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A B S T R A C T

The COVID-19 pandemic exposed the importance of research on the spread of epidemic diseases. In this paper,
we apply Artificial Intelligence and statistics techniques to build prediction models to estimate the SARS-CoV-2
seroprevalence in the United States, using multiple estimates of COVID-19 prevalence and other explanatory
variables. We propose the use of stacking techniques based on multiple model building techniques (Linear and
Beta Regression, Genetic Programming and Neural Networks) to obtain Predictive Ensemble Models. There
has been extensive research on this field, but there has not been in-depth research on the application of
stacking methods to estimate and forecast seroprevalence in the USA specifically. This paper provides a novel
comparison of the behaviour and performance of different building techniques for stacking ensemble models
and presents which methods are better for different scenarios. We find that Genetic Programming and Neural
Networks are the best models with trained data within single states, and when multiple states are considered
Genetic Programming is still better than the Regression models, but Neural Networks fail to estimate the
seroprevalence accurately. Another novelty of our work is the use of cross-state validation to evaluate the
models with new data, as well as temporal forecasting. Depending on how the data is processed, Linear
Regression performs very well with cross-state validation and temporal forecasting, and Genetic Programming
is very accurate with the former while Neural Networks work better with the latter.
1. Introduction

The Coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) (Wölfel et al.,
2020), has raised public interest in epidemics. During the pandemic,
media outlets mainly reported daily updates on the number of COVID-
19 infections, hospitalisations, and deaths to provide information about
the spread of the disease. COVID-19 estimated number of cases was
primarily obtained from large-scale screening using PCR and antigen
tests (Cheng et al., 2020). However, this method may not be the most
reliable source of information when attempting to understand the full
scope of the pandemic and accurately determine the percentage of the
population affected, since the accuracy of the information obtained
from test screening is affected by various factors such as the limited
availability of test kits (Zoabi et al., 2021) (specially at the beginning
of the pandemic), the time between infection and the test timing (Ak-
inbami et al., 2021), and the high number of asymptomatic infected
individuals, among other reasons (Klompas, 2020).
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The traditional approach for estimating the proportion of previously
infected individuals within a population relies on the measurement of
seroprevalence. Specifically, seroprevalence refers to the proportion of
individuals who test positive for a specific antibody in their blood (Far-
lex Partner Medical Dictionary, 2012). In the case of COVID-19, a
seropositive individual is a person who has SARS-CoV-2 antibodies in
their blood. The presence of antibodies is considered sufficient evidence
to confirm past infection, even without a positive test result. Multiple
seroprevalence studies were conducted during the COVID-19 pandemic
in different countries, which required blood analyses of thousands of
individuals along multiple rounds (Bajema et al., 2021; Pollán et al.,
2020). These campaigns required substantial resources for logistical
and organisational purposes. Hence, alternative cheaper forms of sero-
prevalence estimation are desirable (Garcia-Agundez et al., 2021).
Therefore, the main objective and motivation of this research has been
to study the use of more easily obtained data to estimate seroprevalence
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in the USA, so that expensive and resource consuming surveys could
be substituted. We also wanted to be able to analyse the relationship
between the explanatory variables and seroprevalence, hence we fo-
cused on more explainable stacking ensemble approaches like Linear
Regression and Genetic Programming. Finally, we wanted to improve
the accuracy of the stacking ensemble learning methods by combining
data with predictive models in their learning process.

In this paper, we explore the use of data obtained from different
sources (official number of cases, survey responses, wastewater data) to
estimate the seroprevalence evolution in the USA. The models used are
built combining different machine learning techniques, and stacking
as ensemble method. Although the COVID-19 pandemic is losing its
relevance, it has revived the fear of the spread of infectious diseases
and made the population aware of the threat that pandemics can pose.
Therefore, even though COVID-19 may not be as important anymore,
our work can provide a general framework based on data for tracking
viral spread. Furthermore, this work is not confined to epidemic track-
ing or even medical applications. The methods and procedures used for
this problem can be applied to any dataset to predict or estimate other
aspects of a population. An example of an application in other areas is
to use surveys and assemble different models and data to evaluate the
voting intention in future elections.

1.1. Contributions

In our work, we use different modelling techniques to estimate the
seroprevalence of SARS-CoV-2 in the United States of America (USA)
based on data of daily infections obtained from multiple sources. Notice
that our approach does not result from mass screenings using PCR
or antigen tests. Specifically, we use different artificial intelligence
and statistics techniques as stacking machine learning strategies, which
learn to combine the estimations of several base models to obtain a final
prediction. The artificial intelligence and statistics techniques we used
are: Linear Regression (LR), Beta Regression (BR), Genetic Programming
(GP), and Neural Networks (NN). LR and BR were chosen because they
are very simple and widely used models; and GP was chosen because,
like the two previous techniques, the models it constructs explicitly
show how the different explanatory variables are combined to calculate
the seroprevalence rate. NN on the other hand, are a very promising
field of study when working with estimations and predictions, and even
though their explainability is low, we wanted to see how they perform
with this kind of problems.

We consider the Sum of Squared Residuals (SSR) as the performance
metric of the models, and we seek predictive models that minimise
the SSR. However, we will also use the Mean Absolute Relative Error
(MARE) as an additional metric to better understand the accuracy
of the models, as MARE is more easy to interpret. We consider two
different settings: state by state (statewide models), where data from a
single state is considered for training the model; and the whole USA
(nationwide models), where the data from all or multiple states is
considered for training a single model.

We also present two approaches to dealing with the available data:
cumulative and non-cumulative aggregation. Cumulative aggregation
uses the first available seropositivity data value as a reference, while
non-cumulative aggregation uses the latest available seropositivity data
value.

Lastly, we tested how well the models perform with new data. In
order to do that, we used a subset of the observed data at our disposal
to build the prediction model, and then used it to test the trained model
on estimation tasks. We considered two situations that could happen in
real live when working with seroprevalence data: cross-state validation
and temporal forecasting. The former works with statewide models,
while the latter uses nationwide models.

The organisation of this work is as follows. We start by presenting
the approach we chose to build the predictive ensemble models in

Section 3. In that section, we show the process followed to build said
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models (Section 3.1), the data used in the models (Section 3.2), and
the specifics of the models used (Section 3.4). Afterwards, we present
the resulting estimations obtained with both statewide and nationwide
models in Section 4, before showing the results of cross-state validation
and temporal forecasting in Section 5. Finally, we sum up the results
in Section 6, and present our conclusions and future work in Section 7.

2. State of the art

Overall, three research lines were the main focus of this work
when approaching the problem at hand: COVID-19 estimation, stacking
techniques, and Genetic Programming.

2.1. Works on COVID-19 estimation

Since the start of the COVID-19 pandemic in early 2020, many
approaches have been proposed that rely on data analysis and artificial
intelligence to estimate the number of daily cases (Astley et al., 2021;
Quintero, Ardila, Camargo, Rivas, & Aguilar, 2021; Salomon et al.,
2021; Zoabi et al., 2021). These methods exploit the ability of online
tools to track health indicators in almost real-time by collecting vast
amounts of data from self-reported information. Estimating the sero-
prevalence from this data type is required to provide healthcare systems
with a less expensive method for tracking the spread of diseases. In
this context, it is necessary to analyse Ensemble Methods that allow
combining the different estimation approaches (regardless of whether
they are based on machine learning techniques or not). In particular, we
are interested in stacking techniques as an ensemble learning strategy,
since it allows learning how to combine the estimates of numerous
machine learning models to obtain a final estimate (Gupta, Jain, &
Singh, 2022; Zhou & Jiao, 2023).

Regarding the estimation of the COVID-19 spread, there have been
extensive studies carried from a statistical point of view, as seen in
the thorough reviews (Comito & Pizzuti, 2022; Elsheikh et al., 2021;
Jamshidi et al., 2022). Most of these works have focused on forecast-
ing COVID-19 infections, and have extensively taken COVID-19 test
positives as reference, although there are some interesting works that
have tried to predict other metrics, such as COVID-19 mortality in Cui
et al. (2021). Overall not a lot of research has been conducted around
SARS-CoV-2 seroprevalence, which is the metric we focus on with our
models.

2.2. Works on stacking techniques

Studies on the spread of COVID-19 have mainly focused in imple-
menting machine learning-based models, as seen in Al-Bwana (2021),
Lucas, Vahedi, and Karimzadeh (2023) and Vaughan et al. (2023); but
stacking ensemble methods have also been widely studied, which is
the approach we consider in our work: Cilgin and ÖZDEMİR (2023)
for example uses LR as a stacking approach to assemble a time series
model to forecast COVID-19 cases; Wang, Harrou, Dairi, and Sun (2024)
researches the detection of COVID-19 blood samples via three stacked
deep-learning techniques; Sharma, Gupta, and Mishra (2023) also uses
deep ensemble learning methods to predict COVID-19 cases; Jin, Dong,
Yu, and Luo (2022) builds an ensemble hybrid model by stacking
multiple model predictions; and Wang et al. (2020) uses deep-learning
stacked with ensemble techniques to build a time series model. In all
the cited works except (Wang et al., 2024) they aim to predict COVID-
19 positive cases, unlike in our work where we focus on seropositivity.
There are also some studies that use similar methods (machine learning
and stacking methods) on infectious diseases other than COVID-19,
such as Mahajan et al. (2022), Soto-Ferrari, Carrasco-Pena, and Prieto

(2023) and Dada, Oyewola, Joseph, Emebo, and Oluwagbemi (2022).
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2.3. Works on genetic programming

When it comes to the application of GP, there has also been some
work on the topic to estimate COVID-19 prevalence in the United
States, like Anđelić et al. (2021); but there is much less research on
the application of stacking ensemble approaches using non-machine
learning-based models. Other GP application works for the case of
COVID-19 are the following. The main focus of the paper of Salgotra
et al. is to develop prediction models for COVID-19 confirmed cases and
death cases in India, particularly in the states of Maharashtra, Gujarat,
and Delhi (Salgotra, Gandomi, & Gandomi, 2020). These models, based
on GP, are presented with explicit formulas, to evaluate the signifi-
cance of prediction variables. Niazkar and Niazkar (2020) introduced
multi-gene GP (MGGP) as a novel approach for predicting COVID-
19 outbreaks. Despite the challenges posed by the fluctuating daily
confirmed cases, MGGP demonstrated promising results, with predicted
cases closely aligning with observed values across seven countries stud-
ied. Finally, Benolić, Car, and Filipović (2023) explored the application
of GP to develop forecasting models for COVID-19 using publicly avail-
able datasets from Johns Hopkins University and the GISAID Variant
database. The study focuses on Austria and neighbouring countries,
creating individual models for each. Short-term models exhibit high R2
scores, while long-term predictions perform slightly lower.

There have been studies on the use of stacking ensemble models for
COVID-19 detection (Rahman et al., 2022), but they used biomarkers
and did not estimate seroprevalence. There have also been research
on the prediction of seroprevalence in the USA, like Larremore et al.
(2021), or on the forecasting of COVID-19 incidence, like Lucas et al.
(2023) and Larremore et al. (2021), but without the use of stacking
methods. As can be seen from the literature review, there have been a
lot of research in this field, but there has not been a thorough analysis
of the behaviour and performance of different building techniques and
approaches for stacking ensemble models. The stacking approaches
developed so far for the detection of COVID-19 use biomarkers, the
seroprevalence prediction approaches are not stacking-based, and in
general, none have used USA data obtained from COVID-19 surveys.

In this work, we present our findings in this direction, analysing
the quality of the ensemble models built using four different stacking
techniques. Additionally, there has not been much research on the
applicability of stacking ensemble models to geographically new data
either, so we have tried contributing to this line of research by studying
cross-state validation as an evaluation tool for the models built, which
is useful to check the performance of the models with untrained data.

On the other hand, ensemble methods usually combine estimation
models as input variables to provide predictions, but in our case,
we have also considered new explanatory variables (not estimations)
alongside the estimation models when stacking the ensemble models,
which provides the final model with further data on the pandemic.
Finally, we have also evaluated the capabilities of the ensemble models
in temporal forecasting tasks.

3. Our approach

There is a lot of data sources that provide useful information with
respect to the epidemic, including estimated COVID-19 prevalence
rates, via different prediction methods based on COVID-19 prevalence
surveys. To reduce the biases each method may have, we propose
to use all of them to construct an ensemble model that will use the
estimations of all those methods, as well as some extra explanatory
variables (mainly, official prevalence data and estimates from wastewa-
ter SARS-CoV-2 concentration studies). Our problem consists of finding
an appropriate prediction model that combines said estimations and
variables to predict the seropositivity of a certain population on a given

date.

3 
3.1. Our ensemble method

We require a stacking machine learning strategy, which learns to
combine the estimates from several methods with the extra explanatory
variables, to obtain a final estimate. The seropositivity values we use
as ground truth for our work are the seroprevalence measurements
made by the Centers for Disease Control and Prevention (CDC), the
national public health agency of the USA (Centers for Disease Control
and Prevention, 2023).

We have used only a stacking approach as an ensemble learning
method, and have not compared it with other ensemble methods, such
as classical bagging and boosting, because our desire was to combine
robust base models (strong learners) with other variables that would en-
rich the estimate. The stacking ensemble method is a learning technique
that combines multiple strong base models, often of different types, to
improve performance. While bagging and boosting are also ensemble
methods, they are based on the premise of combining weak learners,
often of the same type, under different creation schemes. Our problem
is to find the expression that best combines these strong learners, using
stacked learning to capture these more complex relationships from
multiple base models. Particularly, in this article we explore several
techniques to carry out the stacking learning process.

In Fig. 1, a diagram schematically explains our stacking machine
learning strategy to obtain the seroprevalence rate estimations. The
modules that compose the diagram can be separated into two types:
the circular modules represent variables or data (the independent and
dependent variables and the ground truth, see Section 3.2), and the
rectangular modules represent processes performed when constructing
the ensemble model (data processing and modelling, see Sections 3.4
and 3.2.3). The arrows of the diagram indicate the path that the
explanatory variables follow before returning an estimation of the
seroprevalence rate, and then, the ≃ symbol indicates that the output
should be close to the real seroprevalence (ground truth), which is
evaluated using SSR and MARE as metrics.

As the figure shows, we have various input variables from multiple
data sources that need to be aggregated before we can use them to build
our prediction models. It is important to note that the values of these
variables come from estimation/prediction models based on machine
learning techniques (Random Forest — RF, Extreme Gradient-Boosting
— XGB, etc.), or from estimation models based on wastewater virus
concentrations (Wastewater cases — WWC), or are extra explanatory
variables (New reported cases — NRC, etc.). The source data used to
build these base models are the US COVID-19 Trends and Impact Survey
(CTIS) data from the Delphi Group at Carnegie Mellon University
and Facebook project (Delphi Group at Carnegie Mellon University,
2022; Salomon et al., 2021), and the wastewater concentration data
from Srivastava (2022).

On the other hand, a data aggregation phase is necessary because
there is an inconsistency between the number of input data points
and the ground truth (seropositivity). The latter comprises at most 30
measurements per USA state, while most input variables have daily
values. Therefore, we aggregate the input data into the same number
of data points as the ground truth.

After aggregation, the variables are combined into a prediction
model based on a stacking ensemble strategy, which outputs estimated
seroprevalence rates. We use four different modelling techniques as
stacking ensemble methods to build the predictive models: LR, BR,
GP and NN. Therefore, we are using regression models, as well as GP
and NN-based models as ensemble learning techniques that combine
the base models’ estimations, as well as new data unrelated to the
base models, to obtain the final seroprevalence prediction model. These
approaches take the explanatory variables, which, as stated before,
some of which are COVID-19 prevalence estimations, and build a
prediction model that combines the previous estimations, as well as
new data, to produce a SARS-CoV-2 seropositivity estimation. With

the exception of NN, the resulting prediction models are provided via
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Fig. 1. Diagram showing our stacking machine learning strategy. The modules are separated into two types: the circular modules represent variables or data used, and the
rectangular modules represent processes performed on the data to obtain predictions (data processing and modelling). The arrows of the diagram indicate the path that the
explanatory variables follow before returning an estimation of the seroprevalence rate, and then, the output is compared to the real seroprevalence using SSR and MARE as metrics.
a mathematical expression that can provide us with information on
the relationship of the variables with the seroprevalence rate. Thus,
these stacking ensemble approaches use multiple estimations to obtain
a more accurate prediction, as they counteract the biases that the
individual estimations may have.

Once we have the stacking ensemble models, we compare the output
of the models with the seroprevalence ground truth to evaluate the
accuracy of the constructed predictive ensemble model.

3.2. Data processing

3.2.1. Explanatory variables
Our main source of data has been the US COVID-19 Trends and

Impact Survey (CTIS). This project, operated by the Delphi Group
at Carnegie Mellon University in collaboration with Facebook, has
continuously operated surveys between the 6th of April 2020 and the
25th of June 2022, and has collected over 20 million responses (Delphi
Group at Carnegie Mellon University, 2022; Salomon et al., 2021).
Every day for the duration of the project, a random sample of Facebook
users were invited to complete a questionnaire about the COVID-19
pandemic: symptoms, COVID testing, social distancing, vaccination,
mental health and economic security.

In this work, we have not used directly the raw data obtained by the
CTIS. Instead, we have used daily prevalence estimates obtained from
the responses to the CTIS using various machine learning or statistical
methods, as described in Rufino, Baquero et al. (2023), Rufino et al.
(2024a) and Rufino, Ramirez et al. (2023). The resultant dataset has
four prevalence estimates per record, and a total of 4 1369 records. Each
state (and the District of Columbia) has 811 or 812 entries, one per
surveyed day.

Moreover, in addition to the estimates obtained from the CTIS, we
have also chosen four other input variables for our models, from three
different sources: official daily reported new COVID cases, wastewater
SARS-CoV-2 concentration (Srivastava, 2022), previous seroprevalence
measurement, and normalised time since the previous seroprevalence
measurement. The dataset of the official reported cases has 57 000 daily
records for all USA states and the District of Columbia, each region
having 950 records, between the 22nd of January 2020 and the 28th
of August 2022. The wastewater concentration from Srivastava (2022)
has 6273 entries, and 123 entry per region, from the 25th of January
2020 to the 28th of May 2022.

In summary, our models consist of eight explanatory variables, of
which three are predicted by machine learning or statistical models.
Those eight variables are the following:
4 
• COVID-like illness (CLI). Daily rates for reported COVID com-
patible symptoms (CLI is defined as reporting a fever of at least
37.8 ◦C, along with cough, shortness of breath, or difficulty
breathing), from the CTIS (National Notifiable Diseases Surveil-
lance System (NNDSS), 2020; World Health Organization, 2020).

• Random Forest (RF ). Daily estimated prevalence rate via an RF
model from CTIS data.

• Extreme Gradient-Boosting (XGB). Daily estimated prevalence
rate via an XGB model from CTIS data.

• Generalised Linear Model (GLM). Daily estimated prevalence
rate via a Generalised Linear Model from CTIS data.

• New reported cases (NRC). Official total number of daily re-
ported SARS-CoV-2 test positives. The data has been divided by its
maximum value so that the scale lines up with the other variables.

• Wastewater cases (WWC). Daily estimated total active COVID-
19 cases via wastewater virus concentrations. The data is divided
by its maximum value so that the scale lines up with the other
variables.

• Time between rounds (TBR). Number of days of the time in-
terval we are aggregating (days from the end of the reference
value’s round). The number is divided by the maximum value of
the variable so that the scale lines up with the other variables.

• Reference value (REF ). The official rate of seropositivity in
the round from which we are aggregating the daily data (see
Section 3.2.3).

3.2.2. Ground truth
We have chosen to work with seroprevalence data from the USA

because data is available for each one of its states. The US CDC has
collected extensive data with respect to SARS-CoV-2 seroprevalence
in their Nationwide Commercial Laboratory Seroprevalence Survey,
which can be found in Centers for Disease Control and Prevention
(2023). For that survey, the CDC conducted 30 rounds of seropreva-
lence testing among the population of most states within the USA,
between July 2020 and February 2022, for a dataset of 1535 records
in total.

Unfortunately, there are 13 states with less than 30 rounds: Arizona,
Indiana, Maryland, Montana, Nevada, New Hampshire, New Jersey,
Utah and Virginia have 29 rounds; Hawaii has 27 rounds; Wyoming
has 26 rounds; South Dakota has 21 rounds; and North Dakota has 4
rounds. Note that the 10 most populous states all have had 30 rounds
conducted in them. In order to identify the states, we have used the
abbreviations defined by the American National Standards Institute
(ANSI), as specified on Table 1.

It is important to highlight that all the input data presented in
sections 3.2.1 and 3.2.2 were pre-processed in the works (Rufino,
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Table 1
Table showing the ANSI state codes. Note that DC is not a state, but a federal
district.

Code State or territory

AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California
CO Colorado
CT Connecticut
DE Delaware
DC District of Columbia
FL Florida
GA Georgia
HI Hawaii
ID Idaho
IL Illinois
IN Indiana
IA Iowa
KS Kansas
KY Kentucky
LA Louisiana
ME Maine
MD Maryland
MA Massachusetts
MI Michigan
MN Minnesota
MS Mississippi
MO Missouri
MT Montana
NE Nebraska
NV Nevada
NH New hampshire
NJ New jersey
NM New mexico
NY New york
NC North carolina
ND North dakota
OH Ohio
OK Oklahoma
OR Oregon
PA Pennsylvania
RI Rhode island
SC South carolina
SD South dakota
TN Tennessee
TX Texas
UT Utah
VT Vermont
VA Virginia
WA Washington
WV West virginia
WI Wisconsin
WY Wyoming

Baquero et al., 2023; Rufino et al., 2024a, 2024b), just like the selection
of characteristics considered in this work was that carried out in these
works.

3.2.3. Data aggregation
The data can be classified into two groups based on its frequency:

sporadic and daily data. The ground truth has one measurement per
seropositivity survey round for a total of at most 30 data points per state
(sporadic data), while every explanatory variable we are going to use
has daily values (daily data). Note that each seropositivity survey round
spans several days of data collection. Therefore, we need to establish
some criteria for how we are going to unify these two types of data.
We have to choose how to aggregate daily data so that it aligns with
the sporadic ground truth.

We have defined two different approaches to this aggregation prob-
lem, namely, ‘‘cumulative’’ and ‘‘non-cumulative’’ aggregation, both of
which add the daily values of the explanatory variables. A graphical
representation of how the daily data is aggregated with each approach
5 
Fig. 2. Diagrams showing how daily data points are aggregated to transform daily
data into sporadic data.

can be seen in Fig. 2. The cumulative aggregation approach (Fig. 2(a))
adds up the daily data into Aggregate Round 𝑛, for the 𝑛th survey
round, starting at the end-date of the first round, up to the end of the
current 𝑛th round, so that the data aggregated for each round is a subset
of the data aggregated for the next round. On the other hand, the non-
cumulative approach (Fig. 2(b)) adds up the daily data into Aggregate
Round 𝑛 from the end-date of the round 𝑛 − 1 up to the end-date of
round 𝑛, so that the aggregates of each round are disjoint.

3.3. Performance metrics

Therefore, the CDC seroprevalence measurements are the ground
truth of this problem, and our models’ output will be predictions of
these values. When building the prediction models, we are going to
try to minimise the SSR, which reduces the variance of the resultant
residuals. Its formula is shown in (1), where 𝑦𝑖 is the real rate for the
𝑖th observation and �̂�𝑖 is its predicted value.

SSR(�̂�) =
𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2. (1)

However, as the SSR is a relatively abstract measurement of error,
when evaluating the accuracy of the models by comparing it to the
ground truth, we also use the MARE alongside the SSR. The MARE
represents the relative deviation from the observed data on average.
It is more explicit and easily interpretable than the SSR. The formula
of the MARE for a dataset of 𝑛 observations is presented in Eq. (2),
where 𝑦𝑖 is the real rate for the 𝑖th observation and �̂�𝑖 is its predicted
value.

MARE(�̂�) = 1
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − �̂�𝑖|
𝑦𝑖

. (2)

3.4. Artificial intelligence and statistics techniques

3.4.1. Linear regression
Linear Regression (LR) models are one of the simplest and most

thoroughly studied predictive models in Statistics. These models de-
scribe the relationship between one or various independent variables
and another scalar variable, a relationship that is assumed to be linear.
The scalar variable is usually referred to as the response variable, and
the independent variables as explanatory variables. We are working
with multiple explanatory variables, so the linear model we are going
to build is a multiple LR model.

Let {𝑥1𝑖 ,… , 𝑥𝑝𝑖 , 𝑦𝑖}
𝑛
𝑖=1 be a set of 𝑛 ∈ N observations, of which {𝑥𝑗𝑖 }

𝑝
𝑗=1

is the set of 𝑝 ∈ N explanatory variables, and 𝑦 is the response variable.
𝑖
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Then, an LR model defines the relationship between the response and
explanatory variables using the following characterisation in Eq. (3)

𝑦𝑖 = 𝛽0 +
𝑝
∑

𝑗=1
𝛽𝑗𝑥

𝑗
𝑖 + 𝜖𝑖 , ∀𝑖 ∈ {1,… , 𝑛} (3)

here 𝜖𝑖 is the error variable (unpredictable noise).
That LR model is usually denoted using matrix notation as in Eq. (4)

= 𝐗𝜷 + 𝝐, (4)

here 𝐲𝑇 =
(

𝑦1 ⋯ 𝑦𝑛
)

is an 𝑛-dimensional vector containing all obser-
ations of the response variable, 𝜷𝑇 =

(

𝛽0 ⋯ 𝛽𝑝
)

is the 𝑝+1-dimensional
vector of weights or regression parameters, 𝝐𝑇 =

(

𝜖1 ⋯ 𝜖𝑛
)

is the error
erm of the model, and 𝐗 is a 𝑛× (𝑝+1)-dimensional matrix containing
he observations of all explanatory variables, plus a column of ones for
he intercept of the model (𝛽0), as shown in Eq. (5).

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 𝑥11 ⋯ 𝑥𝑝1
1 𝑥12 ⋯ 𝑥𝑝2
⋮ ⋮ ⋱ ⋮

1 𝑥1𝑛 ⋯ 𝑥𝑝𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5)

The aim of LR is to estimate the weights 𝜷 so that the resulting
predictive model fits the observed data. When we search for the best
LR model we are going to minimise its SSR. The estimation method for
LR that is used for that task is called least-squares regression, as seen
in Eq. (6), where �̂� are the estimated weights.

�̂� = arg min
𝜷

𝑛
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 = arg min

𝜷

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝛽0 −
𝑝
∑

𝑗=1
𝛽𝑗𝑥

𝑗
𝑖

)2

. (6)

And we can rewrite the problem in its matrix form, so that the minimi-
sation problem can be reduced to Eq. (7).

�̂� = arg min
𝜷

‖𝜖‖2 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖2. (7)

Using its matrix form, we can expand the SSR formula and find its
global optimum, which is its minimum because the function is convex.
That way, we can obtain the simple matrix formula to compute the
least-squares parameters shown in Eq. (8).

�̂� =
(

𝐗𝑇𝐗
)−1 𝐗𝑇 𝐲. (8)

3.4.2. Beta regression
When working with rates or percentages, it is known that the values

must be in the interval [0, 1]. This can be a problem for LR models
because those models have no restriction that prevents the estimated
response variable to fall outside of said interval. That is why, when the
response variable is a rate, Beta Regression (BR) models are usually
considered to be a better pick.

BR assumes the response variable to follow some beta distribution
𝐵(𝜇, 𝜙), where 𝜇 is the mean and 𝜙 the precision. We use a link function
𝑔 to map from the bounded space [0, 1] to the real numbers R. The link
function we are using is the logit function in Eq. (9).

𝑔(𝑥) = logit(𝑥) = ln
( 𝑥
1 − 𝑥

)

. (9)

Once in R, we perform a regression assuming the data follows a beta
istribution by maximising the likelihood. Then, we map the data back
o [0, 1] using the 𝑔−1 function. The inverse of the logit function is the
xpit function (10).

−1(𝑥) = expit(𝑥) = 1
1 + 𝑒−𝑥

(10)

Let {𝑥1𝑖 ,… , 𝑥𝑝𝑖 , 𝑦𝑖}
𝑛
𝑖=1 be a set of 𝑛 ∈ N observations, of which {𝑥𝑗𝑖 }

𝑝
𝑗=1

s the set of 𝑝 ∈ N explanatory variables, and 𝑦𝑖 is the response variable.
hen, a BR model assumes that the target variable 𝑦𝑖 is represented by
he mean of a beta distribution 𝜇, and models the relationship between
6 
he response and explanatory variables using the characterisation (11).

(𝑦𝑖) = logit(𝑦𝑖) =
𝑝
∑

𝑗=1
𝑥𝑗𝑖 𝛽𝑗 , (11)

here 𝛽𝑗 are the regression parameters. To obtain the parameters 𝛽𝑗 we
aximise the likelihood of the data under this model, which is defined

s 𝐿 in Eq. (12).

=
𝑛
∏

𝑖=1
𝑓 (𝑦𝑖;𝜇𝑖, 𝜙), (12)

here 𝑓 is the probability density function of the beta distribution,
efined as (13), where 𝛤 is the Gamma function.

(𝑦𝑖;𝜇𝑖, 𝜙) =
𝛤 (𝜙)

𝛤 (𝜇𝑖𝜙)𝛤 ((1 − 𝜇𝑖)𝜙)
𝑦𝜇𝑖𝜙−1𝑖 (1 − 𝑦𝑖)(1−𝜇𝑖)𝜙−1 (13)

When finding the optimal 𝛽𝑖 parameters, it is easier to maximise
he logarithm of the likelihood (called log-likelihood) rather than the
ikelihood itself, so we will work with the former: 𝑙 = log(𝐿).

.4.3. Genetic programming
Genetic Programming (GP) is a method inspired by natural genetic

rocesses that tries to find the best solution to a problem by evolving a
et of equations. In our specific case, we are working with a population
ormed by mathematical expressions, i.e., equations that combine our
xplanatory variables. Each combination of the explanatory variables
ill be called a model in the following. The aim is to minimise the
rror between the values provided by these equations considering the
vailable dataset and the ground truth. Said error in our case is the
SR.

GP uses operations based on natural genetic evolution to evolve and
pdate a set of given equations (prediction models) so that they get
etter over time. GP works with tree structures to define the equations
individuals). This tree structure allows the algorithm to change and
wap parts of an equation by manipulating nodes or subtrees in a given
ree.

For our work, we use the following operators to define each indi-
idual (tree structure): addition, subtraction, multiplication, division,
egative sign, exponential, and natural logarithm. We have also added
set of constants to the explanatory variables to make easier to get

onstant terms and factors in the equations. The set of chosen constants
s the following set of powers of ten: {10−2, 10−1, 100, 101, 102}.

The GP algorithm has three phases: initialisation, selection, and
reproduction. The algorithm starts by generating a random initial pop-
ulation of trees of a predetermined size using the available operators
and variables. The randomness of the initial population allows the
algorithm to start with a wide range of possibilities to cover enough
of the search space. The search space of GP is the set of all possible
combinations of operators and variables at its disposal.

Once the population is initialised, the algorithm evaluates the in-
dividuals to determine their quality, and uses a selection method to
pick several individuals. In our case, the evaluation criteria for selec-
tion is SSR. Therefore, our algorithm uses SSR to select a population
subset, using tournament selection of size three, which consist on
randomly taking three individuals to then pick the best individual
among those three, and repeating until the desired number of in-
dividuals are selected. Then, the algorithm manipulates the selected
individuals (‘‘parents’’) to create a new generation (‘‘children’’). For the
reproduction of the parents, our algorithm uses three operations:

• Crossover, which picks pairs of parents and uses one-point
crossover to generate one or two children.

• Mutation, which picks a single child and uses subtree replacement
mutation to randomly change it.

• Replication, when the child is just a copy of its parent.
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Crossover is usually applied before mutation. In our algorithm, both
operations have assigned probabilities and are applied to the parents
based on those probabilities: 𝑝𝑐 , 𝑝𝑚.

After the children have been created, a new selection takes place to
form a new generation of the same size. In our case, this selection picks
the best individuals among a set formed by the previous generation and
the newly created children. With the new generation, the algorithm
repeats the process of selection and reproduction, until the stopping
criteria is met. As stopping criteria, we have set a maximum number
of generations, but if the fitness (SSR) of the best individual in each
generation does not improve beyond a specified threshold 𝛿 for a
otal of 𝑚𝑠 generations, the algorithm is stopped. 𝛿 and 𝑚𝑠 are pre-
efined hyper-parameters. Another hyper-parameter of the algorithm
s the maximum depth of the GP-based models. This hyper-parameter
revents the model’s complexity to grow too much. We do not need
n excessive complexity to obtain good prediction models, as we see
elow.

In summary, the pseudo-code of the constructed GP algorithm for
ur problem is presented below on Algorithm 1. The variables intro-
uced to the algorithm are as follows:

• 𝑃 is the initial population, a set of models.
• 𝑝𝑐 ∈ [0, 1] is the probability of crossover.
• 𝑝𝑚 ∈ [0, 1] is the probability of mutation.
• 𝛿 ∈ R+ and 𝑚𝑠 ∈ N are the previously mentioned hyper-

parameters for the stopping criteria.
• 𝑔𝑚𝑎𝑥 ∈ N is the maximum number generations of the algorithm.
• 𝑑𝑚𝑎𝑥 ∈ N is the maximum allowed depth of the model.

Algorithm 1: The GP algorithm. (Individuals cannot be deeper than
𝑑𝑚𝑎𝑥)
Require: 𝑃 , 𝑝𝑐 ∈ [0, 1], 𝑝𝑚 ∈ [0, 1], 𝛿 ∈ R+, 𝑚𝑠 ∈ N, 𝑔𝑚𝑎𝑥 ∈ N

𝑏𝑒𝑠𝑡 ← argmin𝑓∈𝑃 {Eval(𝑓 )}
𝑙𝑜𝑐𝑘𝑒𝑑_𝑒𝑣𝑎𝑙 ← Eval(𝑏𝑒𝑠𝑡) ⊳ Eval returns the SSR of the individuals
𝑚 ← 0
𝑝∗𝑚 ← min{1, 2𝑝𝑚}
for 𝑔 = 1,… , 𝑔𝑚𝑎𝑥 do

𝐶 ← Select(𝑃 , |𝑃 |) ⊳ Select |𝑃 | random individuals from 𝑃 with
repetition

if 𝑔 = 100 then
𝑝∗𝑚 ← 𝑝𝑚 ⊳ After 100 generations 𝑝𝑚 is restored

end if
Crossover(𝐶, 𝑝𝑐 ) ⊳ Each pair of individuals in 𝐶 is crossed with

probability 𝑝𝑐
Mutate(𝐶, 𝑝∗𝑚) ⊳ Each individual in 𝐶 is mutated with probability 𝑝∗𝑚
𝑃 ← BestOf(𝑃 ∪ 𝐶, |𝑃 |) ⊳ Picks the |𝑃 | best individuals (smallest SSR)

from 𝑃 ∪ 𝐶
𝑏𝑒𝑠𝑡 ← argmin𝑓∈𝑃 {Eval(𝑓 )}
if 𝑙𝑜𝑐𝑘𝑒𝑑_𝑒𝑣𝑎𝑙 − Eval(𝑏𝑒𝑠𝑡) ≤ 𝛿 then

𝑚 ← 𝑚 + 1
if 𝑚 = 𝑚𝑠 then

break for
end if

else
𝑙𝑜𝑐𝑘𝑒𝑑_𝑒𝑣𝑎𝑙 ← Eval(𝑏𝑒𝑠𝑡)
𝑚 ← 0

end if
end for
return (𝑏𝑒𝑠𝑡, 𝑔)

After a hyper-parameter optimisation process, the final values for
he hyper-parameters used were: a population size of |𝑃 | = 300,
rossover and mutation probabilities of 𝑝𝑐 = 0.8 and 𝑝𝑚 = 0.3, the
topping parameters 𝛿 = 0.005 and 𝑚𝑠 = 100, a maximum number of

generations of 𝑔𝑚𝑎𝑥 = 1000, and maximum depths 𝑑𝑚𝑎𝑥 ∈ {4, 6, 8, 10}.
We want to analyse the performance of GP-based models with this

particular problem. The GP-based models are known to provide a more

general framework than LR and BR. Therefore, one of the objectives of

7 
this work is to investigate the performance improvement of GP-based
models with respect to the LR models.

The GP algorithm is stochastic: it has an element of randomness
that can cause the results of each iteration to be different from each
other. Therefore, one execution is not enough to see how good the GP
algorithm is at finding accurate prediction models. For that reason, we
test the algorithm by executing it 20 times for each combination of
state, aggregation, and maximum depth. After those 20 executions, we
average the SSR (and MARE) of all the resultant prediction models,
in order to have a better approximation of the accuracy of our GP
algorithm.

3.4.4. Neural networks
We decided to also use Neural Networks (NN) to estimate the

seroprevalence rate, as a fourth modelling method along LR, BR and
GP. NN are machine learning models, loosely based on the behaviour
of biological neurons in animal brains. NN are made up of a set
of connected nodes, called neurons, which can transmit signals (real
numbers) between each other. When a neuron receives the signals
of other neurons, it then returns an output by applying a function
(activation function) to the linear combination of these inputs. The
connections between neurons are called edges, and they usually have
assigned weights that are adjusted along the training of the model. The
neurons are usually organised in layers, and the signals travel through
the different layers, from an input layer all the way to an output layer.
The layers that are between the input and output layers are called
hidden layers (Hardesty, 2017).

NN are iteratively trained with a training dataset. At the start, the
weights of the edges are picked randomly, and then, for each iteration,
they are updated based on the performance of the network on the
training dataset. There are multiple methods to update the weights,
but we have decided to use gradient descent, the most common way
to optimise NN. Gradient descent consists on minimising an objective
function (the SSR in our case) by updating the parameters of the func-
tion (the weights of the NN) in the opposite direction to the gradient of
said objective function with respect to the parameters. When updating
the parameters, the size of the steps taken is determined by the learning
rate, a predetermined hyper-parameter (Ruder, 2016).

The NN we are working with have multiple hyper-parameters that
have to be set beforehand. These parameters are:

• Batch size: The size of the sub-samples that are used to train the
model. In each iteration, the model is trained with each of the
batches.

• Number of epochs: The epochs are the iterations of the training
loop for the NN. The number of iterations must be set.

• Learning rate: The size of the steps taken along the gradient when
updating the weights of the NN if using gradient descent.

The values we have chosen for the hyper-parameters are different
for each studied case (state-by-state estimations, nationwide models,
forecasting), except for the stopping criteria of the gradient descent
algorithm. We have applied a similar stopping criteria to the GP algo-
rithm: the gradient descent will stop when the mean training loss (SSR)
does not improve more than 0.0001 for 5000 epochs.

For the problem at hand, we tried building different types of NN.
One of the simple and most widely used activation functions is the
RELU function, which can be defined as (14).

RELU(𝑥) =

{

𝑥 𝑥 > 0
0 𝑥 ≤ 0

(14)

We have used a NN with 7 hidden layers of 9 neurons each, with RELU
as the activation function of all neurons, except for the output neuron,
which has the identity function. We will call this the RELU NN (RNN).
A graphical representation of a simplified version of the RNN, with two

layers of three neurons each, can be seen in Fig. 3. Even though this
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Fig. 3. A simplified version of the RNN, with two hidden RELU layers, with three
neurons each. The names of the input neurons represent the explanatory variables, and
the names of all other neurons are their activation functions.

is a fairly simple NN, the seven intermediate layers, with a total of 63
neurons, give the model a large number of degrees of freedom, resulting
in a quite accurate prediction model, as we will see below.

NN are stochastic, like GP, and hence we execute the gradient de-
scent algorithm 20 times for each combination of state and aggregation,
and average the SSR (and MARE) of all the resultant NN models, in
order to obtain the mean errors of the NN approach.

4. Model evaluation

We start by applying the previously mentioned approaches (LR,
BR, GP, and NN) to the data we have at hand, to see how well they
can approximate the observed rates of seroprevalence. Note that both
LR and BR are deterministic methods, but GP and NN are stochastic
methods, so when analysing and comparing the results of those two
latter methods, we are going to check the mean and median errors of
multiple executions, as well as the distribution of the resulting errors.

There can be two prediction models built with the data, depending
on the observations used. On the one hand, we have separate data for
all USA states (and the District of Columbia), so we build a statewide
prediction model that only uses said state’s data. On the other hand,
we take data from multiple US states to build a bigger prediction model
that uses observations from various states. That model provides us with
more accurate information on the pandemic, even if the state level
estimations may get less accurate.

4.1. Results by state

First, we build a model for each state and aggregation method
(cumulative and non-cumulative), which we will refer to as statewide
models, using all four modelling methods.

4.1.1. Linear regression
When obtaining the regression parameters of the explanatory vari-

ables, we will find that very often some of the coefficients are not
significant, i.e., if the model had zero as a coefficient for that variable,
then the distribution of the estimations would be virtually the same.
Therefore, when building our LR models, we are going to purge the
non-significant variables, as long as removing them results in a lower
SSR.

As an example, we are going to take cumulative aggregation and
the biggest state in terms of population, California, and determine
the best LR model for its data. If we include all the variables to the
model, then we get the regression coefficients of Table 2, and an SSR
of 0.00732731189382156. However, if we check the p-values of each
regression coefficient, then there are multiple p-values over the usual
alpha-level of 0.05. When a 𝑝-value is over that value, then the null
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Table 2
Regression parameters and p-values of said parameters for the cumulative CA linear
model with all variables.

CLI RF XGB GLM NRC WWC TBR REF

Coeff. −0.204 0.638 −0.380 −0.154 0.005 −0.011 0.320 0.835
p-value 0.122 0.001 0.037 0.123 0.806 0.161 0.703 0.008

Table 3
Regression parameters and p-values of said parameters for the cumulative CA linear
model without the variable NRC.

CLI RF XGB GLM WWC TBR REF

Coeff. −0.180 0.642 −0.355 −0.178 −0.011 0.137 0.866
p-value 0.039 <0.001 0.015 <0.001 0.157 0.714 0.002

Table 4
Regression parameters and p-values of said parameters for the cumulative CA linear
model without the variables NRC, TBR and WWC.

CLI RF XGB GLM REF

Coeff. −0.159 0.638 −0.371 −0.173 1.003
p-value <0.001 <0.001 0.008 <0.001 <0.001

hypothesis is not rejected (in this case, the null hypothesis is that a null
coefficient would result in a notable difference in estimations), and the
respective variable is non-significant.

However, we cannot remove all non-significant variables because
the removal of one may affect the significance of the others. Therefore,
we are going to remove them one by one, checking the significance
of the variables at each step. The first variable we remove is that
with the highest p-value: NRC. The new model, without the NRC
variable, has the coefficients and p-values of Table 3, and an SSR
of 0.00732731189382156. So, with the removal of a non-significant
variable we have obtained virtually the same SSR.

We repeat this procedure until all variables left are significant, and
then take the set of variables that result in the lowest SSR to build the
definitive statewide model. In the next step, we would remove TBR.
After this procedure, we find that even though all combinations for CA
with cumulative aggregation result in very similar SSR, the one with
all the variables, shown in Table 2 is marginally better, so we take that
model. We have replicated the procedure outlined for the cumulative
CA model with all states and both aggregation methods, and we have
saved the best model for each (see Table 4). We have then looked into
the resultant SSR and MARE of each model, and the resulting values
are displayed in Tables 5 and 6 respectively.

As highlighted in the table, some of the states have had less than
30 survey rounds conducted on them. There are nine states with 29
rounds, and another four have been surveyed on even fewer rounds,
North Dakota (ND) being an outlier with just four rounds. Clearly, the
extremely low number of data-points available for ND results in a very
accurate LR model, because there is a lot of data to estimate just three
points: the predictions do not deviate at all from the ground truth with
both non-cumulative and cumulative aggregation.

On the other hand, if we compute the mean of MARE values (more
interpretable than SSR for the analysis) of each group of states, we can
see how their mean more or less stays in the range [0.10, 0.25], as can
be seen in Table 7. So, the LR models generally work well with the
data, specially for the states with the most data available. However,
the perfect predictions of the models in ND are not replicated in any
other state, which reinforces the view that ND is an outlier due to the
lack of data, so the models for that state must not be taken at face value.

The mean MARE of all states is relatively low at 0.153 for non-
cumulative aggregation and 0.130 for cumulative aggregation, and
if we dismissed ND as an outlier then the mean MARE would only
increase by 0.003 for both aggregations, so the perfect predictions for
the ND models do not overly distort the accuracy of the LR models.

The states that have less than 29 rounds of surveys besides ND have
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Table 5
Table with the SSR for each LR state estimation. Some states are highlighted by the
number of survey rounds: those with 29 rounds in grey, those with between 27 and
21 rounds in pink, and ND with its 4 rounds in red.

State By aggregation

Non-cum. Cum.

AL 0.01142 0.00683
AK 0.01919 0.01673
AZ 0.01290 0.00664
AR 0.01298 0.00706
CA 0.01003 0.00683
CO 0.01291 0.01761
CT 0.00372 0.00346
DE 0.00879 0.00619
DC 0.00808 0.00406
FL 0.01046 0.00753
GA 0.01381 0.02561
HI 0.00462 0.00328
ID 0.02383 0.01073
IL 0.01902 0.00871
IN 0.01797 0.01130
IA 0.02018 0.02522
KS 0.01359 0.02608
KY 0.00564 0.00441
LA 0.00522 0.00664
ME 0.00284 0.00192
MD 0.02820 0.01411
MA 0.00733 0.00613
MI 0.00589 0.00242
MN 0.01086 0.02025
MS 0.01439 0.00486
MO 0.01174 0.00981
MT 0.01739 0.03085
NE 0.00800 0.02946
NV 0.00936 0.00434
NH 0.00408 0.00536
NJ 0.00976 0.00580
NM 0.01496 0.03249
NY 0.01850 0.02121
NC 0.00783 0.00876
ND 0.0 0.0
OH 0.00845 0.00902
OK 0.01204 0.03083
OR 0.00335 0.00842
PA 0.01055 0.00548
RI 0.00965 0.01308
SC 0.00684 0.00447
SD 0.04251 0.03419
TN 0.00928 0.00510
TX 0.03755 0.01956
UT 0.02252 0.01146
VT 0.00349 0.00252
VA 0.00553 0.00462
WA 0.00611 0.00441
WV 0.00536 0.00614
WI 0.01328 0.00766
WY 0.03555 0.02155

a higher than average MARE (Hawaii, South Dakota and Wyoming),
with a mean of 0.251 and 0.200 among the three for non-cumulative
and cumulative aggregation, respectively. This higher MARE could be
the result of poorly executed survey rounds, but we do not have the
information to properly conclude that.

In order to better represent the behaviour of the MARE for each of
the aggregation methods, Fig. 4 provides box-plots of the error in two
cases: with All states, and only with the states with 29 or 30 rounds.
The exclusion of the four states with less than 29 rounds results in
little change for both aggregation methods. ND’s value is an outlier
in non-cumulative aggregation, and only lowers the whisker of the
cumulative box-plot by about 0.05. Comparing both plots one can also
see that another one of the other three removed states is an outlier for
non-cumulative aggregation too, and the variation on the median and
quartiles is not big enough to worry about it.
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Table 6
Table with the MARE for each LR state estimation. Some states are highlighted by the
number of survey rounds: those with 29 rounds in grey, those with between 27 and
21 rounds in pink, and ND with its 4 rounds in red.

State By aggregation

Non-cum. Cum.

AL 0.09753 0.06600
AK 0.44970 0.15167
AZ 0.12103 0.07093
AR 0.16116 0.12336
CA 0.12131 0.07883
CO 0.18267 0.20950
CT 0.14229 0.11444
DE 0.11827 0.09041
DC 0.08934 0.06188
FL 0.09791 0.07715
GA 0.10605 0.13506
HI 0.29858 0.22759
ID 0.17954 0.11771
IL 0.10986 0.07052
IN 0.17170 0.11586
IA 0.13385 0.13889
KS 0.16808 0.18424
KY 0.11432 0.14272
LA 0.07878 0.08793
ME 0.35681 0.25162
MD 0.13730 0.09537
MA 0.14759 0.16455
MI 0.08613 0.06643
MN 0.13212 0.18550
MS 0.11921 0.06040
MO 0.14210 0.10816
MT 0.20557 0.23445
NE 0.10078 0.14802
NV 0.07642 0.04836
NH 0.19181 0.19958
NJ 0.07117 0.05934
NM 0.16004 0.17442
NY 0.12704 0.11876
NC 0.12217 0.12125
ND 0.0 0.0
OH 0.13703 0.13971
OK 0.10654 0.21261
OR 0.15845 0.17095
PA 0.09449 0.08304
RI 0.17801 0.19413
SC 0.08183 0.05624
SD 0.38136 0.30147
TN 0.08563 0.05586
TX 0.15352 0.08973
UT 0.14575 0.08063
VT 0.46729 0.33242
VA 0.12723 0.09436
WA 0.21834 0.18763
WV 0.16107 0.17861
WI 0.10165 0.07748
WY 0.24293 0.12947

Table 7
Arithmetic means of the MARE of different combinations of states depending on their
number of rounds, using LR.

MARE SSR

Non-cum. Cum. Non-cum. Cum.

Mean of 30 round states 0.15233 0.13231 0.01124 0.01152
Mean of 29 round states 0.13866 0.11099 0.01419 0.0105
Mean of HI, SD and WY 0.25094 0.20032 0.02756 0.01967

ND 0.0 0.0 0.0 0.0

Mean of all states 0.15273 0.12995 0.0125 0.01159
Mean of all states but ND 0.15579 0.13255 0.01275 0.01182

Mean of 29–30 round states 0.14971 0.12823 0.01181 0.01132

In order to show some examples of the estimation capacity of our
LR models, we have taken the three most populous states of the USA
and plotted the ground truth we have for them (the CDC seroprevalence
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Fig. 4. MARE box-plots for all states, with and without the states with less than 29 rounds (HI, ND, SD and WY), using LR.
Fig. 5. LR estimations of seropositivity rates for the three most populous states.
surveys) along with the LR estimations for both aggregation methods:
cumulative and non-cumulative. The result can be seen in Fig. 5.

The plots clearly show that the constructed LR models closely fit
the observed data, and follow the rate of seropositivity throughout
time quite well. However, a difference between the estimations of each
aggregation method can be perceived at first glance: the cumulative
approach results in a smoother estimated line, as the noise of the
seropositivity rate is damped by using data from a longer period of
time per round; while the non-cumulative approach seems to result on
a delayed estimated rate with respect to the ground truth, at least up
to the abrupt rise at the end, which both approaches predict very well.

4.1.2. Beta regression
Overall, the results for LR were accurate, but when working with

rates and percentages, it is not the best approach to choose. BR is a
10 
regression model that is usually more appropriate for rates, so we are
going to check how it performs. When building the BR models, we
proceed just as we did with LR, removing the non-significant variables
as long as the SSR of the model is reduced. The resultant SSR and MARE
values of each model are displayed in Tables 8 and 9, respectively.

Then, we can check the mean of MARE values, just like we did with
LR, and see how the means of both regression models differ. The results
are shown in Table 10. The non-cumulative results are less accurate
with BR, specially for 29 round states, but BR cumulative MAREs are
fairly similar to LR, and sometimes even better. So we could say that
depending on the aggregation approach LR can be notably better than
BR (non-cumulative), or BR marginally better than LR. Overall the
results with BR are also good. The mean MARE of all states is 0.03
higher for non-cumulative BR, at 0.153, and virtually the same for
cumulative BR, at 0.131. The states that have less than 29 rounds of
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Table 8
Table with the SSR for each BR state estimation. Some states are highlighted by the
number of survey rounds: those with 29 rounds in grey, those with between 27 and
21 rounds in pink, and ND with its 4 rounds in red.

State By aggregation

Non-cum. Cum.

AL 0.01437 0.00634
AK 0.01526 0.02073
AZ 0.02022 0.008
AR 0.01617 0.00459
CA 0.00969 0.00733
CO 0.01702 0.01605
CT 0.00787 0.00458
DE 0.01077 0.00561
DC 0.01204 0.00216
FL 0.01733 0.00713
GA 0.01136 0.02207
HI 0.00412 0.00372
ID 0.02441 0.01419
IL 0.03351 0.01791
IN 0.03078 0.01103
IA 0.01596 0.02038
KS 0.01317 0.02467
KY 0.01632 0.00424
LA 0.00389 0.00543
ME 0.00666 0.00114
MD 0.03608 0.01443
MA 0.00545 0.00669
MI 0.01155 0.0045
MN 0.00709 0.01604
MS 0.01335 0.00587
MO 0.0219 0.01105

MT 0.02442 0.03096
NE 0.01528 0.02666
NV 0.01659 0.00413
NH 0.00683 0.00557
NJ 0.01088 0.00495
NM 0.02026 0.03559
NY 0.01495 0.02576
NC 0.01262 0.0075
ND 0.0 0.0
OH 0.0181 0.02409
OK 0.01453 0.02991
OR 0.00421 0.00813
PA 0.01238 0.00561
RI 0.0116 0.01126
SC 0.00931 0.00622
SD 0.0581 0.0494
TN 0.01479 0.0053
TX 0.05215 0.02191
UT 0.0336 0.01383
VT 0.00279 0.00202
VA 0.00993 0.00494
WA 0.00417 0.00287
WV 0.01855 0.00345
WI 0.02369 0.01341
WY 0.06077 0.02656

surveys (except ND) have a higher than average MARE, just like we
saw with LR, with a mean of 0.294 and 0.231 for non-cumulative and
cumulative aggregation, respectively.

In order to compare the MAREs of LR and BR more easily, we
represent both methods’ results next to each other in the box-plots of
Fig. 6. We observe that the removal of states with less than 29 rounds
reduces the upper quartiles and whiskers of the box-plots, and without
said states, the BR MARE values are very similar but slightly lower
than the LR MARE values when cumulative aggregation is used, which
coincides with our observations of the mean MAREs. The BR MAREs
with non-cumulative aggregation, on the other hand, are quite higher
than with LR. Lastly, we show some examples of the BR estimations
for the three most populous states, just like with LR. The result can be
seen on Fig. 7. It can be seen that BR also obtains good fits for the data,
cumulative aggregation being smoother.
11 
Table 9
Table with the MARE for each BR state estimation. Some states are highlighted by the
number of survey rounds: those with 29 rounds in grey, those with between 27 and
21 rounds in pink, and ND with its 4 rounds in red.

State By aggregation

Non-cum. Cum.

AL 0.10034 0.06354
AK 0.60248 0.43711
AZ 0.13438 0.08283
AR 0.1589 0.08439
CA 0.12426 0.07924
CO 0.22012 0.16465
CT 0.20386 0.10883
DE 0.1213 0.08879
DC 0.10827 0.05474
FL 0.11556 0.07639
GA 0.10587 0.12634
HI 0.26002 0.24945
ID 0.21814 0.12406
IL 0.1455 0.1135
IN 0.22337 0.09965
IA 0.11859 0.11954
KS 0.18792 0.16101
KY 0.19709 0.10096
LA 0.07088 0.07612
ME 0.51159 0.17916
MD 0.15336 0.09807
MA 0.15117 0.1379
MI 0.11108 0.09022
MN 0.12272 0.15238
MS 0.1116 0.06764
MO 0.18244 0.10671
MT 0.42478 0.19123
NE 0.13375 0.14519
NV 0.09507 0.04247
NH 0.39216 0.22044
NJ 0.07345 0.0528
NM 0.19983 0.19419
NY 0.11261 0.12655
NC 0.1161 0.11312
ND 0.0 0.0
OH 0.16372 0.2299
OK 0.14951 0.1531
OR 0.2011 0.17351
PA 0.10268 0.08266
RI 0.22131 0.16445
SC 0.08477 0.06129
SD 0.2523 0.27991
TN 0.11202 0.05877
TX 0.1739 0.09074
UT 0.17053 0.08836
VT 0.5569 0.31411
VA 0.15223 0.09407
WA 0.17227 0.14096
WV 0.30915 0.13082
WI 0.13116 0.10077
WY 0.37047 0.16419

Table 10
Arithmetic means of the MARE of different combinations of states depending on their
number of rounds, using BR.

MARE by aggregation

Non-cum. Cum.

Mean of 30 round states 0.18238 0.13140
Mean of 29 round states 0.20215 0.10777
Mean of HI, SD and WY 0.29426 0.23119

ND 0.0 0.0

Mean of all states 0.18887 0.13053
Mean of all states but ND 0.19265 0.13314

Mean of 29–30 round states 0.18617 0.12688

4.1.3. Genetic programming
We move on to GP modelling. Remember that a specially important

hyper-parameter has to be set, the maximum depth. We use four
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Fig. 6. MARE box-plots for all states except ND, with and without the states with less than 29 rounds (HI, SD and WY).
Fig. 7. BR estimations of seropositivity rates for the three most populous states.
maximum depths: 4, 6, 8 and 10. We observe that a tree with less
than 4 levels is too simple to represent the observed data accurately,
and that 10 levels are enough to get a relatively low MARE (higher
values may result in over-fitting the data). In Table 11, we display
the mean MARE of three example states per maximum depth for both
aggregation methods. These three are the most populous states and they
are representative of most statewide models. On the other hand, the box
plots of the MARE per maximum depth for each state aggregation are
also displayed in Fig. 8. As we can see in the box plots, the larger depth
they are allowed to have, the more precise GP-based models get (Texas,
Florida, and cumulative California), even though there are a few cases
12 
where more depth beyond a certain point is shown to produce higher
MARE (non-cumulative California).

When observing the behaviour of the MARE, the cumulative ap-
proach results in lower MARE than the non-cumulative on average for
the three examples, as we saw in LR and BR. If we compare the GP-
based models’ MARE to that of the LR and BR models, we see that
for all three examples (and all states studied beyond these examples),
GP achieves a lower MARE than both LR and BR, specially with non-
cumulative aggregation, where even the 4-level model is below the
linear MARE for all executions of the three examples (this is replicated
in most but not all states). The cumulative aggregation model usually



G. Sagastabeitia et al. Expert Systems With Applications 258 (2024) 124930 
Fig. 8. Box-plots of the MARE of 20 executions of the GP algorithm with different maximum depths for California (CA), Texas (TX) and Florida (FL). LR an BR MARE are shown
as horizontal lines for reference.
A

(

Table 11
Table with the mean MARE of 20 executions of the GP algorithm for different maximum
tree depths.

By maximum depth

4 6 8 10

California Non-cum. 0.109 0.100 0.078 0.083
Cum. 0.097 0.086 0.077 0.067

Texas Non-cum. 0.122 0.108 0.097 0.087
Cum. 0.090 0.083 0.076 0.067

Florida Non-cum. 0.088 0.080 0.069 0.059
Cum. 0.079 0.071 0.058 0.053

needs more depth than the non-cumulative to achieve lower errors
than its linear and beta counterparts, and in California, there are some
executions with depth 10 where the GP-based model was worse, but it
is better than LR and BR on average.

With these statewide GP-based models, we are achieving very low
mean MAREs, below a 10% deviation from the observed data on
average. This low MARE looks like the models are working extremely
well, and could lead us to think that allowing even more depth would
be desirable, as we may be able to reduce the MARE even more.
However, there are two main reasons why that may not be a good idea.
On the one hand, the more levels the model has, the more complex
and confusing it becomes. Hence, if we want to understand the internal
workings of the model, more complex trees could be a problem. Besides,
a small reduction of the MARE may not be worth the great growth
in complexity. On the other hand, when building a prediction model,
reducing the error of the training data to a minimum (the observed
data per state in our case) runs the risk of over-fitting the model to said
training data, including the noise of the observations into the model,
which gravely reduces the usefulness of the model outside the small
dataset used. Therefore, we decided that the small MARE obtained with
maximum depths of up to 10 levels is a good enough result and that
13 
it is unnecessary to try to lower it even more by raising the maximum
depth further.

In order to see a couple of examples from all the models generated,
we are going to show some estimations for both the minimum depth
allowed (4) and the maximum depth (10). We have picked the models
that are closest to the mean MARE of all 20 executions as examples, for
the most populous state (CA). The model of depth 4 that the algorithm
returned for CA with non-cumulative aggregation, is Eq. (15).
(

𝑅𝐸𝐹 + 0.01𝑅𝐹 + 0.01
𝑇𝐵𝑅

(𝑅𝐹 − 0.1)
)

𝑒𝑅𝐸𝐹 (𝑊𝑊𝐶−𝑇𝐵𝑅) (15)

nd with cumulative aggregation, the result is Eq. (16).

𝑁𝑅𝐶 − 𝑇𝐵𝑅 − ln(𝐶𝐿𝐼))𝐶𝐿𝐼 + 0.1
100𝑅𝐹

+ 𝑅𝐹
(𝑅𝐸𝐹 + 10)𝑒𝑇𝐵𝑅

(16)

It becomes evident at first glance that these models are more
complex than a simple LR model, even if these are the GP-based models
with the smallest depth. They are also clearly non-linear. These models
have the SSR, MARE and 𝑅2 values shown in Table 12. The resultant
estimated seropositivity rates can be seen in Fig. 9a. We have done the
same with the maximum depths of ten. The MARE and 𝑅2 values can
be seen on Table 12, and the estimations on Fig. 9b.

4.1.4. Neural networks
Lastly, we have also used NN to model the states’ seropositivity.

When working state by state we have built an NN with 7 hidden layers
and 9 neurons per layer, for a total of 63 neurons, all of them, with
RELU as their activation function; and we picked a learning rate of
0.05 and a batch size of 5. We have chosen the same three example
states as in GP (California, Texas and Florida) and applied the gradient
descent algorithm to obtain a NN that fits their seroprevalence rates.
The algorithm has a stochastic element (the initialisation), so we have
executed it 20 times, like the GP algorithm. The resulting mean SSR
and MARE values are shown in Table 13. We also plotted the MARE

values alongside the MAREs of the other models in Fig. 10.
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Fig. 9. GP estimations of seropositivity rates for California, with a maximum depth of 4 and 10.
Table 12
Table with the SSR, MARE and 𝑅2 of the California GP-based models with a maximum
tree depth of 4 and 10.

By depth

4 10

SSR Non-cum. 0.0592 0.0313
Cum. 0.0713 0.0246

MARE Non-cum. 0.1053 0.0799
Cum. 0.0980 0.0637

𝑅2 Non-cum. 0.9708 0.9854
Cum. 0.9483 0.9872

Table 13
Table with the mean SSR and MARE of 20 executions of NN gradient descent.

SSR MARE

California Non-cum. 0.00513 0.07217
Cum. 0.00390 0.06008

Texas Non-cum. 0.00706 0.04612
Cum. 0.01547 0.07083

Florida Non-cum. 0.00860 0.07347
Cum. 0.00440 0.06009

As we can see, the constructed NN obtains fairly good results with
he example states, with MARE values below 0.1. I.e., the NN deviates
rom the observed data less than 10% on average. The results of the NN
re close in accuracy to the GP model with a maximum depth of 10,
ver-performing their MARE in some cases. In most cases, the MAREs
nd SSRs of the NN models present slight or no improvements with
espect to their GP equivalents, but it has to be noted that there is
arely any room for notable improvements, given that the MARE values
f the GP10 models get as low as 0.04 in many cases. If we compare
he MARE and SSR values of the NN to the LR and BR models there
re almost no executions of gradient descent that obtain higher errors,
howing that NN is a much better approach than said regressions.

.2. Nationwide results

We have also used different modelling methods to obtain nation-
ide prediction models, aggregating all available data from all the
SA. As previously mentioned, there are some states that have had

ess than 30 rounds of the CDC survey conducted on them, which may
ndicate that the accuracy of those measurements is lower. In order to
ee whether the accuracy of the nationwide models works better with
ome states, we have built three nationwide models using three sets of
tates: all states, only the states with 29 or 30 rounds surveyed (all but
I, ND, SD and WY), and the top 10 most populous states (CA, TX, FL,

A, NY, PA, IL, OH, MI and NC).

14 
Table 14
SSR, MARE and 𝑅2 of the LR nationwide model for both aggregation methods, for
different sets of states.

SSR MARE 𝑅2

All states Non-cum. 1.39802 0.21116 0.94901
Cum. 5.69245 0.55992 0.79236

29–30 round states Non-cum. 1.21596 0.18663 0.95242
Cum. 5.20820 0.51069 0.79622

Top 10 Non-cum. 0.25986 0.14470 0.94980
Cum. 0.80138 0.25460 0.84520

4.2.1. Linear regression
We start building the LR nationwide models. We have estimated the

regression coefficients by least-squares regression for both aggregation
methods, as we did with the statewide models. We also tried removing
the non-significant variables and taking the model with the variables
that resulted in the lowest SSR. We have worked with the three sets of
states stated above, and the resulting SSR and MARE values, as well as
the 𝑅2, of the chosen nationwide models, can be seen in Table 14.

The SSR and MARE of the models, when constructed by including
or not the data from the states with less than 29 survey rounds,
provide us with an interesting insight of the LR model. Let us start with
the nationwide model that combines all 50 states and the District of
Columbia, whose SSR and MARE are on Table 14. Even if the separate
statewide models worked better with cumulative aggregation, the na-
tionwide model seems to be much more accurate with non-cumulative
aggregation: both errors of non-cumulative aggregation are less than
half the errors of cumulative aggregation. Besides, the accuracy of the
models is greatly reduced when compared to statewide LR models. This
is specially the case for cumulative aggregation, which gets to a MARE
of 0.56, up from 0.130, and an SSR of 5.69, up from 0.012 (see Table 7).
And even though non-cumulative aggregation fairs better, it still gets a
MARE of 0.21 (up from 0.153) and an SSR of 1.4 (up from 0.013).

However, the big drop in the accuracy of the model may be the
result of either inaccurate surveyed measurements or different epidemic
behaviour in the states with fewer rounds or smaller states. This possi-
bility comes to mind when noticing that when removing the four states
with less than 29 survey rounds the SSR of the models drops to 1.216
and 5.208 for non-cumulative and cumulative aggregation respectively,
as displayed on Table 14. The MARE also decreases slightly for both
non-cumulative (0.187) and cumulative aggregation (0.511).

Furthermore, if we just consider the ten most populous states (Cali-
fornia, Texas, Florida, New York, Pennsylvania, Illinois, Ohio, Georgia,
North Carolina and Michigan), all of which have had 30 rounds con-
ducted on them, we find that the SSR and MARE get even lower. As
shown in Table 14, with non-cumulative aggregation, we are left with
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Fig. 10. Box-plots of the MARE of 20 executions of the NN gradient descent algorithm for California (CA), Texas (TX) and Florida (FL). For reference, LR and BR MARE are
hown as horizontal lines, and GP are shown as box-plots.
able 15
SR, MARE and 𝑅2 of the BR nationwide model for both aggregation methods, for

different sets of states.
SSR MARE 𝑅2

All states Non-cum. 2.60927 0.46267 0.90550
Cum. 6.70242 0.73248 0.69044

29–30 round states Non-cum. 2.26936 0.41811 0.90772
Cum. 6.05642 0.67217 0.71076

Top 10 Non-cum. 0.41682 0.21699 0.82130
Cum. 0.91739 0.30174 0.70164

an SSR of 0.26 and MARE of 0.145. With cumulative aggregation, the
SSR drops by more than 4.0 to a total of 0.801, and the MARE gets to
0.255.

So, we see that the accuracy of the LR model works better when
we ignore the smaller states, and those without all 30 rounds of the
survey. This behaviour may be due to bias or inaccuracies in the CDC
seroprevalence surveys for those problematic states. So, maybe the real
seropositivity of some states did not evolve as suggested by the CDC
survey, making the ground truth we use for LR inaccurate, which would
result in very big residuals for those specific states, driving the SSR and
MARE of the model up.

4.2.2. Beta regression
If we repeat the process with BR to build the equivalent models

with the same three sets of states, we obtain the errors displayed in
Table 15. We can see that the slight (if any) worsening on average in
accuracy seen with statewide models is not replicated with these three
nationwide models. With individual states, there was not much change
between LR and BR, and in the three most populous states, the BR
errors were even lower than with LR; but when all states are considered
the SSR increases significantly from 1.39 to 2.61 with non-cumulative
aggregation, and from 5.69 to 6.70 with cumulative. The MARE also
goes up notably to 0.46 and 0.73 for non-cumulative and cumulative
aggregations respectively.
15 
Table 16
Table with the mean MARE of 20 executions of the GP nationwide algorithm with all
states, states with 29–30 rounds and the top 10 states; for different maximum tree
depths.

By maximum depth

4 6 8 10

All Non-cum. 0.176 0.171 0.167 0.168
Cum. 0.362 0.351 0.311 0.325

29–30 Non-cum. 0.162 0.157 0.155 0.154
Cum. 0.313 0.302 0.291 0.291

Top 10 Non-cum. 0.127 0.122 0.120 0.118
Cum. 0.211 0.193 0.191 0.183

The same behaviour is observed when fewer states are used for the
model, and both the 29–30 round states and the top 10 states have a
notably higher SSR and MARE than their linear counterparts. Overall,
we can conclude that the BR nationwide models we built are worse than
the LR nationwide models, so the latter is clearly a preferable approach.

4.2.3. Genetic programming
After running the GP algorithm for those three sets of states 20

times, we computed the mean SSR and MARE for each maximum depth,
just like we did with the statewide models. The resultant mean errors
are on Table 16; and the MAREs of all 20 executions with box-plots on
Fig. 11. We have also computed the 𝑅2 of the GP nationwide models,
as displayed in Table 17.

Looking at the box-plots, we can see that the MARE of the na-
tionwide GP-based models is higher on average than the MARE of the
statewide models. However, the GP-based models greatly over-perform
the LR and BR nationwide models, specially with non-cumulative ag-
gregation. Furthermore, the GP nationwide models seem to suggest that
the nationwide model performs poorly with smaller states, driving the
mean MARE up, because the GP-based models without the states with
less than 29 rounds show better results, and we get even better MARE
if we only account for the ten most populous states. This behaviour is

also observed with LR and BR.
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Fig. 11. Box-plots of the MARE of 20 executions of the nationwide GP algorithm with different maximum depths for five sets of states: all states, 29–30 round states, and the top
0 most populous.
Besides, just like the statewide GP-based models, the larger the
aximum depth of the models, the more accurate they get. How-

ver, there is barely any improvement from maximum depth 8 to 10
or non-cumulative aggregation when states with 29–30 rounds are
onsidered, and for both aggregations with all states. That seems to
ndicate that a maximal depth beyond 8 levels does not result in a big
mprovement in accuracy, which leads us to think that it is not worth
16 
sacrificing simplicity for the relatively minuscule improvements beyond
depth 8.

It is also worth noting that when multiple states are considered, the
aggregation that results in the best MARE is the non-cumulative, oppo-
site to what was observed with the statewide models. Furthermore, the
accuracy of the GP-based models found with cumulative aggregation
varies much more than those found using non-cumulative aggregation.
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Table 17
Table with the mean 𝑅2 of 20 executions of the GP nationwide algorithm with all
tates, states with 29–30 rounds and the top 10 states; for different maximum tree
epths.

By maximum depth

4 6 8 10

All Non-cum. 0.94007 0.94502 0.94762 0.94770
Cum. 0.74739 0.77148 0.78977 0.77822

29–30 Non-cum. 0.94596 0.95312 0.95738 0.95737
Cum. 0.77908 0.80614 0.81293 0.81315

Top 10 Non-cum. 0.94449 0.95001 0.95587 0.95825
Cum. 0.83916 0.87322 0.87418 0.89001

Table 18
Table with the mean SSR, MARE and 𝑅2 of 20 executions of the NN nationwide
algorithm with all states, states with 29–30 rounds and the top 10 states.

SSR MARE

Non-cum. Cum. Non-cum. Cum.

All 3.65925 4.19375 All 0.57238 0.62955
29–30 2.01734 3.62840 29–30 0.32490 0.53027
Top 10 2.80141 3.10637 Top 10 0.31806 0.46093

𝑅2

Non-cum. Cum.

All 0.94292 0.78004
29–30 0.94947 0.79108
Top 10 0.94279 0.81750

The box-plots of the cumulative models show that the MARE values
are more spread out. This suggests that the non-cumulative approach
results in more deterministic or predictable behaviour for the GP
algorithm, while cumulative aggregation is more random and variable.

4.2.4. Neural networks
NN were very accurate with statewide models, so one could expect

that they would also be the best with nationwide models. However, if
we execute gradient descent 10 times per set of states, it is enough to
see that the NN we are using fail to accurately estimate the seropreva-
lence of multiple states at once. We have used a NN with 7 hidden
layers, 6 neurons per layer, a batch size of 10, and a learning rate
of 0.0005, as these hyper-parameters were much more optimal for
nationwide results. The resulting mean SSR and MARE values and 𝑅2

re displayed in Table 18.
By looking into individual executions of the gradient descent, we see

hat there are multiple executions that get stuck in local minima with
round 4 SSR and 0.8 MARE, which drives up the mean errors. The
xecutions that do not get stuck do not obtain very accurate results
ither, staying around 1 SSR and 0.3 MARE. Even with these bad
esults, non-cumulative aggregation is slightly better than cumulative,
ust like we saw in the other three models.

. Model validation

Finally, we test the predictive models with new data. For that,
e build the predictive model using a subset of the observed data
t our disposal, and test said model on a new data subset. We have
eparated two validation approaches: one based on spacial validation
cross-state validation), which trains the model with a set of data from

geographical area and applies it to a new area; and another one
ased on temporal validation (temporal forecasting), which takes a
ime period to train the model and tests it with future seroprevalence
ata.

.1. Cross-state validation

This first testing method consists of taking a set of states (training

tates) to build a nationwide model using the data of those states, and

17 
Table 19
SSR and MARE of the LR cross-state validation for the ten most populous states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.01885 0.10528 CA 0.1421 0.3904
TX 0.04779 0.21749 TX 0.14477 0.22631
FL 0.02429 0.01466 FL 0.10838 0.10443
NY 0.04153 0.18646 NY 0.16009 0.31258
IL 0.02623 0.2684 IL 0.11162 0.31025
PA 0.01966 0.03034 PA 0.13586 0.15547
OH 0.02539 0.08005 OH 0.22749 0.4797
GA 0.0483 0.44332 GA 0.12732 0.58368
NC 0.01985 0.05169 NC 0.17197 0.3103
MI 0.01577 0.01921 MI 0.14363 0.24509

Mean 0.02877 0.14169 Mean 0.14732 0.31182

then validating the model with the data of a new state (test state), not
included in the set of training states. For example, in Fig. 12, we take
California, Texas, Florida and New York as training states, and evaluate
the resulting model with Kentucky. This procedure allows us to see how
well our models can be adapted to different geographical regions, as
long as the data available is equivalent.

5.1.1. Linear regression
As an example of the result of cross-state validation, we have taken

all the top 10 most populous states except California to build an LR
model, and then applied it to the data from California. The results for
both aggregations are plotted in Fig. 13. The results look promising, as
we can clearly see that the estimations are close to the ground-truth,
and overall they follow the trend of the seroprevalence, specially with
non-cumulative aggregation.

We did the same with the rest of the top ten states, and computed
the SSR and MARE values of each cross-state validation. Said values are
displayed in Table 19. We can see that with non-cumulative aggrega-
tion the SSR is not too high and the MARE is quite small on average.
The cumulative models deviate more from the ground-truth, 31% on
average, so the pattern of less accurate cumulative nationwide models
with respect to non-cumulative nationwide models is replicated with
cross-state validation. Overall, if we use non-cumulative aggregation,
it looks like the LR models built can be used for data from new regions
quite accurately.

5.1.2. Beta regression
We repeat the cross-validation of the ten biggest states for BR. First

of all, we see in the example of California in Fig. 14 that, again, the
cumulative model more closely follows the ground truth, but both are
fairly close to the Californian seroprevalence. Then, if we apply cross-
state validation to the top ten states, we see that the results are, on
average, less accurate than LR (see Table 20). The mean SSR and MARE
values of the non-cumulative models’ cross-state validation are notably
higher than their LR counterparts, and the cumulative models are closer
to the LR results, but still worse than the linear cross-state validation
on average. Overall, the models are not inaccurate, but they are a less
appropriate fit than with LR.

5.1.3. Genetic programming
We also perform cross-state validation with GP. We take the ten

most populous states as training states and use the model to test the
top five states. As the GP algorithm is stochastic, we apply cross-state
validation 20 times per state and aggregation, with a maximum depth
of 8. Fig. 15 shows the result of one iteration for California. At first
glance the cumulative model’s prediction looks worse than with LR or
BR, as it is displaced downwards in the middle section of the plot; but

the non-cumulative prediction seems very accurate.
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Fig. 12. Graphical representation of the procedure of cross-state validation.

Fig. 13. LR cross-state validation of California (CA) using the other ten most populous states.

Fig. 14. BR cross-state validation of California (CA) using the other ten most populous states.
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Fig. 15. GP cross-state validation of California (CA) using the other ten most populous states.
Table 20
Results of SSR and MARE of the BR cross-state validation for the ten most populous
states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.03184 0.10386 CA 0.22891 0.34003
TX 0.10904 0.25427 TX 0.17601 0.28975
FL 0.03978 0.07574 FL 0.18359 0.22073
NY 0.04508 0.12885 NY 0.13923 0.28308
IL 0.07787 0.49094 IL 0.19995 0.46107
PA 0.05707 0.03265 PA 0.15447 0.16355
OH 0.07108 0.38902 OH 0.39208 0.68404
GA 0.07675 0.08541 GA 0.1664 0.25201
NC 0.02691 0.05412 NC 0.26297 0.29929
MI 0.05503 0.11743 MI 0.24701 0.39352

Mean 0.05905 0.17323 Mean 0.21506 0.33871

Table 21
Table with the SSR and MARE of the GP cross-state validation for the five most
populous states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.02255 0.55530 CA 0.12553 0.55358
TX 0.05165 0.30743 TX 0.13885 0.33710
FL 0.02468 0.24262 FL 0.09825 0.41445
NY 0.04462 0.51597 NY 0.14841 0.49240
PA 0.04233 0.10989 PA 0.13019 0.30062

Mean 0.03717 0.34624 Mean 0.12825 0.41963

In Table 21, we see the mean SSR and MARE of all 20 executions
f the GP cross-state validations. We clearly see that just like in the
xample in Fig. 15, non-cumulative cross-state validation is very accu-
ate on average, without any mean SSR surpassing 0.06, and all mean
ARE values below 0.15. The same cannot be said about cumulative

ggregation, as the mean SSR is relatively high for most cases, as well
s the mean MARE. Overall, the non-cumulative MARE is better than
ith LR and BR (not so with the SSR), and non-cumulative is still the
est aggregation approach.

.1.4. Neural networks
Lastly, we have tried cross-state validation for NN. Following with
he previously shown examples, we have plotted the results of the

19 
Table 22
Table with the SSR and MARE of the NN cross-state validation for the five most
populous states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.234 0.28302 CA 0.55282 0.80358
TX 0.5915 0.48555 TX 0.53336 0.45121
FL 0.35608 0.27787 FL 0.62877 0.55312
NY 0.30288 0.3322 NY 0.4813 0.50359
PA 0.28961 0.24774 PA 0.44584 0.46343

Mean 0.35482 0.32528 Mean 0.52842 0.55498

predictions of NN cross-state validation using the top ten states (except
California) as training states to predict the seroprevalence rate of
California, shown in Fig. 16. The optimal hyper-parameters chosen
were a batch size of 5 and a learning rate of 0.0005 for the RNN of
6 neurons per layer. In the chosen example, the predictions for non-
cumulative aggregation are very close to the ground-truth, and the
cumulative predictions follow the trend of the seroprevalence fairly
well, although it overestimates the rate at the start. However, this is
not the norm for NN cross-state validation, and many executions result
in fairly bad results.

Just like GP, we have to execute the gradient descent for NN
multiple times to get an idea of the average performance of NN with
cross-state validation. We also executed it 20 times per state and
aggregation, and the resulting means are in Table 22. By looking at
the means, we clearly see that the inaccuracy of the nationwide NN
models is carried on to the cross-state validation models. The mean
SSR and MARE values are very high for both non-cumulative and
cumulative aggregations, and NN is clearly the worst model when
applying cross-state validation, with a mean MARE of more than 0.5
for both aggregations.

5.2. Temporal forecasting

Lastly, we have used what we call temporal forecasting in order to
evaluate the accuracy of statewide models when presented with new
data. Temporal forecasting consists of training the statewide prediction
models with all available rounds except the last four rounds, and then
estimating the immediate next round with said model. This is repeated
iteratively, estimating the next round each iteration, until all rounds
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Fig. 16. NN cross-state validation of California (CA) using the other ten most populous states.
Fig. 17. Graphical representation of the procedure of temporal forecasting.
have been estimated. We then evaluate the SSR and MARE of the
estimated rounds. This way, we can see how accurately the models
predict the immediately future round. This procedure is shown in
Fig. 17. Even though estimating the last four rounds does not sound
like much, take into account that those four rounds cover four months
in real-time.

5.2.1. Linear regression
We start by applying the forecasting to LR. We picked the three most

populous states as examples once again. If we follow the procedure
presented above, we obtain the seroprevalence estimations plotted in
Fig. 18. Just by looking at the plots we see that, overall, the temporal
forecasting does not work very well with these three states. If we check
the SSR and MARE values of all the 10 most populous states, shown
in Table 23, we see that the results are not too bad, with the notable
exception of New York (NY). The mean SSR of the ten states is 0.06 for
non-cumulative and 0.104 for cumulative, and the mean MARE values
are 0.18967 and 0.21221 for non-cumulative and cumulative. Overall,
the error is not very high. Note that the relationship between the ag-
gregations is reversed with temporal forecasting: now non-cumulative
aggregation is better.

5.2.2. Beta regression
We also apply BR temporal forecasting to the three most populous

states, and plot them in Fig. 19. We can see at first glance that the
results are worse than LR, but we need to check the SSR and MARE
values. In Table 24 we clearly see that both the SSR and the MARE
are worse than for LR throughout the ten biggest states. We obtain
a mean SSR of 0.183 and 0.167 for non-cumulative and cumulative
aggregations, and a mean MARE of 0.322 and 0.307. So, the models
deviate by almost a third of the real values. Such poor results clearly
signal that the LR models we built work better when predicting future
seroprevalence rates.
20 
Table 23
Results of SSR and MARE of the LR temporal forecasting for the ten most populous
states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.02092 0.06911 CA 0.12258 0.24065
TX 0.15389 0.06515 TX 0.30174 0.17305
FL 0.06717 0.06476 FL 0.20583 0.17241
NY 0.07419 0.46524 NY 0.24542 0.57502
IL 0.08248 0.02562 IL 0.20153 0.15114
PA 0.01055 0.00728 PA 0.13756 0.11016
OH 0.03824 0.11331 OH 0.16177 0.24337
GA 0.08645 0.16903 GA 0.20953 0.20766
NC 0.05794 0.05624 NC 0.20461 0.20188
MI 0.01153 0.002 MI 0.10613 0.04672

Mean 0.06034 0.10377 Mean 0.18967 0.21221

5.2.3. Genetic programming
When applying temporal forecasting to GP, we have to execute the

algorithm multiple times to see how it performs, just like we did with
normal estimations. We have taken the five most populous states and
executed GP temporal forecasting on them 20 times. An example of
these executions for the top three states is shown in Fig. 20. These
examples seem to indicate that GP is still not very accurate when it
comes to predicting future data but does not look much worse than the
LR and BR temporal forecasting.

However, if we look into the mean SSRs and MAREs of all the
executions for the five biggest states, shown in Table 25, there are
clearly some big problems with GP temporal forecasting: some state-
aggregation combinations result in exorbitant mean errors (both SSR
and MARE). If we look into the individual executions, we notice that
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Fig. 18. LR temporal forecasting of the last four rounds for the three most populous states.

Fig. 19. BR temporal forecasting of the last four rounds for the three most populous states.
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Fig. 20. GP temporal forecasting of the last four rounds for the three most populous states.
able 24
able with the SSR and MARE of the BR temporal forecasting for the ten most populous
tates.
SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.09299 0.08296 CA 0.21854 0.25847
TX 0.29739 0.13807 TX 0.45756 0.28722
FL 0.42564 0.08603 FL 0.56694 0.16481
NY 0.10899 0.33781 NY 0.28967 0.56531
IL 0.22894 0.28911 IL 0.38833 0.36873
PA 0.01258 0.01713 PA 0.14574 0.16058
OH 0.15163 0.23927 OH 0.2643 0.38807
GA 0.20537 0.28326 GA 0.33587 0.32268
NC 0.29298 0.13301 NC 0.43862 0.29888
MI 0.01587 0.06015 MI 0.11093 0.25134

Mean 0.18324 0.16668 Mean 0.32165 0.30661

these spikes in the errors of some states is due to a handful of executions
that resulted in huge SSR and MARE values. Therefore, even though
most times the GP algorithm results in fairly low errors, there are a
few times when the SSR gets to the hundreds, or even thousands. This
is probably because the new data that is introduced to the resulting
models may take some unexpected values (with respect to the training
data), which may result in, for example, a division by a minuscule
number.

So, even though GP can provide very accurate estimations with the
training data and can usually predict future seroprevalence rates fairly
well, its probabilistic nature makes it unpredictable when working with
new data.

5.2.4. Neural networks
Lastly, we apply temporal forecasting to NN. Remember that these

were the most accurate statewide models. As an example, we have
22 
Table 25
Table with the mean SSR and MARE of the GP temporal forecasting for the five most
populous states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 1633.25 0.15671 CA 19.0925 0.32762
TX 0.07744 0.13307 TX 0.18128 0.26670
FL 0.02500 0.25912 FL 0.11644 0.26916
NY 149.169 936 262 NY 3.65417 281.106
PA 0.04242 0.25610 PA 0.19211 0.37915

picked California and applied temporal forecasting to it with an NN
with the following hyper-parameters: seven hidden layers with nine
neurons each, batch size of 5, and learning-rate of 0.1. The result is plot-
ted in Fig. 21. This example looks good overall, and even though there
is a dip in the second to last round, the estimations somehow follow
the trend of the seroprevalence rate, specially the cumulative model.

We have also executed temporal forecasting on the top five most
populous states 20 times with NN. To do so, we picked a batch size of
5 and a learning rate of 0.1. The mean SSR and MARE values of each
state and aggregation, as well as the mean of all executions, are shown
in Table 26. The results are clearly better than GP, as there have been
no executions with exorbitant errors. The non-cumulative mean SSR
and MARE, at 0.098 and 0.260, respectively, are better than that of
BR, but still notably higher than LR. With cumulative aggregation, on
the other hand, the NN SSR and MARE values are the best out of the
four models, with a mean SSR of 0.034 and a mean MARE of 0.149.

6. Summary of results

Let us remember the experiments that we have conducted with the
ensemble models built. First of all, we have simply evaluated how well
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Fig. 21. NN temporal forecasting of the last four rounds for California.
Table 26
Table with the SSR and MARE of the NN temporal forecasting for the ten most populous
states.

SSR MARE

State By aggregation State By aggregation

Non-cum. Cum. Non-cum. Cum.

CA 0.07406 0.03232 CA 0.24074 0.15345
TX 0.12257 0.04916 TX 0.28449 0.17512
FL 0.09577 0.03264 FL 0.23121 0.12526
NY 0.11502 0.04296 NY 0.28193 0.1644
PA 0.08304 0.01432 PA 0.26266 0.12438

Mean 0.09809 0.03428 Mean 0.26021 0.14852

the models could fit the data available, by training the model and test-
ing its accuracy with the same set of data. We have done this for both
data-aggregation approaches (cumulative and non-cumulative), and for
two types of datasets: statewide data (all the data from single states)
and nationwide data (all the data from a set of multiple states put
together). Afterwards, we have checked the performance of the models
with new data via two validation approaches: cross-state validation,
which uses nationwide models to predict the seropositivity of untrained
states; and temporal forecasting, which uses the data of a state up to a
set date to build a model and predicts the future seropositivity of the
state.

Now let us present a summary of the results obtained with each
model, aggregation, and scenario. In Table 27, we have displayed which
models are the best and worst to choose (with respect to their errors)
in each of the studied cases, for each aggregation approach. First of all,
we conclude that cumulative aggregation is better when working with
individual states within the USA, but non-cumulative aggregation more
accurately fits the data when multiple states are considered together.
We find that GP obtains much more accurate prediction estimations
than those yielded by LR and BR on average, and that, as expected,
the complexity of the models obtained using GP is usually inversely
correlated with its SSR and MARE. This finding suggests that the non-
linearity and complexity of GP models is an advantage with respect to
LR and BR, and improves the performance of the models, as could be
expected. We also find that the NN built are the most accurate models
for statewide models, but notably under-perform the other models for
nationwide models.

Furthermore, when it comes to the introduction of new untrained
data via cross-state validation and temporal forecasting, we find that
the models are better at predicting the data from new states rather
23 
than future seroprevalence data. Besides, some models have some
clear problems when presented with new data, like NN in cross-state
validation and GP in temporal forecasting, which indicates that not
every model is appropriate for new untrained data.

The LR and BR models also have a notorious advantage with respect
to GP and NN: the execution time. The regression models can build
the prediction models much faster than GP and NN, which makes them
easier to work with. Indeed, LR and BR can build the models in seconds,
while GP and NN usually need minutes or even hours (for nationwide
models).

When it comes to the theoretical time complexity of the different
approaches, LR and BR have a complexity of 𝑂(𝑛𝑝2+𝑝3), where 𝑛 is the
number of observations and 𝑝 is the number of explanatory variables
(8 in this case). On the other hand, GP has a theoretical complexity
of 𝑂

(

𝑃 ⋅ 𝐺 ⋅ 𝑇 (fitness)
(

𝑃𝑐 ⋅ 𝑇 (crossover) + 𝑃𝑚 ⋅ 𝑇 (mutation)
))

; where 𝑃 ,
𝑃𝑐 and 𝑃𝑚 are the total population, the crossed population, and the
mutated population, respectively; 𝐺 is the number of generations; and
𝑇 (fitness), 𝑇 (crossover) and 𝑇 (mutation) are the execution times of the
fitness function (SSR in our case) and the crossover and mutation oper-
ations, respectively (Lissovoi & Oliveto, 2020). In our case, the crossed
and mutated populations are equal to 𝑃 , so we have a complexity of
(17).

𝑂
(

𝑃 2 ⋅ 𝐺 ⋅ 𝑇 (fitness) (𝑇 (crossover) + 𝑇 (mutation))
)

(17)

Note that the execution time of the fitness function is dependent on
the number of observations and variables (𝑛 and 𝑝).

For NN, the gradient descent we used is called Mini-Batch Gradient
Descent (MBGD), which shuffles and divides the training dataset into
batches of size 𝑘 in each iteration. Suppose the algorithm needs 𝐼
iterations to stop. In that case, the complexity is given by 𝑂

(

𝑑𝑛𝐼
𝑘

)

𝑘 =
𝑂 (𝑑𝑛𝐼), where 𝑛 is the number of training samples and 𝑑 the num-
ber of parameters being optimised (the weights of the neurons). The
complexity is multiplied by the batch size 𝑘 because MBGD needs
to traverse the 𝑘 data-points of the batches for each update, which
increases complexity (Jagadeesha & Bhandari, 2021).

It is easy to see that the theoretical time complexity of GP and NN
are bigger than that of LR and BR. With regards to spatial complexity,
it is negligible for LR and BR, and it is not a problem for GP and
NN either because both approaches use a constant population/iteration
throughout their algorithms.

Overall, clearly the simplest models are the LR models, followed by
BR models. These models provide a simple combination of the explana-
tory variables which can help us understand the relationships some
variables have with the seropositivity. This lack of complexity may
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Table 27
Summary of the best and worst models for each scenario considered.

Best models Worst models

Non-cum. Cum. Non-cum. Cum.

Statewide models NN NN Statewide models BR BR
Nationwide models GP GP Nationwide models NN BR
Cross-state validation GP LR Cross-state validation NN NN
Temporal forecasting LR NN Temporal forecasting GP GP

result in less accurate predictions with respect to GP and NN, but the
simplicity can be an advantage to be taken into account when choosing
the model to use. On the other hand, the GP models, even though more
complex, the depths of the GP trees that we have worked with were
not big enough to cause a problem due to excessive complexity. As
explained before, more depth results in more accurate models, but we
considered the improvement beyond 10 to be too small with respect to
the trade-off of complexity.

The deterministic nature of LR and BR is also an advantage, because
they can only have one outcome, and they are not dependent on
the individual execution like GP and NN are. Finally, one notable
problem with NN is its lack of explainability. While the other three
models provide an analytic formula, which can be analysed to get
information about the relationship between explanatory variables and
seroprevalence rates, NN is a black box whose inner workings are very
hard to understand.

7. Conclusions and future work

Throughout this work, we have presented four different stacking
ensemble approaches for the problem of estimating the seroprevalence
rate in the USA: LR, BR, GP and NN. These estimation methods have
given us insights into how indirect surveys can be used in combination
with other data sources to estimate a hidden population, without
surveying for said population. Specifically applied to the SARS-CoV-2
pandemic in the USA, we have looked into how these models can be
used to get very accurate estimations of seroprevalence at both state
and nation levels.

GP and NN are always stochastic, so each execution of the algorithm
may result in different models, with varying levels of accuracy; but
after building models using the four stacking approaches, we have seen
that, when it comes to working with a single state, the NN models are
on average the best fit for the observed data, followed by GP and LR
models, with respect to both SSR and MARE. Sometimes, the GP and NN
algorithms may result in models with higher SSR and MARE than the
LR and BR models, specially when not enough complexity is allowed,
but those cases are the exception to the norm. With nationwide models,
on the other hand, GP models are the most accurate, followed by LR
and BR, and our results with NN were poor.

However, when working with prediction models, the error should
not be minimised in excess, as that may result in over-fitting the
training data. However, the MARE is not too small to take over-fitting
as a considerable threat to the accuracy of the model (it is around 0.07
for the best obtained GP models). With statewide NN models, the error
has been reduced further, so over-fitting should be taken into account.

We have also seen that the nationwide models have a poorer perfor-
mance when compared to the statewide models. This drop in accuracy
may be the result of poor measurement quality among small states, and
states with few survey rounds conducted on them, because the exclu-
sion of these states results in lower SSR and MARE values on average,
for every model tried. The drop in accuracy when multiple states are
considered may also be due to inconsistencies among states’ data, as the
data collected in some states might not be as accurate as in others, or
the correlation between explanatory variables and seroprevalence may
not be identical throughout all states. There may also be more impor-

tant explanatory variables such as population size and density, climate,

24 
social interactions, vaccination or COVID-19 denialism, that were not
considered in our work but could have a great impact on the spread
of an infectious disease in different regions. In all nationwide models,
the increase in error is much bigger for cumulative aggregation with
respect to non-cumulative aggregation. Therefore, cumulative was the
best aggregation approach with statewide models but is outperformed
by non-cumulative aggregation in nationwide models. So, when we are
working with the data from a single state, it is better to use cumulative
aggregation if we want to minimise the SSR or MARE of the model,
regardless of the model we are using (LR, BR, GP or NN); but if we are
going to account for multiple states, the non-cumulative approach is
a better choice. NN fare specially bad with nationwide models, which
may indicate that further research on the application of NN to this kind
of problem is needed. After all, we have used a very simple NN.

When it comes to GP nationwide models, the cumulative approach
results in a relatively big variance in MARE, which may result in
worse MARE than LR for some executions of the GP algorithm. For
non-cumulative nationwide models, on the other hand, the MARE’s
variation is much smaller, which means that the behaviour of the GP
algorithm is much more predictable.

We have also used cross-state validation and temporal forecasting to
test how well the models perform with new data, and the results offer
us insights into the applicability of these models. First of all, cross-state
validation resulted, overall, in very accurate results for non-cumulative
aggregation, the best being the GP models, closely followed by LR. BR
was notably worse with this aggregation, and NN performed badly, as
expected from the nationwide models. Cumulative aggregation was not
as accurate with cross-state validation, which is in line with the results
of the nationwide models. The best cumulative model for cross-state
validation was again LR, and in this case, BR over-performed GP. NN
were once again notably less accurate.

Secondly, temporal forecasting shows us that even though GP mod-
els are very accurate at estimating known data, they perform poorly
when presented with new data to predict. GP was indeed the worst
model with respect to temporal forecasting, followed by BR. The best
model for predicting future seroprevalence was LR when using non-
cumulative aggregation, followed by NN; and NN with cumulative
aggregation. Therefore, the simplest models were actually very accurate
with new data, obtaining better results than the much more complex
NN models in some cases. This reminds us of the effectiveness of these
widely used models, and that there are some cases where too much
complexity may be detrimental, like we saw with GP.

It is important to note that this work has some limitations. Mainly,
the use of GP and NN requires a large computing power and a long time
to execute the algorithms multiple times. We did not have access to the
computational capabilities required for some tests or research lines we
would have liked to dive into, so there are some aspects that are left as
future work.

Possible future work includes the following research lines:

• Studying the application of GP more in-depth by, for example:
trying to implement GP with more operators beyond the ones
used in this paper, such as trigonometric functions; allowing the
GP algorithm to run for more time before stopping it or using a
bigger population size, in order to give the algorithm more space
to find a more optimal solution; or trying to minimise the MARE
instead of the SSR.

• Focusing on the explanatory variables used, and checking
whether adding new variables such as the number of deaths by
COVID-19 or vaccination rates can notably improve the models.
In turn, exploring the indirect effect of possible new variables
(for example, population density) on the quality of the models,
without impacting their complexity.

• Further research on the application of NN: adding more hidden
layers and neurons, trying different and more complex activation

functions.
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• Considering new data aggregation approaches other than cumula-
tive and non-cumulative, or studying the application of statistical
or deep learning models directly to the non-aggregated data.

• The modelling approaches presented in this paper are not limited
to the study of SARS-CoV-2 spread, and could be applied else-
where. The application of the stacking ensemble models presented
here could be done in other areas such as electoral research or
sociological studies.
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