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Abstract

Energy Packet Networks (EPNs) model the interaction between renewable sources generating energy fol-

lowing a random process and communication devices that consume energy. This network is formed by cells

and, in each cell, there is a queue that handles energy packets and another queue that handles data packets.

We assume Poisson arrivals of energy packets and of data packets to all the cells and exponential service

times. We consider an EPN model with a dynamic load balancing where a cell without data packets can

poll other cells to migrate jobs. This migration can only take place when there is enough energy in both

interacting cells, in which case a batch of data packets is transferred and the required energy is consumed

(i.e. it disappears). We consider that data packet also consume energy to be routed to the next station.

Our main result shows that the steady-state distribution of jobs in the queues admits a product form so-

lution provided that a stable solution of a fixed point equation exists. We prove sufficient conditions for

irreducibility. Under these conditions and when the fixed point equation has a solution, the Markov chain

is ergodic. We also provide sufficient conditions for the existence of a solution of the fixed point equation.

We then focus on layered networks and we study the polling rates that must be set to achieve a fair load

balancing, i.e., such that, in the same layer, the load of the queues handling data packets is the same. Our

numerical experiments illustrate that dynamic load balancing satisfies several interesting properties such as

performance improvement or fair load balancing.
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1. Introduction

We are interested in analyzing a queueing network with dynamic load balancing. In these systems, jobs

can migrate from one queue to another. This technique provides a good solution for distributed systems where

the goal consists of achieving a fair workload distribution. Another advantage of dynamic load balancing is

given when some queues are in the heavy-traffic regime, in which case migration of jobs can lead to reduce

the load of these queues, which clearly improves the performance of the system. Dynamic load balancing

techniques can be classified in two groups: receiver-initiated load balancing where an idle queue requests jobs

to the rest of the queues, and sender-initiated load balancing where the queues transfer jobs when they are
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overloaded. The authors in [1] show that, in the heavy-traffic regime, the receiver-initiated load balancing

performs better than the sender-initiated load balancing. This finding was also confirmed in a more recent

work [2].

Receiver-initiated load balancing techniques are also known as work-stealing strategies in the literature

and have been widely studied so far. For instance, in the context of parallel server systems, [3, 4] study

work-stealing strategies using the mean field approach and [5] formulate the problem of optimal migration of

low-priority jobs as a restless multiarmed bandit problem. In [6], a job is moved to an idle queue when the

sender has more than a fixed threshold value of jobs. A closer related work to ours is [7] where the authors

consider a queueing network with Poisson arrivals and exponential services times that operates under the

received-initiated load balancing technique. More precisely, they consider that, when a queue gets empty, it

polls another queue (which they call the sender queue) with an exponential time and brings a batch of jobs

whose size is geometrically distributed and bounded by the number of jobs of the sender queue. Their main

result shows that the steady-state distribution of packets in the queues has a product form expression. To the

best of our knowledge, [7] is the first one to obtain a product-form solution for the steady-state distribution

of networks with receiver-initiated load balancing.

The devices that form the modern communications systems consume energy. This energy comes often

from renewable energy sources, which are clearly very volatile and introduce a high uncertainty about the

amount of energy available in the network. As a result, several research works have been recently proposed

queueing models that incorporate energy consumption of the queues and consider that the energy arrives

to the system according to a random process. An example of these models is the Energy Packet Network

(EPN) model, which has been introduced by Gelenbe and his colleagues in [8, 9, 10]. This model considers

that energy is represented by packets of discrete units of energy, which we call Energy Packets (EPs), and

the workload packets, which are called as Data Packets (DPs), are transmitted to the next station only when

there is available energy. Thus, the network is divided in cells and, in each cell, there is a queue that handles

EPs and another queue handling DPs. Most of the EPN models that have been explored in the literature are

particular cases of G-networks [11, 12, 13], with a notable exception being [14] based on a Brownian motion

model. Therefore, the known product-form results for G-networks extend to EPN models. There has been a

recent interest of researchers in this field to analyze queueing models whose steady-state distribution of jobs

has a product solution by including energy consumption using the EPN model, see [15] for a recent survey

of EPN models.

In this article, we consider an EPN model where the DP queues start the transfer. This means that,

when a DP ends service in a cell, it is sent to the EP queue of the same cell and it is transferred to the

next cell if there are enough EPs, in which case the required number of EPs disappear. The main difference

of our work with respect to the previously studied EPN models is that we consider that a load balancing

of a batch DPs to moved from one cell to another as in [7]. However, in [7], the authors do not consider

energy consumption. Therefore, in this work, we define how energy needs to be consumed for a successful
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load balancing. In fact, we consider that the load balancing is only successful when there are one EP in the

polling cell (i.e., the cell that initiates the load balancing protocol) and a batch of EPs in the sender cell.

The main contributions of this work are summarized as follows:

• We show that the steady-state distribution of jobs in the queues of this model admits a product form

solution provided that a stable solution of a fixed point equation exists. We give sufficient conditions

under which the Markov chain is ergodic. We also provide sufficient conditions for the existence of the

fixed point problem.

• We then focus on a layered network and we determine how the polling rates can be set so as to achieve

load balancing in each layer, i.e., to equalize the load of all the DP queues of the same layer.

• Finally, we illustrate using numerical experiments that the load balancing technique we consider in

this work has an important property that consists of improving the performance of the system by

decreasing the load of the queues that are close to saturation. We also study numerically how the

polling rate of layered networks can be computed.

The technical part of the paper is as follows. In Section 2, we present the model of an Energy Packet

Network with load balancing as well as the network topology that we consider. Then in Section 3, we focus

on a general network and prove the existence of a product form expression for the steady-state distribution

of packets in the queues, analyze its ergodicity and provide sufficient conditions under which a solution of

the fixed point equation exists. Section 4 is devoted to the analyze the parameters that ensure a fair load

balancing in layered networks. Then in Section 5, we present some numerical examples to illustrate the main

features of the model. In Section 6, we present the main conclusions of our work.

2. Model Description

2.1. The EPN model

We consider an EPN model with N cells. Cell i has two queues: one of them handles the DPs (DP queue

i), whereas the other queue handles the EPs (EP queue i). We assume that DPs and EPs arrive to cell

i following a Poisson process with rate λi and αi, respectively, with i = 1, . . . , N . We also assume that a

leakage of a EP at cell i occurs with exponential time with rate βi, for i = 1, . . . , N .

We consider an EPN model in which DPs start the transfer and such that ci EPs are required for a

successful transfer to the next cell. More precisely, we assume that DPs are served at DP queue i following

an exponential distribution with rate µi, for i = 1, . . . , N . When a DP ends service at cell i, it is sent to EP

queue i and if there are less than ci EPs, the DP is lost and EP queue i gets empty. Otherwise, (i.e., if a DP

ends service at cell i where there are, at least, ci EPs at cell i), the DP is routed to cell j with probability

P (i, j) and ci EPs disappear from EP queue i. Hence, we have that for all i,
∑N

j=1 P (i, j) = 1. We also

assume that a DP at cell i leaves the system after an exponential service time with rate δi and does not

require energy.
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2.2. Load Balancing with Energy Consumption

We consider in this EPN model a load balancing technique with energy consumption. It consists of a

generalization to Energy Packet Networks of the model in [7] where the load balancing is based on polling.

Thus, we assume, as in [7], that cell i initiates the polling protocol to get DPs from cell j with exponential

time with rate γi,j . Furthermore, in this work, we assume that the load balancing consumes energy on both

cells involved in the load balancing (note that the model of [7] does not consider energy consumption). We

denote by A
(k)
i,j the probability that k EPs at cell j are needed to carry out load balancing initiated from

cell i (i.e. with probability A
(k)
i,j k EPs are consumed when the load balancing to move DPs from cell j to

cell i is successful), where k = 0, 1, 2, . . . . We assume that for all i and j,
∑

k≥0 A
(k)
i,j = 1, A

(0)
i,j ̸= 1 and∑

k k A
(k)
i,j < ∞.

In our model, the load balancing takes place if the following conditions are satisfied in order:

(COND1) There is at least one EP at cell i.

(COND2) There are at least k EPs at cell j.

(COND3) DP queue i is empty.

When the load balancing protocol gets activated, it first checks that (COND1) is satisfied. In the positive

case, (COND2) establishes a second condition for the activation of the load balancing. In case (COND2) is

not verified (i.e., if there is not enough energy at EP queue j), EP queue j gets empty and one EP at cell

i disappears. When (COND1) and (COND2) are verified, (COND3) is the last condition to check, which

consists of verifying that DP queue i is empty. If (COND3) is not satisfied, one EP of cell i and k EPs

of cell j disappear. On the other hand, if (COND1), (COND2) and (COND3) are met, the load balancing

operation initiated by cell i provokes a transfer of a batch of DPs from cell j to cell i, which requires 1 EP at

cell i and k EPs at cell j. The number of DPs that are transferred from cell j to cell i follows a distribution

denoted by Bi,j which will be defined later.

In Figure 1, we represent four out of all the situations that can arise in a network with two cells. We

depict the DPs as grey boxes, whereas the EPs as white boxes. Therefore, the queues containing white boxes

are the EP queues and the queues containing grey boxes are the DP queues. We consider that the cell on

the right polls for DPs to the cell on the left and also that the cell on the left sends DPs through routing.

A successful load balancing and routing are only achieved for the case illustrated in (d). In fact, the load

balancing occurs since (COND1), (COND2) and (COND3) are satisfied (there are EPs in the sender and

receiver cells and the receiver DP queue is empty) and the routing is also successful since there are enough

EPs in the left cell. In the rest of the cases, load balancing or the routing does not occur for different reasons.

The caption of each figure presents the reason why the transfer (load balancing and/or routing) fails. In the

case of (a), the routing cannot be done since there are not EPs in the left cell, whereas the load balancing is

not successful since (COND1) is satisfied but (COND2) is not. In the case of (b), the DP queue of the left

cell is empty and, therefore, there are no DPs to transfer due to routing and due to load balancing. This
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means that even if (COND1) and (COND2) are satisfied, we cannot transfer the DPs due to load balancing

because the left cell is empty. In the case of (c), we observe that the routing is successful since there are

DPs and EPs in the left cell, but the load balancing fails since the DP queue of the receiver is not empty,

i.e., (COND3) is not satisfied.

Data Packets

Energy Packets

Energy Packets
Destination

Leackage

Data Packets

(a) The EP queue of the sender cell is empty.

Data Packets

Energy Packets

Energy Packets
Destination

Leackage

Data Packets

(b) The DP queue of the sender cell is empty.

Data Packets

Energy Packets

Energy Packets
Destination

Leackage

Data Packets

(c) The DP queue of the receiver cell is not empty.

Data Packets

Energy Packets

Energy Packets
Destination

Leackage

Data Packets

(d) A successful load balancing and routing.

Figure 1: The cell on the right polls for DPs the cell on the left. The solid blue arrow represents the interaction due to routing,

whereas the green dotted arrow of load balancing.

Remark 1. We would like to remark that the activation process for the load balancing is a new type of

Domino synchronization which generalizes the ones studied in [16]. We would also emphasize that the model

under study in this article differs with respect to [7] since in our model the load balancing requires energy.

In other words, if there is not enough energy on both cells, the load balancing does not take place.

Regarding the conditions that the load balancing protocol must verify, we notice that the ordering of

(COND1) and (COND2) can be changed and the main result of this article, i.e., the existence of a product

form expression of the steady-state distribution of the packets in the queues, is mantained. However, we have

not been able to keep this property when (COND3) is verified first.

Let Bi,j(Xj) be the batch distribution of DPs that migrate due to load balancing from cell j to cell i

after a polling by cell i when there are Xj DPs at cell j. Let ρi (resp. ρj) be the DP load at cell i (resp.

cell j). We now present the following assumption that will be useful to prove our main result.

Assumption 1. Bi,j(Xj) is a truncated geometric with rate bi,j, where bi,j =
ρi

ρj
and bi,j < 1. Thus,

P (Bi,j(Xj) = k) =

(1− bi,j)b
k
i,j , if k < Xj ,

bki,j , if k = Xj .

5



We present some properties of the distribution under consideration in Appendix A.

Remark 2. The authors in [7] also consider this assumption on the batch distribution to prove that the

steady-state distribution of packets in the queues admits a product form solution. From this assumption, it

follows immediately that it is not possible to have both γi,j > 0 and γj,i > 0 (one cannot have simultaneously

bi,j < 1 and bj,i < 1 since bi,j =
ρi

ρj
and bj,i =

ρj

ρi
). We also note that ρi/ρj < 1 implies that the transfer of

DPs is carried out from queues with higher loads to queues to lower loads.

We will be sometimes interested in the conditions such that the load of the queues that interact in the

load balancing is equal. This will be called fair load balancing in this article.

We now present the set of transitions of this model. We denote by (X,Y ) the state of the system, where

X (resp. Y) is a vector in which the i-th element represents the number of DPs (resp. of EPs) in cell i. Let

ei be the vector with all zeros except for the i-th element which is a one.

• With rate λi, a DP arrives from outside to cell i, i.e., (X,Y ) → (X + ei, Y )

• With rate αi, an EP arrives to cell i, i.e., (X,Y ) → (X,Y + ei)

• With rate δi, a DP of cell i leaves the system, i.e., when Xi > 0, (X,Y ) → (X − ei, Y )

• With rate µi, a DP of cell i ends service and, when there are at least ci EPs at cell i, it is sent to

cell j with probability P (i, j), and ci EPs of cell i disappear, i.e., in this case we have the following

transition (X,Y ) → (X − ei + ej , Y − ciei).

When there m < ci EPs at cell i upon service of a DP at cell i, the DP disappears and the EP queue

of cell i gets empty, i.e., in this case we have the following transition (X,Y ) → (X − ei, Y −mci).

• With rate βi, a EP of cell i is lost, i.e., when Yi > 0, (X,Y ) → (X,Y − ei)

• With rate γi,j the load balancing protocol to migrate jobs from cell j to cell i is activated. For this

case, we have that, with probability A
(k)
i,j , k EPs in cell i are required for a successful transfer and,

also in case of a successful transfer, with probability B
(m)
i,j (Xj), we migrate m DPs from cell j to cell

i. Hence, the following transitions are given in the load balancing protocol:

– When the EP queue of cell i is not empty and there are l EPs in cell j, with l < k, (COND2)

is not verified and the EP queue of cell j gets empty and one EP in cell i is lost, i.e., (X,Y ) →

(X,Y − ei − lej)

– When the EP queue of cell i is not empty and there are, at least, k EPs in cell j, but the DP

queue of cell i is not empty, (COND3) is not verified, in which case one EP of cell i and k EPs of

cell j are lost, i.e., (X,Y ) → (X,Y − ei − kej)
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– When the EP queue of cell i is not empty, there are, at least, k EPs in cell j and the DP queue of

cell i is empty, i.e., the load balancing is successful, we have that one EP of cell i and k EPs of cell

j are lost and m DPs are moved from cell j to cell i, i.e., (X,Y ) → (X +mei−mej , Y − ei− kej)

2.3. Network topology

Let us define the following directed graphs (digraphs): R = (V,E) and G = (V,L) where V is the set of

cells, i.e. V = {1, . . . , N}, E is the set of arcs which represent the possible movements of DPs after getting

service in the corresponding DP queue and L is the set of arcs which represent the movements of DPs due

to load balancing. We also define H = (V,E ∪ L). In Figure 2, we plot a EPN network with load balancing

with 4 cells and in Figure 3 its corresponding digraphs R and G.

Destination

Leackage

Destination

Leackage

Cell 2

Cell 3
Cell 1

Cell 4

Leackage

Leackage

Figure 2: An example of an EPN model with load balancing formed by

4 cells. EPs are depicted as white boxes and DPs as grey boxes. The

cells (one DP queue and the associated EP queue) are green boxes.

The blue arrows represent the arcs in E (i.e., the movement of DPs

after getting service), whereas the green arrows represent the arcs in

L (i.e., the load balancing movements). Cell 1 is polling Cell 2 (i.e.

γ1,2 > 0) while Cell 4 is polling Cell 3 (γ4,3 > 0).

Figure 3: The digraphs associated to the

EPN model of Figure 2. Blue arcs represent

the edges of digraph R and green arcs the

edges of digraph G.

From what we said in Remark 2, the assumption on the batch distribution implies that we cannot have

an arc (i, j) and an arc (j, i) in G, i.e., G does not have directed cycles of length 2. One can generalize this

property to a directed cycle with any number of nodes.

Proposition 1. There is no directed cycles in the load balancing graph. Equivalently G is a directed acyclic

graph.

Proof. Consider an arbitrary directed cycle i1, i2, .., ik, i1 in graph G. Assuming that one can balance the

load between nodes ij and ij+1, one must have ρij < ρij+1
for all j. Combining these relations for all indices

7



ij , we get:

ρi1 < ρi2 < ... < ρik < ρi1 ,

which is a clear contradiction. Therefore such a directed cycle does not exist.

It is important to notice that the above result implies that, in this model, the energy can not be wasted

with an inefficient load balancing. Indeed, a directed cycle in G means that a DP may join the same queue

after a sequence of load balancing operations. As these operations consume energy and do not process the

workload, from the practical point of view it is important to avoid such loops.

Definition 1. Cell i is a sink if at least one of the two conditions hold:

• δi > 0,

• µi > 0 and βi > 0.

Intuitively, a sink is a cell where the data packets can leave the system either because they arrive at

their destination (i.e. δi > 0) or because they disappear in a failed routing due to an empty energy buffer

provoked by the leakage.

Definition 2. An EPN model is open if the following conditions hold:

1. αi > 0 for all i,

2. for all DP queue j, there exist a DP queue i such that λi > 0 and there exist a path from i to j in

graph H,

3. for all DP queue j, there exist a cell i which is a sink and such that there exist a path from j to i in

graph H,

4. for all EP queue i, the condition βi +
∑

j γi,j > 0 must hold.

Intuitively, the first two conditions imply that every cell receives EPs and DPs while the third one states

that DPs may leave the network cell due to service or load balancing. Finally the fourth condition states

that the EPs may leave the system even if there is no data packet in the cell. Remark that the second and

the third condition do not imply that the network is connected. However we assume in the following and

without loss of generality that directed graph H is connected.

Lemma 1. If the network is open, then there exists a directed rooted forest which spans graph H whose roots

are such that the arrival rate of fresh data packets are positive: (i.e. λi > 0 if i is the root of a tree) and

such all the edges point from the roots (we consider out-trees here). Recall that such a structure is called an

out-forest. Such an out-forest induces a labeling of the cells such that if there is a path from cell carrying

label i to cell labeled j, then we must have i < j. Let I() be these labels.

Similarly, one can obtain another labeling of the cells called J() based on the following rooted in-forest.

The roots are the sinks of the network and we consider a spanning out-forest where the nodes point toward

the roots.
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Proof. We first consider all the cells i such that λi > 0. Assume that we have k such cells. These nodes

receive labels from 1 to k. We then build the out-trees rooted in these nodes by a Breadth First Search

(BFS) algorithm among the remaining nodes of H. Such an out-forest induces the required ordering by using

a increasing sequence of numbers during the BFS visits.

The proof for labeling J() is similar. We give the smallest number to the sinks of the network. Then we

proceed by a breadth first search visits using the arcs in the opposite direction.

Intuitively, labels I() are used to describe the input of DP while labels J() model how the DP leave the

network.

In Table 1, we summarize the main notation of this article:

Notation Description

λi Arrival rate of DP queue i

αi Arrival rate of EP queue i

βi Leakage rate of EP queue i

µi Service rate of DPs at cell i

ci The number of EPs required for a routing of a DP at cell i

δi Departure rate of DPs at cell i

P (i, j) Probability to route a DP from cell i to cell j

γi,j Polling rate of cell i to cell j

A
(k)
i,j Probability that the migration of jobs from

cell j to cell i consumes k EPs

Bi,j Batch size of migrating jobs from cell j to cell i

ρi Load of DPs at cell i

ωi Load of EPs at cell i

R Routing graph

L Load balancing graph

H Routing or load balancing graph

Table 1: The main notation of this article.

3. Analysis in a Network with an Arbitrary Open Topology

We recall that X is the vector of the number of DPs in the DP queues and Y the vector of the number of

EPs in the EP queues. Under the aforementioned assumptions, (X,Y )t = (X1, ...XN , Y1, .., YN )t is clearly a

Markov chain. We first consider an arbitrary EPN model and prove that there exists an invariant measure

of the packets in the queues that has a product form distribution provided that there exists a solution to a
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fixed-point equation such that ρi < 1 and ωi < 1 for all i. Under these conditions, when the EPN model is

open, the Markov chain is ergodic. Finally, we provide sufficient conditions for the existence of a solution to

the fixed point equation.

Consider the flow equation of the EPs:

ωi =
αi

βi + µiρi
∑ci−1

m=0 ω
m
i +

∑
j γi,j +

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
j,i ωj(ωi)lγj,i

, (FLOW-EP)

and the flow equation of the DPs:

ρi =
λi +

∑
j µjρjω

cj
j P (j, i) +

∑
j

∑
k≥0(A

(k)
i,j γi,jωiω

k
j ρi −A

(k)
j,i γj,iωjω

k
i ρj)

µi + δi
. (FLOW-DP)

In the following result, we prove that the steady-state distribution of packets in the queues admits a

product form expression if there exists a solution of the fixed-point equations (FLOW-DP) and (FLOW-EP)

such that ρi < 1 and ωi < 1. The proof is given in Appendix B.

Theorem 1. Consider that the flow equation (FLOW-EP) and (FLOW-DP) have a solution such that for

all i ∈ V ρi < 1 and ωi < 1. Under Assumption 1, the following expression is an invariant probability

measure

π(X,Y ) =

(
N∏
i=1

(1− ρi)ρ
Xi
i

)(
N∏
i=1

(1− ωi)ω
Yi
i

)
. (1)

Let us now present the following result about ergodicity which follows directly from Brémaud [17].

Theorem 2 ([17]). Assume that the Markov chain is irreducible and that a solution of the flow equation

exists such that ρi < 1 and ωi < 1 for all cell i, then π(X,Y ) is a distribution of probability and the Markov

chain is ergodic.

We now provide the following result regarding irreducibility.

Lemma 2. If the network is open, then the Markov chain is irreducible.

Proof. The proof has two parts: first we establish that there exists a sequence of transition with positive

probability to lead from state (⃗0, 0⃗) to any state (X,Y ). Then we prove that there also exists a sequence of

transitions in the chain to connect (X,Y ) to (⃗0, 0⃗). The proof is postponed to Appendix C.

Remark 3. To emphasize that the above condition is sufficient, we provide in Appendix D an example of

an irreducible network which is not open.

As a consequence of the above two results, the next one follows directly.

Corollary 1. Assume that the network is open and that a solution of the flow equations (FLOW-DP) and

(FLOW-EP) exists such that ρi < 1 and ωi < 1 for all cell i, then π(X,Y ) is a distribution of probability

and the Markov chain is ergodic.
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However, finding necessary and sufficient conditions for the existence of these solutions is still an open

problem due to the multiple interactions between the queues. Indeed, when a successful load balancing

operation takes place, 4 queues are modified (2 DP queues and 2 EP queues). This precludes the existence

of a loop free sequence of numerical computation of the flow equation which is a possible way to prove

existence of a fixed point solution (for instance for G-networks). In the following, we focus on a sufficient

condition for the existence of a solution of (FLOW-EP) and (FLOW-DP) such that ρi < 1 and ωi < 1 for

all i.

Let ω = (ω1, . . . , ωN ) and ρ = (ρ1, . . . , ρN ). We consider the following system of equations:

ωi = Fi(ω, ρ) =
αi

βi + µiρi
∑ci−1

m=0 ω
m
i +

∑
j γi,j +

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
j,i ωj(ωi)lγj,i

,

and

ρi = Gi(ω, ρ) =
λi +

∑
j µjρjω

cj
j P (j, i) +

∑
j

∑
k≥0(A

(k)
i,j γi,jωiω

k
j ρi −A

(k)
j,i γj,iωjω

k
i ρj)

µi + δi
.

We aim to find sufficient conditions for such a system to have a solution in R2N
+ . We first define the notion

of hyper-stability of an EPN model.

Definition 3. [Hyper-stability] A network is hyper-stable if the following conditions hold:

(HYP1) 0 < αi < βi +
∑

j γi,j for all i,

(HYP2) λi >
∑

j γj,i for all i,

(HYP3) The Jackson network with arrival rates (λi+
∑

j γi,j)
µi

µi+δi
, service rate µi and routing matrix

defined as P̃ (j, i) = µi

µi+δi
P (j, i) is positive recurrent and the solution ρ∗i of this Jackson network is

such that ρ∗i < 1 for all i,

(HYP4) µi + δi > 0 for all i.

Intuitively, (HYP1) implies that every EP queue receives and loses energy and it means that the EP

queues are stable even when energy is not consumed for the routing and the customer movements (service

and polling). (HYP2) states that, for each queue, the arrival rate of fresh customers must be larger the rate

with which it is polled. And (HYP3) means that the network built taking into account the arrivals provoked

by the load balancing (but not the departures) is stable. Conditions (HYP4) implies that every DP queue

has a service capacity. They are slightly more restrictive than the open topology hypothesis. Due to these

three last assumptions, the functions Fi() and Gi() are continuous on R2N
+ . We state that if the conditions

of Definition 3 hold, then there exists a fixed point solution of (FLOW-EP) and (FLOW-DP). The proof is

presented in Appendix E.

Theorem 3. If the network is hyper-stable, then there exists a solution for the flow equation such that for

all i ∈ V ρi < 1 and ωi < 1.
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4. Analysis in an Arbitrary Open Layered Network

According to Remark 2, we have that load balancing transfers DPs from cells with high load to cells with

low load. This clearly contributes to avoid that the load of DPs at some cells is close to one, which clearly

improves the performance of the system. A possible way to achieve this goal is to find the polling rates such

that a fair load balancing is given, i.e., the load of DPs of all the cells is equal. For this purpose, we consider

an open layered network. Intuitively, an open layered network is divided in blocks or layers and each block

is formed by cells with the same routing probabilities of movement after being served. Furthermore, load

balancing is only allowed between cells of the same block, i.e., there is no arc in L between nodes of different

blocks.

In this section, we provide a methodology such that, in each block, a fair load balancing can be achieved,

i.e., the load of DPs of each of the same block is equal. In Section 4.1, we show how load balancing can be

obtained in the first block. Then, in Section 4.2, we show how we can obtain by induction load balancing in

the rest of the blocks.

Let us first define the networks under analysis in this section.

Definition 4. A network is layered if graphs R and G are built as follows:

1. The connected components of the undirected version of G are denoted by K1,...,Kcc. The subsets Ki

are the layers of the EPN model and cc is the number of layers.

2. If x and y are in the same subset Ki, then there is no path from x to y in graph R.

3. If node x in Ki has a positive routing probability in R to reach node y in Kj, then all the nodes of Ki

have a positive probability to reach a node (not necessarily y) in Kj.

4. Routing graph R is feed forward (or a DAG using a graph terminology).

5. µi + δi > 0 for all queue i.

Without loss of generality, we assume that the routing is only possible to join a subset Ki with a higher index.

In Figure 2, we represent a network with two layers; one layer is formed by cell 1 and cell 2, whereas the

other is formed by cell 3 and cell 4. We observe that load balancing (which is represented by the red arrow)

is given only between cell 1 and cell 2 and between cell 3 and cell 4, i.e., between nodes of the same layer.

We also note that all the jobs that are routed after getting service at cell 1 and cell 2 to cell 3. In Figure 4

we represent another example of an open layered network.

We want to achieve a fair load balancing within each layer. Inside the layer Ki, all the DP queues will

have the same load ρKi , but the load may be distinct for all the layers, i.e., ρKi ̸= ρKj , for i ̸= j. We now

present the following assumption we make in this section:

Assumption 2. We assume that A
(k)
i,j = 1 for k = 1, i.e., one EP is required in cell j to carry out a load

balancing that transfers DPs from cell j to cell i.

12



Figure 4: A layered network with 3 layers. We only represent the DP queues. The green arrows represent the load balancing,

while the blue ones model the routing. The arrivals and departures are depicted by black arcs.

We would like to remark that the analysis of this section does not require the above assumption, but it

is made to simplify the analytical and numerical analysis of this section.

Based on the topological properties of this network, we analyze the system in the topological order of

the subsets Ki. Such an ordering exists due to the assumptions on a layered network.

4.1. Analyzing K1

We now focus on the fair load balancing of K1, i.e., of the first block of the layered network. Our approach

is divided in three steps. First, in Section 4.1.1, we find the cells that must transfer jobs and which are the

cells that receive jobs. Second, in Section 4.1.2, we present how to obtain the excess value of the sender cells

and the deficit value of the receiver cells. Finally, in Section 4.1.1, we describe how to obtain the values of

the polling rate to achieve load balancing using the excess and deficit values.

Let us consider (FLOW-DP) and, doing the summation for all the nodes i in K1, it results:∑
i∈K1

ρi(µi + δi) =
∑
i∈K1

λi +
∑
i∈K1

∑
j

µjρjω
cj
j P (j, i) +

∑
i∈K1

∑
j

(γi,jωiωjρi − γj,iωjωiρj) (2)

But, as i is a node of K1, it does not receive any DP from the network, i.e., P (j, i) = 0 for all j. And since

in an open layered network the load balancing only takes place between nodes of K1, the above equation is

simplified as follows: ∑
i∈K1

ρi(µi + δi) =
∑
i∈K1

λi +
∑
i∈K1

∑
j∈K1

(γi,jωiωjρi − γj,iωjωiρj) (3)

We now remark that
∑

i∈K1

∑
j∈K1

(γi,jωiωjρi − γj,iωjωiρj) = 0. Therefore, we get:∑
i∈K1

ρi(µi + δi) =
∑
i∈K1

λi (4)
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Thus, when the fair load balancing is achieved, we have that ρi = ρKi for all i ∈ K1, it follows that:

ρK1 =

∑
i∈K1

λi∑
i∈K1

(δi + µi)
.

The question is still to find the load balancing rates γi,j to obtain such a fair balance. We proceed in

two steps: first we find the non zero entries of the load balancing matrix to obtain a fair load balancing and

then we derive algorithmically the rates γi,j .

4.1.1. Finding the interacting cells

Note that several choices are possible leading to many distinct ways to obtain a fair load balancing in

K1. We propose a simple method which has a low complexity. It may be possible to derive other methods

to optimize other objectives (for instance energy consumption).

Let ρ
(I)
i be the load of DPs at cell i when the polling rates are all equal to 0, i.e., ρ

(I)
i = λi

µi+δi
. We

partition the set of cells of K1 into three subsets:

1. cells i such that ρ
(I)
i < ρK1

(subset V −
K1

),

2. cells i such that ρ
(I)
i > ρK1

(subset V +
K1

),

3. cells i such that ρ
(I)
i = ρK1 (subset V =

K1
).

Note that the set V −
K1

is formed by the nodes with deficit values and the set V +
K1

by the nodes of excess

values. Therefore, we need to transfer load from the nodes of V + to the nodes of V −. Moreover, the cells

of V =
K1

are already balanced and, therefore, we do not use them to achieve the load balancing, i.e., we have

that γi,j = 0 if i ∈ V =
K1

or j ∈ V =
K1

.

From (FLOW-DP), it follows that, after fair load balancing, for all i ∈ K1:

ρK1 =
λi + ρK1

∑
j(γi,jωiωj − γj,iωjωi)

δi + µi
. (5)

From the partition we have defined above, it follows that the balancing of DPs is achieved by poling

cells in V +
K1

by cells in V −
K1

.Remember that γi,j > 0 means that cell i polls cell j to receive DPs. Therefore

γi,j = 0, if i ∈ V +
K1

or j ∈ V −
K1

. Note also that the graph is bipartite. As a result, from (5), it follows that

for a cell i ∈ V −
K1

:

ρK1 =
λi + ρK1

∑
j∈V +

K1

γi,jωiωj

δi + µi
⇐⇒

(
ρK1 − ρ

(I)
i

)
(µi + δi) = ρK1

∑
j∈V +

K1

γi,jωiωj ,

whereas for a cell j in V +
K1

:

ρK1 =
λj − ρK1

∑
i∈V −

K1

γi,jωiωj

δj + µj
⇐⇒

(
ρK1 − ρ

(I)
i

)
(µj + δj) = −ρK1

∑
i∈V −

K1

γi,jωiωj .

We now aim to determine the values of γi,j for all i ∈ V −
K1

and all j ∈ V +
K1

to achieve a fair load balancing.

First, we will find the value of the excess and deficit values of the interacting cells, i.e., ρK1γi,jωiωj for each

i ∈ V −
K1

and each j ∈ V +
K1

and then we will focus on the values of ωi and ωj to compute the polling rate to

achieve load balancing.
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4.1.2. Determining the excess and deficit values for each i ∈ V +
K1

and each j ∈ V −
K1

We aim to analyze how the excess values are balanced to the nodes with deficit values. Hence, our goal

is to get ρK1
γi,jωiωj for each i ∈ V −

K1
and each j ∈ V +

K1
. Provided that these values are known, we are able

to provide conditions under which ωi and ωj exists and are less than one (Proposition 2 and Proposition 3),

which allows to obtain the rates at which fair load balancing is achieved.

Let us consider the following algorithm to construct a feasible solution of the problem of determining the

excess and deficit values of the nodes:

1. We create a heap with the values of (ρK1 − ρ
(I)
i )(µi + δi) for i in V −

K1
.

2. We create another heap with the values (−ρK1
+ ρ

(I)
i )(µi + δi) for j in V +

K1
. 1

3. We take the max of the first heap (say a) and the max of the second heap (say b). We remove both

elements from their respective heaps. Let i be the index of a and j the index of b.

4. We consider c = min(a, b). By construction c > 0. We affect c to the flow between i and j (i.e.

c = ρK1
γi,jωiωj).

5. If a − c > 0 we add a − c to the heap V −
K1

and we associate it with index i. Similarly if b − c > 0 we

add b− c to the heap V +
K1

and we associate it with index j.

6. If both heaps are non empty, we return to Step 3.

The main advantage of this simple method is its complexity. At each iteration we remove one or two

nodes, using the ExtractMin operation to get the information from the heap, which requires O(log(N)) time

(see Thm 10.1 in [18]). We find at most N values of ρK1γi,jωiωj for some i and j. At the end of this

heuristic, we obtain the non zero values of ρK1
γi,jωiωj for i ∈ V −

K1
and j ∈ V +

K1
with a worst complexity of

O(Nlog(N)).

Remark 4. Note that there might be simple scenarios where the polling rate to achieve load balancing can

be obtained without computing the values of ρK1
γi,jωiωj. For instance, the model depicted in Figure 1(d),

we only have two unbalanced nodes, in which case we have one node in excess and a deficit in the other node.

Let us present an example to compute the deficit and excess values using the above heuristic:

Example 1. Suppose that we have 3 cells in subset V −
K1

with deficit values 1, 5, and 2 (nodes number 1, 2

and 3) while we have 4 cells in V +
K1

(nodes number 4, 5, 6 and 7) with excess values (2,1,1,4). We will use

4 iterations:

1. In the first step, node 2 is the node with the largest deficit value of V −
K1

and its deficit value is 5,

whereas node 7 is the one with the largest excess value of V +
K1

and its excess value is 4. Thus, we match

these nodes for a value of 4. Node 7 is removed, the deficit value of node 2 becomes 1. Besides, we

have that γ2,7ω2ω7 = 4.

1Note that we change the sign of the values to only deal with positive values.
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2. In this step, node 3 is the node with the largest deficit value of V −
K1

and the deficit value is 2, whereas

the largest excess value of V +
K1

is in node 4, whose excess value is 2. Therefore, we match these nodes

for a value of 2 and they are both removed. Besides, we have that γ3,4ω3ω4 = 2.

3. In this step, there is a tie between nodes 1 and 2. In this case, we choose at random and, therefore, we

match node 1 with node 5 for a value of 1. Both nodes are removed. Also, we have that γ1,5ω1ω5 = 1.

4. Finally, we match node 2 with node 6 for a value of 1. Both nodes are removed. Also, we have that

γ2,6ω2ω6 = 1.

We represent the obtained result of this example in Figure 5.

Figure 5: The solution leading to a fair load balancing using the considered method.

We remark that the values of ρK1γi,jωiωj for i ∈ V −
K1

and j ∈ V +
K1

are known. Therefore, for all j ∈ V +
K1

,

we denote by

dj = ρK1

∑
i∈V −

K1

γi,jωiωj , (6)

the values that we get at the end of the above heuristic. Note that dj is already obtained while γi,j , ωi, and

ωj are still unknown.

4.1.3. Numerical derivation of γi,j

We have obtained γi,jωiωj in the previous section. In this section, we will analyze the values of ωi and

ωj , whose computation allows us to obtain the rates γi,j . Taking into account that the cells of V +
K1

send

DPs to the cells of V −
K1

, for i ∈ V −
K1

, we have:

ωi =
αi

βi + µiρK1

∑ci−1
m=0(ωi)m +

∑
j∈V +

K1

γi,j
, (7)

while for i ∈ V +
K1

, we have:

ωi =
αi

βi + µiρK1

∑ci−1
m=0(ωi)m +

∑
j∈V −

K1

ωjγj,i
. (8)

We first focus on the solution of the former fixed point problem.
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Proposition 2. There exists a solution to (8) if and only if

0 < αi − di < βi + µiρK1
ci.

Furthermore, if the solution exists, it is unique.

Proof. We get from (8) that

ωi

βi + µiρK1

ci−1∑
m=0

(ωi)
m +

∑
j∈V −

K1

ωjγj,i

 = αi ⇐⇒ αi − di = βiωi + µiρK1

ci∑
m=1

(ωi)
m.

Let us introduce function fi(ωi) = −αi + di + βiωi + µiρK1

∑ci
m=1(ωi)

m, which is a polynomial function in

ωi such that f ′(ωi) > 0. Therefore, function fi() is non decreasing in the interval [0, 1] and fi(0) = di − αi

and fi(1) = βi + µiρK1ci + di − αi. Therefore, the solution of (8) exists and is unique if and only if

0 < αi − di < βi + µiρK1
ci.

Assuming that the conditions of the above result hold for all the nodes in V +
K1

, we can compute the value

of ωj for j ∈ V +
K1

with simple numerical methods, such as dichotomical search. Hence, we assume in the

following that the value of ωj for j ∈ V +
K1

is known. Therefore, we can obtain γi,jωi from γi,jωiωj . As a

result, for all i ∈ V −
K1

, we define ei =
∑

j∈V +
K1

γi,jωi. Using the same arguments as in Proposition 2, we can

provide necessary and sufficient conditions for the existence and uniqueness of a solution of the fixed point

equation (7).

Proposition 3. There exists a solution to (7) if and only if

0 < αi − ei < βi + µiρK1
ci.

Furthermore, if the solution exists, it is unique.

Finally, assuming that the conditions of the above result hold, we can obtain the value of ωi and the

value of ωj by numerical methods and, as a result, we are able to compute the polling rates to achieved load

balancing from γi,jωiωj .

4.1.4. Particular case: a network with a single block

In a network formed by a single block, we have thatK1 = V and µi = 0 for all i. Therefore, ρK1
=

∑N
i=1 λi∑N
i=1 δi

.

Moreover, we can partition the set of nodes by V +, V − and V = and compute the excess and deficit values

as previously. However, (7) and (8) for this case are given by

ωi =
αi

βi +
∑

j∈V + γi,j
,
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for i ∈ V −, while for i ∈ V +

ωi =
αi

βi +
∑

j∈V − ωjγj,i
.

From Proposition 2 and Proposition 3, the solution of the above expression exists if and only if αi − ei

and αi − di are positive and smaller than βi. Moreover, when these conditions are satisfied, we have that

ωi =
αi−ei

β for all i ∈ V − and ωi =
αi−di

β for all i ∈ V +.

4.2. Analyzing Kk by induction

We now assume that we have computed the polling rate to achieve load balancing for all layersK1, . . . ,Kk−1.

Note however that we do not have the same load ρi for DP queues which are not in the same layer. The fair

load balancing is achieved within each layer with a possibly distinct load. By induction, the load ρi have

been computed for all the DP queues in Kl for l < k. Therefore taking into account the assumptions about

the topology, we have from (FLOW-DP) that:

(µi + δi)ρi = λi +

k−1∑
m=1

∑
j∈Km

µjρjω
cj
j P (j, i) +

∑
j∈Kk

(γi,jωiωjρi − γj,iωjωiρj). (9)

After summation on all the DP queues in Kk, the last term cancels as before, and we get:

∑
i∈Kk

(µi + δi)ρi =
∑
i∈Kk

λi +
∑
i∈Kk

k−1∑
m=1

∑
j∈Km

µjρjω
cj
j P (j, i). (10)

By induction, all the rates ρj and ωj have already been computed as they are in a layer with a smaller index.

Therefore the fair load balancing for the queues in Kk are defined by:

ρKk
=

∑
i∈Kk

(λi +
∑k−1

m=1

∑
j∈Km

µjρjω
cj
j P (j, i))∑

i∈Kk
(µi + δi)

(11)

Once this fair rate for DP queues has been computed, we process like for K1 to obtain the energy rates

for the EP queues in Kk and one can continue with the induction. Note that Remark 4 is still valid. For

instance in Layer 2 of the graph depicted in Figure 4, we do not use the heuristics presented in the previous

section to find γi,jωiωj as we clearly have only one feasible solution for the load balancing.

5. Numerical Experiments

In this section, we present the numerical work we have carried out. We first explain how the load

balancing protocol under consideration in this work is a good approach to improve the system performance.

Then, we focus on the fair load balancing to find the polling rate required to achieve it. Finally, we study

the influence of the parameters related to energy (leakage and arrival rates of EPs) on the fair load balancing

polling rate. Throughout this section, we consider the network of Figure 2, which is formed by two layers

and, in each layer, there are two cells. The solution of the fixed point equations we required to solve to

determine the load of the EPs and DPs has been obtained by a simple fixed point heuristic, which converged

in all the cases we have considered. Throughout this section, we consider that A
(1)
i,j = 1 when γi,j > 0, as in

the previous section.

18



5.1. Improving Performance by Means of Load Balancing

We now focus on the performance improvement that can be achieved by using the load balancing technique

we consider in this work. We will see that how to migrate jobs from cells which are close to saturation to

cells with low load as well as the manner that this improves the performance of the system.

We consider the following values for the arrival rate of DPs to the cells: λ1 = 0.55, λ2 = 0.99, λ3 = 0.3

and λ4 = 0.1. Taking into account the topology of the network, we have that µ3 = µ4 = 0 as well as

δ1 = δ2 = 0. Moreover, we consider the following values: µ1 = µ2 = 1 and δ3 = δ4 = 1. We also set ci = 1

for all the cells i = 1, 2, 3, 4. For the arrival rate of EPs, we consider that αi = 1.0, i = 1, 2, 3, 4. We also

consider that βi = 1.5 for i = 1, 2, 3, 4.

Regarding the movement of jobs due to load balancing, we have that DP queue 1 (resp. DP queue 4)

receives DP packets from DP queue 2 (resp. DP queue 3). Finally, we have that γ1,2 = γ4,3 = γ. Our goal

is to study the influence of γ on the system performance.

We first note that, when γ = 0, the load of DP queue 2 and of DP queue 3 are very close to one. As

a consequence, we have that the mean number of DPs (and, from Little’s Law, the mean response time as

well) of these queues is very large. In Figure 6 we plot the evolution of the loads of the DPs of all the cells

when γ varies from 0 to 100. We observe that with small values of γ the load of DP queue 2 and of DP queue

3 decrease substantially. In fact, when γ ≥ 11, the load of all the DPs is smaller than 0.8, which implies that

none of the DP queues are in saturation with small values of γ.

We have measured the improvement of the performance as a result of the load balancing technique by

the mean number of customers when γ = 0 and γ = 50. When γ = 0, we have that the mean number

of customers of DP queue 2 is equal to 0.99//(1 − 0.99) = 99. However, when γ = 50, we have that the

load of DP queue 2 is equal to 0.77 and, as a consequence, the mean number of customers of this queue is

0.77/(1 − 0.77) = 2.33, which is very small comparing with 99. A similar conclusion can be derived when

we consider the load of the DP queue 3. Hence, from this figure, we conclude that the mean number of

customers can be decreased a lot with relatively small values of the polling rate of the load balancing.

An interesting property of Figure 6 is that, when γ is large, the influence of the load balancing is very

small. Indeed, as it can be seen in Figure 7, ω1 and γ3, i.e., the load of EPs of cell 1 and of cell 3, are smaller

than 0.02 when γ is larger than 50. This means that when γ is large, there is no energy to perform load

balancing (i.e., (COND1) or (COND2) are not satisfied) and, therefore, we cannot migrate jobs from some

cells to others even though we increase the polling rate. We also conclude from the illustration of Figure 7

that for the values of γ we have considered, all the EP queues are stable, i.e. the load of EPs is strictly

smaller than one in all the cells.
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Figure 6: The evolution of ρ1, ρ2, ρ3 and ρ4 with respect to γ.
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Figure 7: The evolution of ω1, ω2, ω3 and ω4 with respect to

γ.

5.2. Analysis of Load Balancing Rates

In Section 4, we have obtained a method to compute the polling rate to achieve fair load balancing in

each of the layers of a network. In this section, we provide an alternative numerical method to compute this

polling rate.

We first focus on the first layer of the network and we aim to determine how DPs must be moved so that

it is ensured that the load of DPs of cell 1 and of cell 2 are the same. We consider the following parameters:

λ1 = 0.2, λ2 = 0.3, µ1 = µ2 = 1, δ1 = δ2 = 0, α1 = 0.5, α2 = 2 and β1 = β2 = 2.

We first note that, without load balancing, the load of DPs of cell 1 is 0.3, whereas the load of DPs in cell

2 is 0.2. This means that the migration of DPs in this case must be from cell 1 to cell 2 or, in other words,

we have that γ1,2 > 0 and γ2,1 = 0. Furthermore, we know that, when the fair load balancing is achieved,

the load of DPs of cell 1 and of cell 2 is equal to 0.25.

In Figure 8 we present the evolution of ρ1 and ρ2 when γ1,2 varies from 0 to 7.5. We see that the fair

load balancing in the first layer is achieved for γ12 ≈ 6.75. We also study the evolution of ω1 and ω2 for

these values of γ1,2 to see whether these queues are stable for these instances and, according to the plot of

Figure 9, we conclude that the load of the EPs in cell 1 and cell 2 is smaller than one for all the considered

values of γ12.
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Figure 8: Evolution of ρ1 and ρ2 when γ12 varies from 0 to

7.5.
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Figure 9: Evolution of ω1 and ω2 when γ12 varies from 0 to

7.5.

20 30 40 50 60 70 80 90 100 110 120

43

0.039

0.0392

0.0394

0.0396

0.0398

0.04

0.0402

0.0404

0.0406

0.0408

0.041

3

4

Figure 10: Evolution of ρ3 and ρ4 when γ43 varies from 20 to

120.
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Figure 11: Evolution of ω1 and ω2 when γ43 varies from 20 to

120.

We now study the polling rate at which fair load balancing is achieved in the second layer of the network,

that is, when the load of DPs in cell 3 and cell 4 are the same. According the our previous analysis, we

consider that γ1,2 = 6.75. We also consider the following parameters: λ3 = 0.05, λ4 = 0.1, µ3 = µ4 = 0,

δ3 = δ4 = 3, α3 = 2, α4 = 1 and β3 = β4 = 3. We also notice from the network topology that P (1, 3) = 1

and P (3, 2) = 1.

We have first computed the load of DPs in cell 3 and cell 4 when the polling rate is zero and we obtained

that ρ3 = 0.046 and ρ4 = 0.033. This means that γ4,3 > 0 and γ3,4 = 0, i.e., in the load balancing protocol

we are transferring DPs from cell 3 to cell 4.

We study in Figure 10, the evolution of ρ3 and ρ4 when γ4,3 varies from 20 to 120. We observe that the

value of the polling rate at which fair load balancing is achieved in this instance is γ43 ≈ 94.5. We also show
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in Figure 11 the evolution of ω3 and ω4 for different values of γ4,3 and we observe that for all the considered

values of the polling rate the EP queues are stable, i.e., ω3 < 1 and ω4 < 1.

5.3. Influence of Energy Parameters for Fair Load Balancing

In this section, we analyze the effect of the leakage rate and the arrival rate of EPs, which are the

parameters that influence more the load of the EPs, in the polling rate required to achieve load balancing.

In the experiments that we describe in this section we consider the first layer of the network presented in

Figure 2 and the same parameters as in the previous section. We will vary one of the parameters in each

experiment to see its impact in the polling rate to achieve load balancing.

We now focus on the leakage rate of the EPs of cells 1 and 2. We first analyze the case where the leakage

rate of cell 1 is large. To this end, we consider β1 = 20 and the rest of the parameters as in the previous

section. We illustrate in Figure 12 the evolution of the loads of the DPs of cell 1 and cell 2 with respect to

γ1,2. We consider that γ1,2 varies from 0 to 80. We observe from this plot that the polling rate to achieve

load balancing is equal to 60.25, which is much larger than the polling rate when β1 = 2 (which is 6.75,

according to Figure 8). From this figure, we conclude that increasing the leakage rate of the receiver cell,

i.e., of cell 1, requires a larger polling rate to achieve fair load balancing. We observe a similar behavior

when we increase the leakage rate of cell 2 in Figure 13. Indeed, in this case, we consider that β2 = 2.6 and

the rest of the parameters are fixed to those of the experiments of the previous section. In fat, in Figure 13,

we present the evolution of the loads of DPs of cell 1 and cell 2 when γ1,2 varies from 0 to 50 and we observe

that the polling rate to achieve load balancing in this case is approximately equal to 42.75, which is also

much higher than 6.75 but not as high as 60.25. Therefore, we conclude that the polling rate to achieve load

balancing increases more when we vary the leakage rate of the first cell.
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Figure 12: Evolution of ρ1 and ρ2 when γ12 varies from 0

to 80 and β1 = 20
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Figure 13: Evolution of ρ1 and ρ2 when γ12 varies from 10

to 50 and β2 = 2.6.

22



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

12

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

1

2

Figure 14: Evolution of ρ1 and ρ2 when γ12 varies from 0

to 5 and α1 = 5
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Figure 15: Evolution of ρ1 and ρ2 when γ12 varies from 0

to 5 and α2 = 1.5.

We also explore the influence on the polling rate for fair load balancing when we increase the arrival rate

of EPs to these cells. First, we consider in Figure 14 that α1 is equal to 5 and the rest of the parameters are

as in the previous section. We plot the evolution of the load of DPs in cell 1 and cell 2 with respect to γ1,2.

We consider that γ1,2 varies from 0 to 5. We observe that the polling rate to achieve fair load balancing in

this case is approximately equal to 0.96, which is clearly smaller than 6.75. Therefore, we conclude from this

experiment that the polling rate required to achieve load balancing decreases with α1, i.e., with the arrival

rate of EPs in the receiver cell. We also analyze the influence of the arrival rate of EPs of the sender cell.

We consider that α2 = 1.5 in this case and in Figure 15 we plot the evolution of ρ1 and ρ2 with respect to

γ1,2. We consider that γ1,2 varies from 0 to 5. We observe that the polling rate to achieve load balancing in

this case is approximately equal to 0.46, which is smaller than 6.75 and also smaller than 0.96. From this

experiment we conclude that the polling rate required to achieve load balancing also decreases with α2 and

also that the arrival rate of the sender cell, i.e. α2, influences more this polling rate.

5.4. A single block with 4 cells

We consider a network formed by a single block with 4 cells. For this case, we use the methodology

presented in Section 4 to compute the polling rates required to achieve fair load balancing. Given that there

is a single block, we have that µi = 0 for all i. We consider δi = 1 for all i and, regarding the arrival rate of

DPs, λ1 = 0.65, λ2 = 0.5, λ3 = 0.35, and λ4 = 0.3. On the other hand, for EPs, we consider that βi = 1 for

all i and α1 = 0.3, α2 = 0.1, α3 = 4 and α4 = 4.

We first compute ρK1
for this network as follows

ρK1
=

0.65 + 0.5 + 0.35 + 0.3

1 + 1 + 1 + 1
= 0.45.

Therefore, since ρ
(I)
1 = 0.65, ρ

(I)
2 = 0.5, ρ

(I)
1 = 0.35 and ρ

(I)
1 = 0.3, we have that V +

K1
= {1, 2} and

V −
K1

= {3, 4}, which means that cells 1 and 2 send DPs to cells 3 and 4. Hence, all the polling rates that
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are different from γ3,1, γ4,1, γ3,2 and γ4,2 are equal to zero. We now aim to compute the exact value of these

polling rates.

The next step consists of finding the excess and deficit values of the cells. For cell 1, we obtain that

(ρK1
− ρ

(I)
1 )(µ1 + δ1) = 0.2. In an analogous manner, we get that (ρK1

− ρ
(I)
2 )(µ2 + δ2) = 0.05, (−ρK1

+

ρ
(I)
3 )(µ3 + δ3) = 0.1 and (−ρK1 + ρ

(I)
4 )(µ4 + δ4) = 0.15.

Using the heuristic presented in Section 4.1.2, we obtain that cell 1 sends DPs to cell 3 and 4, whereas

cell 2 sends DPs only to cell 3 (which means that, in our solution, γ4,2 = 0 as well as γ3,1 > 0, γ3,2 > 0 and

γ4,1 > 0). Besides, this algorithm provides us the following excess and deficit values:

ρK1
γ4,1ω4ω1 = 0.15, ρK1

γ3,1ω3ω1 = 0.05, ρK1
γ3,2ω2ω3 = 0.05.

We now compute d1 and d2 in the following way:

d1 = ρK1
γ4,1ω4ω1 + ρK1

γ3,1ω3ω1 = 0.15 + 0.05 = 0.2,

d2 = ρK1
γ3,2ω3ω2 = 0.05.

We now compute ω1 and we observe that α1 − d1 = 0.1, which is positive and smaller that β1 (which is

equal to one). Therefore, according to Proposition 2, there is a single solution, which is given by ω1 = α1−d1

β1
=

0.1 because there is a single block (i.e., µ1 = 0). In an analogous manner, we obtain that ω2 = α2−d2

β2
= 0.05.

From these results, we obtain that

γ4,1ω4 =
0.15

ρK1
ω1

=
0.15

0.45 · 0.1
=

10

3
,

γ3,1ω3 =
0.05

ρK1
ω1

=
0.05

0.45 · 0.1
=

10

9
,

and

γ3,2ω3 =
0.05

ρK1
ω2

=
0.05

0.45 · 0.05
=

20

9
.

We compute the values of e3 and e4 as follows:

e3 = γ3,1ω3 + γ3,2ω3 =
10

9
+

20

9
=

10

3
,

and

e4 = γ4,1ω4 =
10

3
.

The above values are used to compute ω3 and ω4. We first focus on ω3, which, taking into account that

α3 − e3 = 2
3 is positive and smaller than β3, we know that it has a single solution from Proposition 3, which

is given by ω3 = α3−e3
β3

= 2
3 . Likewise, we have that α4 − e4 = 2

3 , which applying again Proposition 3 we get

that ω4 = α4−e4
β4

= 2
3 .

Finally, we proceed as follows to obtain the polling rates to achieve fair load balancing:

ρK1
γ4,1ω4ω1 = 0.15 ⇐⇒ γ4,1 =

0.15

ρK1ω4ω1
=

0.15

0.45 · 2
3 · 0.1

= 5,
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ρK1
γ3,1ω3ω1 = 0.05 ⇐⇒ γ3,1 =

0.05

ρK1
ω3ω1

=
0.05

0.45 · 2
3 · 0.1

=
5

3
,

and

ρK1
γ3,2ω3ω2 = 0.05 ⇐⇒ γ3,2 =

0.05

ρK1
ω3ω2

=
0.05

0.45 · 2
3 · 0.05

=
10

3
.

Figure 16: The load balancing graph when λ1 = 0.65,

λ2 = 0.5, λ3 = 0.35, and λ4 = 0.3.

Figure 17: The load balancing graph when λ1 = 0.65,

λ2 = 0.5, λ3 = 0.4, and λ4 = 0.25.

In this example, we have obtained that cell 1 sends DPs to cell 3 and 4, whereas cell 2 sends DPs only to

cell 3, that is, the load balancing graph is given in Figure 16. We now consider that λ3 = 0.4 and λ4 = 0.25

and the rest of the parameters as in the previous case. We observe that ρK1
= 0.45 and, therefore, the sets

V +
K1

and V −
K1

are the same as in the previous example. However, the load balancing graph is different since

cell 1 sends DPs only to cell 4 and cell 2 sends DPs only to cell 3, see Figure 17. Proceeding in the same

way as in the previous example, we obtain that γ4,1 = 5 and γ3,2 = 5
4 .

6. Conclusions

We analyzed an extension of the EPN model that allows migration of jobs from DP queues of different

cells. That is, a batch of jobs are transferred from one queue to an idle queue when there is enough energy.

We showed that the steady-state distribution of jobs in the queues has a product form expression when a

solution of a fixed point equation exists. We provide sufficient conditions for the existence of a solution of

the fixed point equation. In a layered network, we study how the polling rates (i.e. the rate at which a queue

request to transfer DPs to another queue) must be set so as to ensure a fair load balancing, i.e., to ensure

that the load of the DPs of the cells that are in the same layer is equal. Using numerical experiments, we

show that dynamic load balancing can be very helpful to improve performance when there are DP queues

that are in heavy-traffic. We also analyze numerically the polling rates to achieve a fair load balancing.

For future work, we are interested in studying variants of this model which might more interesting from

a practical point of view; for instance, we will explore more complex conditions on the load balancing than

those considered in this article and we will relax the assumption that the energy consumed for load balancing

is independent of the number of migrated jobs. We would also like to analyze the polling rates of layered

networks by considering other objective functions, such as minimizing energy consumption. We are also

planning to study load balancing protocols in other EPN networks such as considering generally distributed
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service requirements [19] or finite buffer in the batteries [20]. We think that an interesting researchline is to

consider the extension of the quasireversibility theory to accommodate signals [21] to analyze the existence

of the product-form solution of this and other EPN models.
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Appendix A. Some properties of the distribution of Assumption 1

We now present some properties of Bi,j(Xj), the number of customers that move from cell j to cell i

when there are Xj DPs at cell j. We first show that it is, indeed, a distribution for all X0. To prove this,

we proceed as follows:

Xj−1∑
k=0

(1− bi,j)b
k
i,j + b

Xj

i,j = (1− bi,j)

Xj−1∑
k=0

bki,j + b
Xj

i,j = (1− bi,j)
1− b

Xj

i,j

(1− bi,j)
+ b

Xj

i,j = 1− b
Xj

i,j + b
Xj

i,j = 1.

We now provide the expression of the expected value of Bi,j(Xj):

E[Bi,j(Xj)] = Xjb
Xj

i,j +

Xj−1∑
k=1

k(1−bi,j)b
k
i,j = Xjb

Xj

i,j +

Xj−1∑
k=1

kbki,j−
Xj−1∑
k=1

kbk+1
i,j =

Xj∑
k=1

kbki,j−
Xj∑
k=1

(k−1)bki,j =

Xj∑
k=1

bki,j
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From this expression, we conclude that E[Bi,j(Xj)] is increasing with Xj . This means that the more

customers present in the queue, the more customers (in expectation) are sent during the load balancing.

From this monotonicity, we can provide the following upper-bound:

E[Bi,j(Xj)] < E[Bi,j(∞)] =
bi,j

1− bi,j
.

This means that the expected value of the number of customers that move from cell j to cell i during the

load balancing is, at most,
bi,j

1−bi,j
.

Appendix B. Proof of Theorem 1

Recall that B
(m)
i,j (Xj) is the probability of moving m customers due to the load balancing from DP queue

j to DP queue i when there are Xj DPs at cell j. We have clearly that, for all Xj ,
∑Xj

m=0 B
m
i,j(Xj) = 1. We

now write the global balance equations:

π(X,Y ) (
∑

i λi +
∑

i αi +
∑

i δi1Xi>0 +
∑

i µi1Xi>0 +
∑

i βi1Yi>0 +
∑

i

∑
j γi,j1Yi>0

)
=∑

i π(X − ei, Y )λi1Xi>0

+
∑

i π(X,Y − ei)αi1Yi>0

+
∑

i π(X,Y + ei)βi

+
∑

i π(X + ei, Y )δi

+
∑

i

∑ci−1
m=0 π(X + ei, Y +mei)µi1Yi=0

+
∑

i

∑
j π(X + ei − ej , Y + ciei)µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j π(X,Y + ei + lej)γi,j1Yj=0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j π(X,Y + ei + kej)γi,j1Xi>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jB

(m)
i,j (Xj +m)π(X − eim+ ejm,Y + ei + kej)1Xi=m

The lhs of the above expression represents the total flow out from state (X,Y) and the rhs the total flow

into (X,Y). The rhs of the above expression is formed by nine terms (each of them is represented in a different

line). The first sum represents the arrival of a DP and the second one of the EP. The first sum represents

the leakage of an EP and the fourth one the departure of a DP. The fifth sum represents that the lost of a

DP after being served because the required energy is not available. The sixth sum represents the successful

movement of a DP after getting service to the next cell. The seventh sum represents that (COND2) is not

satisfied, whereas the eighth sum that (COND3) is not satisfied. Finally, the last sum represent a successful

load balancing.
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We divide by π(X,Y ) the above expression and, assuming that the expression in (1) is true, we get that:∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 =∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi1Yi=0

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj=0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jB

(m)
i,j (Xj +m)

(
ρj

ρi

)m
ωiω

k
j 1Xi=m

We use that 1Yi=0 = 1− 1Yi>0 and 1Yj=0 = 1− 1Yj>0 and put the negative terms to the other side:

∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=0 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jB

(m)
i,j (Xj +m)

(
ρj

ρi

)m
ωiω

k
j 1Xi=m

We now rewrite the last term of the last equation in the following equivalent form (in which we differentiate

the case where the DP queue of the sender gets empty after the load balancing and not):
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∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=1 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jB

(m)
i,j (Xj +m)

(
ρj

ρi

)m
ωiω

k
j 1Xi=m1Xj>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jB

(m)
i,j (m)

(
ρj

ρi

)m
ωiω

k
j 1Xi=m1Xj=0

From Assumption 1, we can write B
(m)
i,j (m)

(
ρj

ρi

)m
= 1 and B

(m)
i,j (Xj +m)

(
ρj

ρi

)m
= 1− ρi

ρj
. Thus,

∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=1 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,j

(
1− ρi

ρj

)
ωiω

k
j 1Xi=m1Xj>0

+
∑

i

∑
j

∑
m≥0

∑
k≥0 A

(k)
i,j γi,jωiω

k
j 1Xi=m1Xj=0
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Using that
∑

m≥0 1Xi=m = 1, the last two terms of the above expressions simplify as follows:∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=1 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,j

(
1− ρi

ρj

)
ωiω

k
j 1Xj>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,jωiω

k
j 1Xj=0

Using again that 1Xj=0 = 1− 1Xj>0, we get that∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=1 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,j

(
1− ρi

ρj

)
ωiω

k
j 1Xj>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,jωiω

k
j (1− 1Xj>0)
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The above expression gets simplified as follows:∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=1 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j1Yj>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρi

ρj
ωci
i µiP (i, j)1Xj>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

−
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,j

ρi

ρj
ωiω

k
j 1Xj>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,jωiω

k
j

We change the indices i and j of the sixth and the tenth term of the rhs and of the eighth term of the

lhs, which gives∑
i λi +

∑
i αi+

∑
i δi1Xi>0 +

∑
i µi1Xi>0 +

∑
i βi1Yi>0 +

∑
i

∑
j γi,j1Yi>0 +

∑
i

∑ci−1
m=0 ρiω

m
i µi1Yi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
j,i ωjω

l
iγj,i1Yi>0

=
∑

i
λi

ρi
1Xi>0

+
∑

i
αi

ωi
1Yi>0

+
∑

i βiωi

+
∑

i ρiδi

+
∑

i

∑ci−1
m=0 ρiω

m
i µi

+
∑

i

∑
j

ρj

ρi
ω
cj
j µjP (j, i)1Xi>0

+
∑

i

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
i,j ωiω

l
jγi,j

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j ωiω

k
j γi,j1Xi>0

−
∑

i

∑
j

∑
k≥0 A

(k)
i,j γj,i

ρj

ρi
ωjω

k
i 1Xi>0

+
∑

i

∑
j

∑
k≥0 A

(k)
i,j γi,jωiω

k
j
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We now check that equation with the indicator function 1Xi>0 is satisfied as well as the equation with

indicator function 1Yi>0 and the equation without indicator function (constant term).

• Function 1Xi>0:∑
i

δi +
∑
i

µi =
∑
i

λi

ρi
+
∑
i

∑
j

ρj
ρi

ω
cj
j µjP (j, i) +

∑
i

∑
j

∑
k≥0

A
(k)
i,j ωiω

k
j γi,j

−
∑
i

∑
j

∑
k≥0

A
(k)
j,i γj,i

ρj
ρi

ωjω
k
i

The above equation holds by (FLOW-DP).

• Function 1Yi>0:∑
i

βi +
∑
i

∑
j

γi,j +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥1

k−1∑
l=0

A
(k)
i,j ωjω

l
iγj,i =

∑
i

αi

ωi

The above equation holds by (FLOW-EP).

• Constant:∑
i

λi +
∑
i

αi =
∑
i

βiωi +
∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥1

k−1∑
l=0

A
(k)
i,j ωiω

l
jγi,j

+
∑
i

∑
j

∑
k≥0

A
(k)
i,j γi,jωiω

k
j

We now note that the last two terms of the rhs can be written in the following equivalent form:

∑
i

λi +
∑
i

αi =
∑
i

βiωi +
∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥0

k∑
l=0

A
(k)
i,j ωiω

l
jγi,j (B.1)

From (FLOW-EP), we have that

∑
i

αi =
∑
i

ωiβi +
∑
i

∑
j

ωiγi,j +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥1

k∑
l=1

A
(k)
i,j ωjω

l
iγj,i

We replace this expression in (B.1) and we get

∑
i

λi +
∑
i

ωiβi +
∑
i

∑
j

ωiγi,j +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥1

k∑
l=1

A
(k)
i,j ωjω

l
iγj,i =

∑
i

βiωi +
∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥0

k∑
l=0

A
(k)
i,j ωiω

l
jγi,j

We simplify that above expression and it results∑
i

λi +
∑
i

∑
j

ωiγi,j +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

∑
k≥0

A
(k)
i,j ωiγi,j

Using that
∑

k≥0 A
(k)
i,j = 1 for all i, j, the above expression simplifies as follows:

∑
i

λi +
∑
i

∑
j

ωiγi,j +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi +

∑
i

∑
j

ωiγi,j
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The term
∑

i

∑
j ωiγi,j appears on both sides of the above expression and, therefore, they can be

canceled: ∑
i

λi +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi. (B.2)

From (FLOW-DP), we obtain the following expression:∑
i

ρiµi +
∑
i

ρiδi =
∑
i

λi +
∑
i

∑
j

ρuµjω
cj
j P (j, i) +

∑
i

∑
j

∑
k≥0

Ak
i,j(γi,jω

k
j ωiρi − γj,iω

k
i ωjρj)

We now notice that
∑

i

∑
j γi,jω

k
j ωiρi =

∑
i

∑
j γj,iω

k
i ωjρj . Therefore, we above expression can be

simplified as follows: ∑
i

ρiµi +
∑
i

ρiδi =
∑
i

λi +
∑
i

∑
j

ρjµjω
cj
j P (j, i).

We now interchange the indices i and j of the last expression of the rhs and we get∑
i

λi =
∑
i

ρiµi +
∑
i

ρiδi −
∑
i

∑
j

ρiµiω
ci
i P (i, j).

We replace this expression in (B.2) and it results∑
i

ρiµi +
∑
i

ρiδi −
∑
i

∑
j

ρiµiω
ci
i P (i, j) +

∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ρiδi +
∑
i

ci−1∑
m=0

ρiω
m
i µi.

Using that
∑

i P (j, i) = 1 and since
∑

i ρiδi appears on both sides, this expression gets simplified as

follows: ∑
i

ρiµi −
∑
i

ρiµiω
ci
i +

∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ci−1∑
m=0

ρiω
m
i µi.

We move the negative terms to the rhs and we get∑
i

ρiµi +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ci∑
m=0

ρiω
m
i µi.

We now note that the lhs of the above expression satisfies that:∑
i

ρiµi +
∑
i

ωi

ci−1∑
m=0

ρiω
m
i µi =

∑
i

ρiµi +
∑
i

ci∑
m=1

ρiω
m
i µi =

∑
i

ci∑
m=0

ρiω
m
i µi,

which implies that the desired result follows.

Appendix C. Proof of Lemma 2

• Consider an arbitrary (X,Y ). As αi > 0 for all i, there exists sequence of EP arrivals with positive

probability from (⃗0, 0⃗) to (0, Y ′) with Y ′ ≥ Y element-wise. Y ′ is larger than Y because we will

eventually need some EP to move the fresh DP to their destination and finally reach any state (X,Y ).

Now, we have to prove that it is possible to make the DP arrive at any location. We proceed by

induction cell after cell using the label ordering obtained in Lemma 1 in decreasing order. Let I(i) be

the label of cell number i. Let us consider an arbitrary cell j. The DP population one must reach is

Xj . We have two cases:
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– If λj > 0, we clearly have a sequence of Xj arrivals which leads to the destination. And these

arrivals do not need energy. In this case Y ′ = Y . Due to the labeling in Lemma 1, these cells

receive the smallest labels.

– If λj = 0. Let r the cell associated to the root of the tree which contains node j (with label I(j)).

Due to the ordering, all the nodes among the path between r and j have labels k between I(r)

and I(j) (i.e. I(r) < k < I(j). We begin with the arrivals of Xj arrivals of fresh data packets at

node r. We now prove by induction on the nodes among the path the following property: at each

step it is possible to make all the data packets progress from a cell (say b) to next cell (say c)

among the path from r to j, and, at the end of the step, the DP queue of cell b is empty. Again

we have two cases,

∗ If the link between cell b and c is an arc of R, we proceed by Xj services and routing and we

have enough EP to perform these migrations as Y ′ > Y . Thus such actions have a positive

probability.

∗ If the link between cell b and c is an arc of G, one must perform a load balancing operation

where cell c polls cell b. This is possible because the DP queue of cell c is empty by induction.

Furthermore as the load balancing batch has a geometric distribution, moving a batch of

exactly Xj DP has a positive probability.

Thus by induction we have moved Xj DP from cell r to cell j. The induction relies to label I()

because load balancing operations only occur when the receiving DP queues are empty.

• We now have to exhibit a sequence of transitions between any (X,Y ) and (⃗0, 0⃗). We use label J() to

schedule the transitions. In the first step, all the queues which do not have enough energy to allow all

the transitions during Step 2, increase their energy level (i.e. the number of EP). As αi > 0 for all i, all

these events have a positive probability. Then in a second step, we empty all the DP queues. Finally,

during a third step, If the number of EP is too large, at the end of the process, we will consider some

events which make the energy goes to 0 in all the cells.

For the second step, we proceed by induction on the cells in the orders of J() labels to establish that

all DP queues with labels J() smaller than i may be emptied by a sequence of events with positive

probability.

– The smallest (with this label) cells are the sinks. As already mentioned, a DP queue in a sink can

be emptied either due to a routing out of the network (with rate δi) or a movement which fails due

to the lack of energy. And the energy is missing here because it has previously leaked. Therefore

we have a sequence of events with a positive probability which leads to empty DP queues in all

the sinks.

– Now consider cell i with label J(i). By construction, cell i is not a sink. Due to the property

of this label, all the DP queues among the path from i to the root of its tree r are decreasing.
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Therefore, by induction their DP queues are empty. To move Xi data packets from node i to node

r, we proceed by another induction among the path as in the previous case. At the current step

of this induction, we have Xi packets at DP queue b and we have to send them to the next cell

(say c). If the link between cell b and c is an arc of R, we proceed by Xj services and routing and

we have enough EP to perform these migrations as Y ′ > Y . Thus such actions have a positive

probability. And if the link between cell b and c is an arc of G, we perform a load balancing

operation where cell c polls cell b. This is possible because the DP queue of cell c is empty by

induction. Again, the load balancing batch has a geometric distribution, thus moving a batch of

exactly Xj DP has a positive probability. At the end of this sequence of events, Xi have have

reached the sink associated with node i. And due to the properties of the cell they can leave the

network.

Let us now describe the third step which is used to delete the remaining EP. As βi +
∑

j γi,j > 0 there

exist a sequence of transitions which empties all the EP queues. Indeed, either a leak or a failed load

balancing operation lead to a loss of energy packets. Finally we have a sequence of transitions from

(X,Y ) to (⃗0, 0⃗).

Appendix D. Example of an irreducible network that is not open

We consider a network formed by two cells a and b. The parameters are set to the following ones:

λa = 1, λb = 2, αa = 2, αb = 1, βa = 0, βb = 0, µa = 0, µb = 0, δa = 4, δb = 4, γa,b = 4, γb,a = 0. From

these parameters, we notice that the load balancing takes places to move DPs from b to a. We consider that

A
(k)
a,b = 1 for k = 1. We also note that, for these parameters, the first three conditions of open network are

satisfied, but the last one does not hold for cell b. Therefore, the network is not open and we cannot apply

Lemma 2 .

We now show that the Markov chain associated with this network is irreducible. Indeed, as the arrival

rates are all positive, it is possible to reach any state (Xa, Ya, Xb, Yb) from the empty state (0, 0, 0, 0). And,

the DP queues may be emptied with departures with rate δi while the EP queues may be emptied by the

polling operations of cell b by cell a which use a positive number of EP on both EP queues. Therefore,

there also exists a sequence of transitions with positive probabilities from any state (Xa, Ya, Xb, Yb) to state

(0, 0, 0, 0).

Taking into account the zero values of the parameters and that the graph H is a DAG, the flow equations

of the EPs are simplified as follows:

ωa =
αa

γa,b
, ωb =

αb

ωaγa,b
,
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whereas the flow equation of the DPs:

ρa =
λa + γa,bωaωbρa

δa
, ρb =

λb − γa,bωbωaρa
δb

.

We solve numerically this system of equation for the values of the parameters we have defined above and we

obtain that

ωa = 1/2, ωb = 1/2, ρa = 1/3, ρb = 5/12.

Therefore, the chain is irreducible and the solution of the flow equation exists. As a result, one can apply

Theorem 2 even if Lemma 2 does not hold.

Appendix E. Proof of Theorem 3

We prove that, under the conditions of Definition 3, the assumptions of Brouwer’s theorem hold [22], i.e,

there exists D which is a non empty compact subset of R2N
+ such that the flow equation function maps D

onto itself, and as a result, a fixed point exists in D for the flow equations.

Let F (ω, ρ) be the vector of size N whose component i is Fi(ω, ρ). Likewise, we define G(ω, ρ) as the

vector of size N whose component i is Gi(ω, ρ). First, we remark that as βi +
∑

j γi,j > 0 and µi + δi > 0,

the functions Fi() and Gi() are all continuous on R2N
+ . We now aim to find D, which is a compact subset of

R2N
+ with a non empty interior such that (F (D), G(D)) ⊂ D. Remember that compact subsets of R2N

+ are

bounded and closed subsets. We first study the constraints on D associated with Fi() for all i and then the

ones associated with Gi().

• Function Fi:

We first observe that

Fi(ω, ρ) =
αi

βi + µiρi
∑ci−1

m=0 ω
m
i +

∑
j γi,j +

∑
j

∑
k≥1

∑k−1
l=0 A

(k)
j,i ωj(ωi)lγj,i

≤ αi

βi +
∑

k γi,j
.

Now, using condition (HYP1), we conclude that Fi(ω, ρ) ≤ 1. Therefore, one can choose the subset [0,

1] for the first N elements of the set D, i.e., for the elements associated with function Fi .

• Function Gi:

Note that we must establish that functions Gi(ω, ρ) are lower and upper bounded due to the substrac-

tion operation in the denominator. Let us consider first the upper bound. We see that

Gi(ω, ρ) =
λi +

∑
j µjρjω

cj
j P (j, i) +

∑
j

∑
k≥0(A

(k)
i,j γi,jωiω

k
j ρi −A

(k)
j,i γj,iωjω

k
i ρj)

µi + δi

≤
λi +

∑
j µjρjω

cj
j P (j, i) +

∑
j

∑
k≥0 A

(k)
i,j γi,jρiωiω

k
j

δi + µi
.
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As ωj < 1 for all j, it results:

λi +
∑

j µjρjω
cj
j P (j, i) +

∑
j

∑
k≥0 A

(k)
i,j γi,jρiωiω

k
j

δi + µi
<

λi +
∑

j µjρjP (j, i) +
∑

j

∑
k≥0 A

k
i,jγi,jρi

δi + µi

=
λi +

∑
j µjρjP (j, i) +

∑
j γi,jρi

∑
k≥0 A

(k)
i,j

δi + µi

=
λi +

∑
j µjρjP (j, i) +

∑
j γi,jρi

δi + µi
.

Let Hi(ρ) =
λi+

∑
j µjρjP (j,i)+

∑
j γi,jρi

δi+µi
. Thus, from the above reasoning, we have that Gi(ω, ρ) < Hi(ρ)

for all i. Let us now consider the Jackson network with the parameters given in (HYP3) of Definition 3.

The solution of the flow equation for this Jackson network is:

µiρ
∗
i = (λi +

∑
j

γi,j)
µi

µi + δi
+
∑
j

µjρ
∗
j

[
µiP (j, i)

µi + δi

]
.

Rearranging both sides of the expression, we get after simplification:

ρ∗i =
λi +

∑
j µjρ

∗
jP (j, i) +

∑
j γi,j

µi + δi
.

As ρ∗i < 1, and γi,j ≥ 0 for all i and j, we have for all ρi ≤ ρ∗i < 1:

ρ∗i ≥
λi +

∑
j µjρ

∗
jP (j, i) +

∑
j γi,jρi

µi + δi
.

Now, we remark that the functions Hi() are all non-decreasing functions. Therefore if ρi < ρ∗i , we have

from the above reasoning that:

Gi(ω, ρ) < Hi(ρ) ≤ ρ∗i .

Let us consider now the lower bound. As 0 ≥ ωi < 1 for all i, we have:

Gi(ω, ρ) =
λi +

∑
j µjρjω

cj
j P (j, i) +

∑
j

∑
k≥0(A

(k)
i,j γi,jωiω

k
j ρi −A

(k)
j,i γj,iωjω

k
i ρj)

µi + δi

≥
λi −

∑
j

∑
k≥0 A

(k)
j,i γj,iρj

δi + µi
=

λi −
∑

j γj,iρj

δi + µi
.

Thus if ρi ≤ ρ∗i < 1, we have

Gi(ω, ρ) ≥
λi −

∑
j γj,iρ

∗
j

δi + µi
>

λi −
∑

j γj,i

δi + µi

Therefore due to (HYP2), Gi(ω, ρ) ≥ 0, if ρi ≤ ρ∗i for all i.

Thus we set D = [0, 1]N × [0, ρ∗1] × [0, ρ∗2] × · · · × [0, ρ∗N ], and the assumptions of Brouwer’s theorem

hold.

The proof is complete: a fixed point for the flow equation exists in D.
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