ
(k)
i using (9) for all k.

11: COMPUTE γ(k) using (10).
12: IF unstable solution of (10) or (9)
13: RETURN -1.
14: ELSE
15: UPDATE V = V ∪ {n}.
16: SET PRE = V .
17: RETURN ~ρ1, ~ρ2, . . . , ~ρK , ~γ

For these networks, we can invoke the results of
Theorem 4 to conclude that (i) there exists a solution of
the fixed point problem defined in Eq. 1 and Eq. 2 and
(ii) if the fixed poing is stable, the distribution of jobs
in this network has a product form. In this section, we
show that the loads of the servers and of the batteries
can be characterized for feed forward networks. After
using Algorithm 1 we only need to verify that all the
outputs of the algorithm are less than one.

VI. EXAMPLE

We now analyze an example of a feed forward EPN
with eight cells and two types of DPs. First we aim
to show that the values of the loads of the servers and
the batteries can be easily obtained. The network under
consideration is depicted in Figure 6. As the network is
feed forward we use a numbering of the cells based on
the topological ordering. Second we want to study the
performance of the two routes from cell 1 to cell 8 in
terms of loss rates and delays. Route 1 is dedicated to
type 1 DPs (depicted in grey in the figure). It goes from
cell 1 to cell 2, 3, and 4 and exits at cell 8. Route 2
conveys the type 2 DPs (in black). It begins at cell 1,
passes through cells 5, 6 and 7 and ends at cell 8.

The DP server of cell 1 is the only one that receives
traffic from outside the network. Therefore, we consider
that λ(1)i = λ

(1)
i = 0 for all i = 2, 3, . . . , 8. Besides,

since the packets do not leave the system in the middle
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Fig. 6. Example of a directed feed forward EPN with 8 cells. The
doted lines represent the energy leakage.

of the route, we have that d(1)i = d
(2)
i = 0 for all

i = 1, . . . , 7 and d(1)8 = d
(2)
8 = 1.

A. Computation of loads

We first compute the load of DPs and EPs in all cells
of the network. We consider that the service rate of all
the servers is equal to 1, except for the cell 1, where it
is equal to 2, and the energy requirement of type 1 DPs
in all the cells is equal to one whereas of type 2 DPs
is two. Regarding the EP queues, the leakage rate of all
the cells is 1 and the arrival rate to cells 1, 2, 3, 4 and
8 is 1.2 and to 5, 6 and 7 is 1.1.

Since this EPN is feed forward, we can obtain the
values of the loads of the batteries and the servers so
as to analyze its stability. We consider that λ(1)1 = 0.75

and λ(2)1 = 0.5Thus, we start with cell 1 and we obtain
for the DPs that ρ(1)1 = 0.375 and ρ(2)1 = 0.25, whereas
for the EP queue that γ1 = 0.5872. We now focus on
the next cells of Route 1, which are cells 2, 3 and 4
and only handle DPs of type 1. We obtain that, in cell
2, the load of type 1 DPs is 0.44 and the load of EPs is
0.8331. In cell 3, we have that the load of type 1 DPs
is 0.3665 and the load of EPs is 0.8781 and in cell 4,
we have that the load of type 1 DPs is 0.3218 and the
load of EPs is 0.9078. We also compute the loads of
the following cells of Route 2, i.e., cells 5, 6 and 7,
where only DPs of type 2 are executed. We obtain that,

in cell 5, the load of type 2 DPs is 0.1724 and the load
of EPs is 0.9457. In cell 6, we have that the load of
type 1 DPs is 0.1631 and the load of EPs is 0.9458 and
in cell 7, the load of type 1 DPs is 0.1542 and the load
of EPs is 0.9532. Finally, we compute the load of DPs
in the last cell 1 and we obtain that the load of type 1
DPs is 0.2921 and the load of type 2 DPs is 0.1469. We
conclude that the system is stable since in all the cells
the load of the EPs is smaller than one and the sum of
the loads of both types of classes is also smaller than one.

B. Fragmentation Analysis

Another interesting application of this model consists
of studying how fragmentation of jobs affects in the
performance of the system as we can divide large DP
packets with a large value of c(k)i into smaller DP packets
requiring less energy.

We thus consider the topology of Figure 6 consisting
of two types of DPs with equal load. Type 2 DPs are
packets with an energy requirements equal to 2, i.e.,
c
(2)
i = 2 for all i = 1, . . . , 8. The arrival rate of type 2

DPs is 0.4 and the service rate one. On the other hand,
type 1 DPs are the fragmented packets and therefore the
energy requirements of this type of DPs is equal to one.
Besides, the arrival rate and the service rate of type 1
DPs is equal to 0.8 and 2, respectively. Hence, type 1
DPs represent packets with less energy requirements and
type 2 DPs packets with higher energy requirements. We
consider that the arrival rate to all the EP queues is equal
to 1.2 (except for the EP queue of cell one, which is 2.5)
and the leakage rate equal to 1.

The loss rate of a cell is the probability of a loss
packet because in the EP queue of that cell there are
less than the required EPs to be routed to the following
cell when in all the predecessor nodes the transfer has
been successful. For instance, the loss rate of cell 1 is
1−γ1 = 0.0955 for type 1 DPs, whereas for type 2 DPs
it is given by 1− γ21 = 0.17829. We note that, since in
cell 8 all the DPs leave the system once they have been
served, then the loss rate in this cell is zero. In Table I
we represent the loss rate of the remaining cells, that is,
of cells 2, 3, 4, 5, 6 and 7.

We observe in Table I that the loss rate of cell 2, 3
and 4 is smaller than the loss rate of cell 5, 6 and 7,
respectively. This means that the loss rate of Route 1 is
less than the loss rate of Route 2. In other words, the

1Recall that all the jobs leave the system after being served in the
cell 8 and, since they do so without energy requirements, we do not
provide the value of the load of EPs in the last cell.



Loss Rate in Loss Rate in Loss Rate in Loss Rate in Loss Rate in Loss Rate in
Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7
0.1994 0.0304 0.00795 0.4432 0.1128 0.0521

TABLE I
LOSS RATE IN EACH CELL OF THE EXAMPLE UNDER CONSIDERATION.

packets with smaller energy requirements have a smaller
loss rate than the packets of higher energy requirements.
Besides, in both routes, the loss rate decreases with the
number of traversed cells. That is, in Route 1, the loss
rate of cell 2 is higher than the loss rate of cell 3 and
the loss rate of cell 3 is higher than the loss rate of cell
4. Likewise, in Route 2, the loss rate of cell 5 is higher
than the loss rate of cell 6 and the loss rate of cell 6 is
higher than the loss rate of cell 7.

Using the values obtained in Table I, we can also
compute the total loss rate in each of the routes. For
Route 1, it results that the total loss rate is 0.33325,
whereas for Route 2 it is given by 0.78639. Therefore,
this example shows that when the energy requirement of
the DPs increases, so does the loss rate.

We now focus on the number of customers in the
DP queues. We compute the mean number of customers
of DPs in all the cells and the obtained values are
represented in Table II. We observe that the mean
number of customers in each route decreases with the
number of cells that are traversed. For instance, the mean
number of customers in cell 2 is 0.68896 and it is higher
than the mean number of customers in cell 3, which is
0.12941; and the mean number of customers in cell 3
is higher than the mean number of customers in cell 4,
which is 0.12751. The main reason for this is that there
are no external arrivals in the considered example and,
therefore, the load of the DPs of a given cell is smaller
the that load of DPs of a predecessor one.

Another interesting conclusion of the results shown in
Table II is that the total mean number of customers of
type 1 DPs is higher than the mean number of customers
of type 2 DPs. The explanation for this is the following:
type 2 DPs require more energy to move from one cell
to the following one, therefore, there are more DPs of
type 2 that are lost and, as a result, the mean number of
customer of type 1 DPs is higher that the mean number
of customers of type 2 DPs.

Finally using Little’s Law and due to the linearity
of the expectation, one can compute the average end
to end delay for Route 1 and Route 2. For Route 1,
we have obtained that the mean delay is 6.99 seconds.
However, for Route 2, we have that the mean delay

is 13.93 seconds. This result shows the impact of the
different service rates on the mean delay of two paths in
a network.

In this example, we have studied how fragmentation
affects on the performance of a queuing system. We
have seen that the loss rate is higher when the energy
requirements of the DPs is higher and also that the
mean number of customer decreases with the number
of EPs required to move to the following cell.

VII. CONCLUSIONS

The EPN approach is a new modeling paradigm which
allows to model the interactions between energy and
computation or data transfer.

In this paper, we have presented different EPN mod-
els where the distribution of packets in the queues is
given by a closed form expression. We have considered
systems with a single class of DPs and also multiple
classes of DPs. For the latter model, we have also studied
the effect of the fragmentation of DPs with high energy
requirements to DPs with smaller energy requirements
and we have concluded that: (i) the loss rate in a given
route increases with the number of EPs required by the
DPs to move the the next cell and (ii) the mean number
of customers decreases with the number of EPs required
by the DPs to move the the next cell. Interestingly,
these results suggest that there is a trade-off between
performance and loss rate when we vary the energy
requirement of the DPs.

According to the results of this article, the distribu-
tion of packets in the network follows a product-form
expression. Therefore, the results we have presented can
be used to optimize the energy consumption, the losses
or the delays. There is a large amount of possible ex-
tensions to these models. For instance, one can consider
load-balancing techniques, as in [19], [21], [22], where
idle queues can poll another queues. Moreover, another
interesting extension of this model consists of studying
optimal routes and efficient fragmentation of flows of
data packets.



Mean Number of Customers Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8
Type 1 DPs 4.5 0.68896 0.12941 0.12752 0 0 0 0.14102
Type 2 DPs 4.5 0 0 0 0.58672 0.2053 0.13576 0.12133

TABLE II
MEAN WAITING TIME IN EACH CELL AND EACH CLASS OF THE EXAMPLE UNDER CONSIDERATION.

We hope that this short presentation will open avenues
for new applications in the design of modern fog com-
puting systems.
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