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Abstract
Industrial processes generate a massive amount of monitoring data that can be exploited to uncover hidden
time losses in the system. This can be used to enhance the accuracy of maintenance policies and increase the
effectiveness of the equipment. In this work, we propose a method for one-step probabilistic multivariate
forecasting of time variables involved in a production process. The method is based on an Input-Output
Hidden Markov Model (IO-HMM), in which the parameters of interest are the state transition probabilities
and the parameters of the observations’ joint density. The ultimate goal of the method is to predict operational
process times in the near future, which enables the identification of hidden losses and the location of
improvement areas in the process. The input stream in the IO-HMM model includes past values of the
response variables and other process features, such as calendar variables, that can have an impact on the
model’s parameters. The discrete part of the IO-HMM models the operational mode of the process. The
state transition probabilities are supposed to change over time and are updated using Bayesian principles.
The continuous part of the IO-HMM models the joint density of the response variables. The estimate of
the continuous model parameters is recursively computed through an adaptive algorithm that also admits
a Bayesian interpretation. The adaptive algorithm allows for efficient updating of the current parameter
estimates as soon as new information is available. We evaluate the method’s performance using a real data set
obtained from a company in a particular sector, and the results are compared with a collection of benchmark
models.
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1 INTRODUCTION

Machinery and equipment maintenance is the cornerstone of efficient and reliable production processes in industrial settings. With
the increasing digitalization and automation of manufacturing lines, and the introduction of cyber-physical control platforms at
the shop-floor level, the amount of available data has grown exponentially. This has led to the development of more sophisticated
diagnostic and prognostic methodologies to identify and address small inefficiencies or hidden losses. In this context, industrial
engineering experts are focusing on a proactive maintenance concept, which involves the early detection and correction of
potential issues. Zwetsloot et al.? propose a method for early detection of changes in the frequency of out-of-control events
in two signals, and apply it to study the health condition of escalators in some buildings in Hong Kong. The combination of
Machine Learning and Deep Learning knowledge with operational data acquisition has led to the development of fault diagnosis
methods for equipment in different working conditions. However, these methods typically focus on the degradation of mechanic
components of highly specific equipment, but overlook external factors and other possible interactions that could affect the
equipment’s normal functioning, making them less effective in predicting overall system failures. Some benchmark examples on
this matter are discussed by Yang and Zhong? . A proactive approach is generally more effective than a reactive one, which
only addresses problems after they arise. Statistical methods, advanced analytics tools and machine learning algorithms have
enabled the development of predictive maintenance models that try to predict equipment failures, preventing costly downtime
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and production losses. The advent of continuous data flow in production processes is the basis of several applications that
rely on real-time process monitoring, change point detection and the triggering of alerts in case of unusual trends. These
methods belong to a process control concept known as Statistical Process Monitoring (SPM), and have proven to be a valuable
resource for equipment health management. Woodall and Montgomery? provide a useful overview of techniques within this area.
Unfortunately, since they are based on a mostly reactive approach, these methods still fail to predict the behaviour of the process
in the near future and to anticipate far enough unplanned long stops caused by major breakdowns or micro stoppages caused by
minor faults. This limitation has motivated the exploration of alternative techniques, such as Hidden Markov Models (HMMs).
HMMs are flexible and mathematically robust, and have successfully modelled various applications, including speech? and
handwriting recognition? , electric consumption and generation forecasting? , and DNA sequences analysis? . Nevertheless, the
research community in the field of industrial process engineering agrees on being cautious about the straight utilization of these
models due to the natural complexity and variability of industrial process data? .

In this article we propose an innovative approach based on Input-Output Hidden Markov Models (IO-HMM) with adaptive
learning for probabilistic multivariate forecasting of operational times in industrial processes. The methodology identifies
hidden inefficiencies in production by estimating transitions between operational states and modelling the joint distribution of
response variables. Through a dynamical parameter update based on the ”Recursive Prediction Error” (RPE) technique? , the
model continuously improves its predictive capacity as new data is incorporated. The method is designed to be implemented in
digital industrial management platforms and is applicable to a wide range of manufacturing sectors, while also being flexible
enough to be customized to meet the specific needs of each company, including food processing, automotive, pharmaceutical
and electronics, particularly in assembly line production, where minimizing downtime and optimizing workflow are critical
for efficiency. This approach presents several key advantages for various stakeholders in an industrial setting. For maintenance
managers, it enables early detection of equipment failures, facilitating preventive maintenance actions and reducing unplanned
downtime. For production engineers, it enhances operational efficiency by identifying bottlenecks and optimizing production
times. Industrial data analysts benefit from a robust analytical framework integrating probabilistic modelling with adaptive
learning, allowing for better interpretation of process variability. Finally, for plant managers and executives, this approach
facilitates data-driven decision-making by offering accurate predictions on equipment availability, performance, and quality.

A similar approach based on HMMs was proposed in Arpaia et al.? for detecting faulty conditions in fluid machinery.
However, the aim of our model is not only the detection of the next operating mode but also the joint prediction of some
operational time variables involved in a production process. From these operational times, one can deduce time losses, which
reflect process inefficiencies that often remain undetected or overlooked, and some production effectiveness indices, which
provide a reliable measure of the current performance of the process.

One of the challenges to overcome when dealing with HMMs is selecting the appropriate number of hidden states. This
is especially meaningful in the context of equipment maintenance, since the hidden states are supposed to account for the
general condition of the equipment under consideration. In Roblès et al.? , authors examined the performance of different HMM
topologies using well-known criteria such as the Bayesian Information Criterion, the Shannon Entropy and the Maximum
Likelihood among others. The candidate models had different constraints over the transition matrix and different emission
probability distributions but all of them were limited to four hidden states. However, this may not be sufficient for real-world
applications where multiple intermediate levels may be present due to a variety of factors. Other authors use additional process’
signals to determine the number of hidden states. Baruah and Chinnam? propose an experimental setting for diagnosing physical
failure of drill bits and estimating remaining useful life using two highly correlated signals. In our approach, we address this
issue by letting the data itself to determine the number of hidden states in a stage prior to the HMM modelling, adhering to
general guidelines provided in Chinnam and Baruah? .

As mentioned above, industrial processes are generally non-stationary in nature. One way to address this non-stationarity is to
allow the parameter estimates to change over time incorporating explanatory variables in the parameter estimation procedure.
Afzal and Al-Dabbagh? deal with a multi-signal process by considering an IO-HMM, an extension of the HMM that includes an
input stream of variables that affect both the state transitions and the output densities? . In our approach, we adopt an IO-HMM
model in which the parameter estimates depend on past values of the operational times and other process features, such as
calendar variables (represented by work shifts) and production references. Following the suggestion of Baruah and Chinnam? ,
the adaptive algorithm mentioned above ensures continuous parameter updating using the latest data.

The main novelty of this work is the handling of several process signals to identify potential faults in a challenging environment
such as production processes. In particular, we focus on the analysis of multiple variables describing the production process
carried out by a piece of equipment. Some of the variables are signals that characterize the health condition of the process,
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and are used to establish the number of hidden states in the Markov chain of the model. Other variables are signals or process
features that are considered to affect the response variables, and thus are used as explanatory variables that have an impact on the
parameters of interest, i.e., the state transition probabilities and the parameters of the observations’ joint density. The explanatory
variables are called in the remainder of this work covariates. Further, the adaptive learning algorithm deployed in the continuous
part of the IO-HMM is a multivariate extension of the algorithm presented in Alvarez et al.?

The rest of this paper is organised as follows. To provide better context, in Section 2 we define the operational times and
indices relevant to this work, and describe the data of the case study that will be presented later. Section 3 outlines the IO-HMM
and the methodology for parameter estimation and forecasting of response variables. Section 4 details the implementation
process. The application to the real case study is introduced in Section 5. Finally, in Section 6 we discuss the conclusions.

2 TIME LOSSES IN INDUSTRIAL PROCESSES AND APPLICATION DATA

In industrial settings, the production process is subject to inefficiencies that eventually assume the form of either output losses or
time losses. When represented by time losses, they can be broadly classified into the following categories? :

1. Stand By Time (SBT): losses due to scheduled stops such as maintenance or cleaning
2. Down Time (DT): losses due to unexpected stops such as setup adjustments, failures, or supply outages
3. Performance Losses Time (PLT): losses due to low production speed and micro-stoppages
4. Quality Losses Time (QLT): losses associated with defective units and rework.

Note that each of these categories could further be subdivided based on the specific cause of the loss, although such
a classification is typically customized according to the particular nature of the process under consideration. By taking
the length of an observation period as a reference -hereinafter referred to as Opening Time or OT- one can derive dif-
ferent production times by successively subtracting each time loss, as illustrated in Figure 2.1 and definitions [2.1]. -

OT – SBT = Loading Time (LT)

LT – DT = Operating Time (OpT)

OpT – PLT = Net Operating Time (NOpT)

NOpT – QLT = Valuable Time (VT) [2.1]

Moreover, the ratio between the production times can be used to define some well-known effectiveness indicators, which are
enumerated in formulae [2.2]:

LT

OT
= Loading Rate (lo)

OpT

LT
= Availability Rate (av)

NOpT

OpT
= Performance Rate (pf)

VT

NOpT
= Quality Rate (qu) [2.2]

SBT LT
OT

OpTDT

NOpT
VT

PLT
QLT

F I G U R E 2.1 Production times and time losses classification from an observation period OT ?
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The Overall Equipment Effectiveness (OEE) is a widely-used index that weighs the actual capacity of equipment compared to
its optimal capacity, and is defined as the product of the availability, performance and quality rates:

oee = av× pf× qu [2.3]

The OEE is designed to trace the losses that are directly dependent on the equipment being used, while leaving out other losses
that cannot be fixed by rearranging or repairing the equipment. Equivalently, the OEE can also be defined as

oee =
LT – DT – PLT – QLT

LT
=
VT

LT

or
oee =

TU – DU
ics× LT

,

where ics is the ideal cycle speed (in cycles per time unit; a cycle, or unit, is a produced item), TU is the total number of units
and DU the number of defective units. The last definition demonstrates that a 100% value in the OEE is obtained under optimal
working conditions, that is, when the process has produced only flawless items at the ideal speed during the scheduled working
hours. In Zammori et al.? , the OEE is treated as a random variable and its distribution is used to assess the effectiveness of
correction actions implemented in the maintenance strategy. In this study, different time losses are considered as independent
beta random variables, but the independency assumption might be taken as unrealistic in real-life processes where, for example,
a major failure is often preceded or followed by slower production speeds or by a higher number of rejected units. Our research
will also explore whether the dependency between losses leads to a better predictive model by comparing the performances of
the multivariate model and the respective univariate models.

To analyse these time losses and develop a predictive model for operational efficiency, we use a dataset collected from a real
industrial process. The data comes from a company in a specific industrial sector, where a digital platform is integrated into
the manufacturing line to capture and store real-time production data. The dataset comprises 1928 observations collected over
four consecutive weeks, and include 35 variables related to the production process. Each observation corresponds to a specific
period of operation, with key attributes listed in Table 2.1. A sample of two entries of the dataset is provided in Table 2.2, which
illustrates the structure of the recorded observations and highlights the key variables involved in the analysis.

The motivation behind this research is to develop a probabilistic forecasting model capable of predicting key operational
times in the near future. These predictions enable the identification of hidden inefficiencies and the calculation of process
performance indicators, which are essential for proactive maintenance strategies, shop-floor decision-making and overall process
optimization. However, industrial production dynamics are complex, driven by multiple interdependent factors, and often
subject to both systematic patterns and stochastic variability. Therefore, traditional predictive models may struggle to capture
these nuances, either because they oversimplify dependencies or fail to adapt to changing conditions. The multivariate IO-
HMM provides a flexible framework for modelling the system’s discrete operational modes using hidden states, incorporating
explanatory variables to account for external factors affecting production performance, and dynamically adapting to new data
through an adaptive learning algorithm that continuously updates model parameters. The real dataset will allow us to assess how
effectively this approach achieves these objectives. It will also highlight the model’s strengths while identifying potential areas
for improvement, helping us reveal key aspects that require further attention.

3 MODEL DESCRIPTION

Notation

Roman letters refer to scalar quantities or variables, lowercase bold letters denote vectors and uppercase bold letters denote
matrices. Calligraphic letters refer to sets. 1 denotes a vector of 1’s, 0 a vector or matrix of 0’s, I is the identity matrix and ·
denotes the scalar product. Matrix or vector transposition is denoted by the superscript T .
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T A B L E 2.1 Key attributes in the real dataset.

Alias Variable Units/format

Production identifiers
n observation ID integer

date date yyyy-mm-dd
start timestamp hh:mm:ss
shift workshift weekday-shift
pr.ord production order ID integer
Process parameters

ics ideal unit speed units/minute
rcs real unit speed (TU/LT) units/minute
TU total units integer
DU defective units integer
TgU target units (OpT×ics) real

nstops number of stops integer
Time variables

OT Opening Time minutes
SBT Stand By Time minutes
LT Loading Time minutes
DT Downtime minutes
OpT Operating Time minutes
PLT Performance Losses Time minutes
NOpT Net Operating Time minutes
QLT Quality Losses Time minutes
VT Valuable Time minutes

Indices
lo loading rate ∈ [0, 1]
av availability rate ∈ [0, 1]
pf performance rate ∈ [0, 1]
qu quality rate ∈ [0, 1]
oee OEE index ∈ [0, 1]

Environmental variables
hum humidity %
temp temperature °C

T A B L E 2.2 An example of production data extracted from the real dataset.

n date start shift pr.ord ics TU DU TgU OT SBT LT rcs lo

66 2022-10-10 13:50:24 Mo M 305 1.88 13 1 13.1 9.6 0 9.6 1.35 1
67 2022-10-10 14:00:00 Mo A 305 1.88 13 0 13.4 9.69 0 9.69 1.34 1

n DT OpT av PLT NOpT pf QLT VT qu oee nstops hum temp

66 2.62 6.98 0.73 0.05 6.93 0.99 0.53 6.4 0.92 0.67 2 64.0 24.3
67 2.52 7.17 0.74 0.37 6.8 0.95 0 6.8 1 0.7 2 64.3 24.3

3.1 Input-Ouput Hidden Markov Model

We model the production process as an IO-HMM, i.e., an HMM with an input stream of covariates. Figure 3.1 depicts the diagram
of an IO-HMM. The main assumption in HMMs is that the process goes through K hidden states according to a state transition
probability distribution. The hidden state of the n-th observation period is denoted by cn and stands for the operational mode of
the production process during that period. Each state gives rise to a different probability distribution of the continuous responses
in the output stream, that are denoted by yn. The decision about the final number of hidden states will be discussed in Section 4.3.

The distinctive feature of an IO-HMM is the assumption that the model’s parameters are affected by an input stream of
covariates. This dependency allows the parameter estimates to change over time, in contrast with the traditional HMM, where
the estimates are static after the training phase is completed. The covariates at n-th observation period comprehend prior known
information about that period and are denoted by xn. The covariates affecting the state probabilities in the discrete part of the
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model will be denoted by zn, while those that affect the responses’ joint density will be denoted by wn, so that xn = [zn wn].
Both discrete and continuous processes of the model are described in sections 3.2 and 3.3 respectively.

In a simple framework, we can consider that the process’s operational mode is exclusively determined by four levels of the
OEE index: Optimal (>85%), Good (60-85%), Improvable (40-60%), and Poor (<40%). The specific operational mode during a
given period remains unknown until the observation period ends, when we obtain access to the process information for that
specific period, including the OEE score and the response variables yn. Based on this OEE, the period is categorized into one of
the four levels. Using the prediction error yn – ŷn, the last state cn and the covariates xn+1, the model parameters are updated.
Finally, with the covariates and the latest parameters, the value of the response vector ŷn+1 is forecasted.

.... ....

....

p(cn+1|cn,zn+1)

Output stream

Hidden states

ynyn-1 yn+1

cn-1 cn cn+1

xn-1 xn xn+1 Input stream

....

.... ....

p(cn|cn-1,zn)

y1

c1

π(c1|z1)

x1

z1

w1

zn-1

wn-1 wn

zn zn+1

wn+1

F I G U R E 3.1 Diagram of an IO-HMM. Covariates xn affect both discrete and continuous processes. Probabilities in the
discrete process {cn}n≥1 are dependent on covariates zn and probabilities in the continuous process {yn}n≥1 are dependent on
covariates wn.

3.2 The discrete process

Assume that the discrete process {cn}n≥1 is a Markov chain with K different states, that is, cn ∈ {1, . . . , K} , n ≥ 1. The
probability distributions for the initial state and the transitions between states are dependent on the covariates zn. This vector zn

comprises d binary components that describes some features of the period, i.e., zn ∈ {0, 1}d , n ≥ 1.
For a given s ∈ {0, 1}d, we assume that the initial probabilities π(s) = P [c1|z1 = s] and the transition probabilities p(s)

k =
P [cn|cn–1 = k, zn = s] , k = 1, . . . , K follow Dirichlet prior distributions, that is,

π(s) =
[
π(s)

1 . . . π(s)
K

]
∼ Dirichlet

(
a(s) = [a(s)

1 . . . a(s)
K ]

)
p(s)

k =
[
p(s)

k1 . . . p(s)
kK

]
∼ Dirichlet

(
α(s)

k = [α(s)
k1 . . . α(s)

kK ]
)

. [3.1]

It is well-known that the parameters of a Dirichlet distribution are recognized as pseudo-counts of the events represented by
the random probabilities so that, for example, a(s)

k is the pseudo-count of sequences starting in state k with covariate z1 = s, and
α(s)

kj is the pseudo-count of transitions from state k to state j when the covariates have the value s. We will denote by

a(s)
0

def
=

K∑
k=1

a(s)
k and α(s)

k0
def
=

K∑
j=1

α(s)
kj

the concentration parameters of each distribution.
Conditioned to the last observed state, the next unobserved state is a random variable following a categorical distribution (or

multinomial with one single trial) with parameters π(s) if the sequence just begins, or p(s)
k if the previous observation of the

same sequence is in state k. Since a prior Dirichlet and a categorical likelihood are conjugate, the posterior distribution for the
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parameters is also Dirichlet with revised pseudo-counts. Thus, when a new output measurement becomes available it is assigned
to the closest state, say j, and the relevant pseudo-count is updated by increasing the parameter a(s)

j or α(s)
kj by 1.

3.3 The continuous process

The continuous process {yn}n≥1 arises from a density function dependent on the state cn and the covariates wn. To model
these dependencies, we develop a multivariate extension of the model presented in Alvarez et al.? , and split the conditional
distribution of yn|cn,wn into two independent conditional distributions

yn|wn ∼ Nm (unHu,Σu) [3.2a]

yn|cn ∼ Nm(vnHv,Σv), [3.2b]

where m is the number of response variables; Hu,Hv denote coefficient matrices; Σu,Σv are covariance matrices; and un =
[1 wn], vn = v(cn) are the covariate vectors at the n-th step, with v(·) a function of the hidden state. In particular, we propose
considering the conditional expectation v(cn) = E [cn|cn–1], which, with the Dirichlet distribution assumptions, simplifies to the
Dirichlet parameters in [3.1] normalized by their concentration parameters, i.e., vn = a/a0 or vn = αcn–1 /αcn–1,0.

3.4 The adaptive algorithm

We explain the adaptive algorithm for the case of the parameters in distribution [3.2a]; the same procedure is applied to the
parameters in [3.2b]. Let λ ∈ (0, 1] be a forgetting factor that accounts for the weight of past observations. As soon as a new
sample yn becomes available, the prior estimators Hn–1,Σn–1 are updated to Hn,Σn (we omit the model subscripts in the
parameters for clarity) through an adaptive algorithm described by the following equations:

γn = 1 + λγn–1 [3.3a]

Hn = Hn–1 +
Pn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1) [3.3b]

Σn = Σn–1 –
1
γn

[
Σn–1 –

λ (yn – unHn–1)T (yn – unHn–1)
λ + unPn–1uT

n

]
[3.3c]

Pn =
1
λ

(
Pn–1 –

Pn–1u
T
nunPn–1

λ + unPn–1uT
n

)
[3.3d]

initialized with H0 = 0, Σ0 = 0, P0 = I and γ0 = 0.γn is the total weight of the sample. Note that if λ = 1 then all the observations
have the same weight and γn = n is the sample size; if λ < 1, past data gradually loses influence over time while recent data has
a greater impact. Equations [3.3a]-[3.3d] can be obtained by extending to the multivariate case the Maximum-Likelihood-based
proof provided in Alvarez et al.? , Theorem. 1. We refer to Appendix 6 for an alternative proof using a Bayesian approach.

3.5 Forecasting

After the training step, each distribution [3.2a]-[3.2b] produces a forecast of the responses. Later, these forecasts are combined
using a minimum-variance criterion to obtain the final prediction? . Once a new observation is available the update-prediction
loop begins again. In particular, when the parameters are updated after the n-th observation is received we can write

yn+1,u = un+1Hu + εn+1, εn+1 ∼ Nm(0,Σu)

yn+1,v = vn+1Hv + νn+1, νn+1 ∼ Nm(0,Σv),
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and define the weighted process

yn+1 = yn+1,uD + yn+1,v(I – D),

with D = diag (δ1, . . . , δm) a diagonal weight matrix to be determined. The mean and covariance of this process provide a
multivariate forecast of the responses at time (n + 1) and an estimate of its accuracy, namely

En [yn+1]
def
= ŷn+1 = un+1HuD + vn+1Hv(I – D) [3.4a]

Vn [yn+1]
def
= Σ̂n+1 = DΣuD + (I – D)Σv(I – D), [3.4b]

where the subindex n in the expectation and variance operators denotes that they are applied given all the information available at
time n. We note that finding D amounts to obtain separately the optimal weight δj for each response, j = 1, . . . , m. This weight?

is given by

δj =
σ2

v,j

σ2
u,j + σ2

v,j
, [3.5]

where σ2
u,j (σ2

v,j) is the j-th diagonal element of Σu (Σv).

4 IMPLEMENTATION

4.1 Data Segmentation

In an industrial setting, production processes are typically monitored at fixed intervals, and some time variables, such as OT, SBT,
and LT in Figure 2.1, are often predetermined and treated as deterministic. This is because planned stops, such as maintenance
or cleaning operations, follow predefined schedules, and measurement times are usually established in advance. However, in
the dataset used for this study, which was described in Section 2, these variables are in fact random due to the specific method
that employs the company that owns the data capture and management platform. Instead of using fixed measurement intervals,
observations are recorded based on some operational events that occur randomly, making the observation times also inherently
random, with the exception of one observation that is always recorded at the end of each shift. As a result, variables OT, SBT,
and LT fluctuate depending on the data capture timing rather than being predefined, which introduces an additional source of
variability in the model. If the process was monitored at predefined times and the variables OT, SBT, and LT were available a
priori, the variability of the model would be reduced, and we would expect an improvement in the quality of the predictions.

To structure the data appropriately, each work shift is considered as a separate sequence of observation periods. That is, all
observations recorded within a single shift form a continuous sequence in the model, and a new sequence begins when a shift
change occurs. This segmentation ensures that the temporal dependencies within each shift are preserved, while taking into
consideration the usual equipment adjustments that occur between shift changeovers. At the same time, we try to take advantage
of the only measurement time that is known in advance, which is at the end of each shift.

4.2 Variable selection

Covariate selection is a crucial step in the modelling process, as these variables must be meaningfully related to the response
variables. In this context, a covariate is any observable characteristic of the process that potentially affects the dynamics of
the target variables and, therefore, its inclusion in the model can enhance prediction accuracy. Some covariates influence the
evolution of hidden states, affecting the initial and transition probabilities in the HMM, while others directly impact the joint
distribution of output variables.

To ensure that the selected covariates genuinely add value to the model, dimensionality reduction methods such as Principal
Component Analysis (PCA) can be employed when the set of available variables is too large. These techniques help identify
combinations of variables that capture most of the data’s variability without introducing redundancy. However, in industrial
environments, the expertise of the production team is key to identifying relevant variables, so covariate selection can also be



An Adaptive Learning Approach to Multivariate Time Forecasting in Industrial Processes 9

also based on operational experience and prior correlation analysis with the response variables. A particular case of covariates
includes past values of the response variables yn–1, . . . ,yn–q, as they may contain useful information about the future evolution
of the process. The optimal number of lags to consider can be determined empirically through cross-validation by comparing the
predictive performance of models with different autoregressive orders.

In addition to the covariates used for estimating the model parameters, it is also necessary to select a set of variables that
enable the classification of observation periods into different operational states of the process. These classification variables are
used in the clustering stage, and must be closely related to process efficiency and reflect its overall performance. Metrics such as
availability rate, performance rate, OEE, and other key production indices are suitable candidates for this task. The selection of
these variables can also be relied on data analysis techniques, or based on expert knowledge of the production process.

4.3 Clustering

To identify the operational modes of the process, observation periods of the training set are grouped into K ≥ 2 classes using an
unsupervised classification technique based on the variables collected in the vector tn. Since the choice of classification technique
is not the main objective of this work, for simplicity we applied the K-Means method at this stage in our case study, although
other clustering approaches can certainly be explored; specifically, dynamic cluster merging and separation? techniques are
particularly suited for non-stationary environments. Their incorporation into this type of model could enhance our understanding
of the process dynamics, and is an interesting line of future research.

The optimal number of classes K, which corresponds to the number of hidden states in the Markov model, is not predefined but
determined automatically. To minimize the need for manual model fitting, we establish this number as the minimum required for
a goodness-of-fit (i.e., the between-groups-sum-of-squares divided by the total-sum-of-squares) threshold to be reached, adapting
the number of hidden states to the actual complexity of the process and preventing both excessive segmentation and insufficient
classification of the data. This will allow the application of the same method in settings with different conditions and equipment.

Once the classification is complete, each sequence in the training set is segmented into labelled intervals corresponding to the
detected operational states. These states are later used to learn the parameters of the discrete part of the model, as described in
Section 3.2, starting from non-informative Jeffreys’ priors for the Dirichlet distributions [3.1], that is, ak = αjk = 1/2, ∀j, k.

Let ok be the centroid of the k-th class, tn the classification variables, and cn the class of the n-th observation. During the test
phase, new observation periods are assigned to the closest centroid, that is

cn = arg min
k∈{1,...,K}

d(ok, tn),

where d(a, b) is a distance function such as Euclidean or Mahalanobis. Alternatively, the labels of the new observations can be
obtained through a k-nearest neighbours classification scheme.

4.4 Pseudo-code

Let S be the set of values of zn and K the set of hidden states. We define the sets of parameters

Π =
{
as = [a(s)

1 . . . a(s)
K ],As =

(
α(s)

kj

)
k,j∈K

, s ∈ S
}

Ψ =
{
H(s)

u ,Σ(s)
u ,H(s)

v ,Σ(s)
v , s ∈ S

}
Ω =

{
P(s)

u , γ(s)
u ,P(s)

v , γ(s)
v , s ∈ S

}
where

• a(s)
k is the count of sequences starting in state k with covariates s,

• α(s)
kj is the count of transitions from state k to state j for observations with covariates s,
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• H(s)
• ,Σ(s)

• are coefficient and covariance matrices respectively,
• P(s)

• , γ(s)
• are state matrices and discount factors respectively.

The pseudocode for the learning and forecasting methods is presented in Algorithms 1 and 2.
Algorithm 1 is responsible for updating the model parameters as new data become available. It follows an adaptive learning

approach, ensuring that both discrete and continuous parts of the model are refined. The algorithm starts by constructing the
necessary feature vectors u,v for both distribution 3.2a- 3.2b in the continuous part of the model using the covariates and the
normalized Dirichlet parameters, as suggested at the end of Section 3.3 (lines 2-6). In the continuous part, the model coefficients
and covariance matrices are updated using the adaptive recursive estimation method presented in Section 3.4 (lines 7, 8). In the
discrete part, the algorithm updates the prior state probabilities if a new sequence begins (line 11), or the transition probabilities
otherwise (line 13). In any case, it is a simple update of the pseudo-counts that represent the parameters. The process is iterated
over all observations (line 1), progressively refining the model’s parameters to better reflect the dynamics of the system.

Algorithm 2 is in charge for predicting the next values of the response variables based on the most recent data and model
estimates. First, the last observation is assigned to a hidden state based on the closest centroid obtained during the clustering step
(line 1), and the centroid is updated dynamically (line 2). Next, feature vectors are created as in Algorithm 1 (lines 3-6), and the
model estimates the response variables using both the hidden state-dependent process and the covariates-dependent process.
The final forecast is a weighted combination of these two estimates (lines 8, 9), where the weights are determined based on the
estimated variance of each process (line 7).

Figure 4.1 shows the block diagram of the adaptive algorithm for the model parameter estimates. At each step n, the algorithm
receives the latest observation yn–1 and covariates xn, updating the model parameters based on the prediction error (yn–1 – ŷn–1).
These updated parameters are used to generate the next forecast ŷn and the covariance matrix Σ̂n, renewing the iterative
learning-forecasting process.

^

Init Learn LearnLearn

y1 yn-1 ynx1 xn-1 xn

forecasterror

....

y1
Σ1

yn-1 yn
^

^

^

^ ^

Σn-1 Σn
....

....

forecastforecast error error

F I G U R E 4.1 Block diagram of the adaptive algorithm for the parameter estimates. At the n-th step the error in the last
prediction, (yn–1 – ŷn–1), and the new covariates, xn, feed the learning algorithm for updating the model parameters. The
covariates and the latest parameters are then used to obtain the prediction.

4.5 Evaluation

Two standard forecasting metrics are computed for the evaluation task -Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE)- for each response variable. For a test set of L observations, these metrics are defined as

MAE =
1
L

L∑
n=1

|yn – ŷn|
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Algorithm 1 Learning
Input:

Π ▷ Dirichlet parameters
Ψ ▷ model parameters
Ω ▷ state parameters
λu,λv ▷ forgetting factors
xn = [zn wn] ▷ covariates
cn–1, cn,yn ▷ state labels, responses

Output:
Π, Ψ, Ω ▷ updated parameters

1: for n = 1, . . . , N do
2: s← zn

3: k← cn–1

4: b←

{
a(s) if the sequence begins,

α(s)
k otherwise

5: u← [1 wn]
6: v← b/ (b · 1)
7: Update γ(s)

u ,H(s)
u ,Σ(s)

u ,P(s)
u using equations [3.3a], [3.3b], [3.3c], [3.3d]

respectively
8: Update γ(s)

v ,H(s)
v ,Σ(s)

v ,P(s)
v using equations [3.3a], [3.3b], [3.3c], [3.3d]

respectively
9: j← cn

10: if the sequence begins then
11: a(s)

j ← a(s)
j + 1

12: else
13: α(s)

kj ← α(s)
kj + 1

14: end if
15: end for

RMSE =

√√√√1
L

L∑
n=1

(yn – ŷn)2,

where yn is the real value and ŷn is the forecast. Further, to measure the probabilistic performance of the proposed model, we
also compute for each response variable the coverage probability, which is defined as the proportion of real values that fall into
the prediction interval:

covg =
1
L

L∑
n=1

I{yn∈[ŷn±1.96σ̂]},

where I is an indicator function and σ̂ is the prediction error.
We compare the performance of the proposed model with different numbers of response lags, q = 1, . . . 5, in the autoregressive

component against the following benchmark models:

• The persistence model, which uses the last available observation to forecast the next one, that is ŷn = yn–1. This is the
baseline model, as all others are expected to produce better predictions.

• The no-lags model, which employs adaptive parameter learning without lag responses in the covariates (i.e., q = 0).
• The Vector AutoRegressive model with exogenous variables VARX(q), q = 1, . . . 5. The general form of a VARX(q) model

is?

yn = ϕ0 +
q∑

j=1

ϕjyn–j + βgn + ηn,
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Algorithm 2 Forecast
Input:

Ψ ▷ model parameters
{o1, . . . ,oK} ▷ centroids
tn ▷ classification variables
xn+1 = [zn+1 wn+1] ▷ covariates

Output:
ŷn+1, Σ̂n+1 ▷ responses forecast, prediction error

1: k← arg minj∈{1,...,K} d(oj, tn)
2: Update ok including tn

3: s← zn+1

4: b←

{
a(s) if the sequence begins

α(s)
k otherwise

5: u← [1 wn+1]
6: v← b/ (b · 1)
7: Compute D using equation [3.5]
8: Compute ŷn+1 using equation [3.4a]
9: Compute Σ̂n+1 using equation [3.4b]

where ϕj are VAR coefficient matrices, β is the coefficient matrix for the exogenous variables gn and ηn is a sequence of iid
random vectors of zero mean and positive-definite covariance matrix. To make a sound comparison, we include in gn the
same covariates as in wn without the lagged responses, i.e., wn = [gn yn–1 · · · yn–q]. The VARX model does not account
for the various operational modes of the process, and it is also a static model, meaning that the parameter estimates are not
updated after the training stage. This makes this model adequate to assess the effect of both the inclusion of the discrete
process described in Section 3.2 and the adaptive algorithm of Section 3.4.

• The respective univariate models, which we will use to check whether the multivariate approach takes advantage of the
correlation structure between the responses.

5 APPLICATION TO A REAL CASE STUDY

In this work, the model has been applied to real data provided by an industrial company. The availability of suitable public
datasets for this type of research is very limited, mainly due to confidentiality agreements. Most open datasets related to
industrial processes do not provide sufficiently detailed information on operational times, system states, or efficiency indicators,
making it challenging to validate the model under realistic conditions. On the other hand, while simulated data could have been
an alternative for testing the model in a controlled setting, generating realistic synthetic data for industrial processes is not
straightforward. Simulating the dynamics of operational variables, hidden states, and interactions between different process
factors requires assumptions that may not faithfully reflect the behaviour of a complex industrial system. For these reasons,
the proposed model has been used to predict operational times in the production process of a company operating in a specific
industrial sector. Due to confidentiality reasons, the exact industry of this company has been withheld. The data, described in
Table 2.2, is supplied by the technological firm responsible for installing and maintaining the digital platform at the plant.

To properly feed the presented method, the data has been preprocessed, debugged and arranged using some well-known
libraries in Python language? such as pandas? and numpy? . The core implementation of the procedure, as described in
Section 4, has been developed in R language? , and particularly the VARX models have been fitted using the MTS package? .

The model’s primary objective is to provide probabilistic forecasts of key operational times, thereby allowing production
managers to anticipate inefficiencies and improve decision-making. For instance, if the model predicts an increase in performance
losses (PLT) when switching between product types, experienced operators can be reassigned to these transitions to optimize
setup times. Furthermore, forecasts of higher quality-related time losses (QLT) can prompt preemptive quality checks, enabling
adjustments to machine settings to minimize defective units. Finally, if the model identifies patterns of increasing downtime (DT)
near the end of long production runs, maintenance teams can schedule preventive maintenance activities before failure occurs.
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The time variables OpT and NOpT are selected as response variables due to their strong correlation (0.83), which fully
justifies the use of a multivariate model. According to the scheme presented in Figure 2.1 and the definitions [2.1], [2.2] and
[2.3], predicting these variables allows for the computation of time losses due to low production speed and the performance
index. Additionally, in scenarios where time measurements are equispaced and scheduled stops are predetermined (i.e., with
deterministic OT, SBT and LT), these predictions also enable the estimation of time losses due to unexpected stops and the
availability index.

The covariates in the discrete model (zn) include dummy variables that represent work shift levels, affecting the probability
distribution of hidden states. The covariates in the continuous model (wn) incorporate the same dummy variables along with the
ideal unit speed (ics) and two indicators marking the first observation of each shift and the first observation of each production
order. Additionally, an autoregressive component is considered by including past response values, yn–1, . . . ,yn–q, within wn. For
the classification step, the most relevant variables related to process health -including availability rate (av), performance rate
(pf), overall equipment effectiveness (oee), opening time (OT), real unit speed (rcs) and total units produced (TU)- are used
as classification criteria. These variables are collected in the vector tn.

A careful choice of forgetting factors λu,λv is essential to achieving a good trade-off between predictive accuracy and stability.
One possible approach, not explored in this study but worth considering, is the use of dynamic forgetting factors? , where
λu and λv are adapted over time based on recent process variability. This could allow the model to better balance stability
and responsiveness, particularly in non-stationary environments. Our initial experiments indicated that low values for both
parameters produce very ill-conditioned state matrices Pn, leading to unstable and unreliable predictions. This issue is mitigated
when the values fall within the range of [0.9, 1]. From that point on, we found that for 0.9 ≤ λu ≤ 0.92, the no-lag model
consistently outperforms all other models across various metrics, and it remains the best in terms of RMSE and coverage for
values 0.93 ≤ λu ≤ 0.95. It is only when λu ≥ 0.96 that lagged models begin to show improved performance, though the
differences among lag-order models diminish progressively. Additionally, the MAE and RMSE metrics prove to be relatively
stable for values of λv ≥ 0.9, while coverage continues to improve at higher values. Therefore, we select the forgetting factors
λu = 0.99, λv = 0.95 over a grid of values in the interval [0.9, 1], although similar nearby values can yield comparable
performance.

Six different models with q responses lags included in wn, q = 0, 1, 2, 3, 4, 5, are fitted using a Leave-One-Week-Out method,
alternatively using three weeks of the dataset in the training step and the fourth week for prediction. MAE, RMSE and coverage
are computed separately for each type of shift. We note that the average MAE and RMSE magnitudes are reasonable considering
the responses sample quantiles and mean in the dataset, shown in Table 5.1. Figure 5.1 provides an insight into the distribution
of the prediction error, MAE, RMSE and coverage across shifts for each output variable in this case study. The box-plot layouts
suggest some key points:

(i) The proposed model outperforms all other models in terms of MAE. Since the MAE measures the mean absolute error,
without giving greater weight to larger errors, this result suggests that the combination of an IO-HMM with adaptive
learning captures the overall structure of the process better than other models, making it a suitable choice for optimizing
processes where average performance is most important.

(ii) The improvement with respect to the RMSE metric is not as clear, being noticeable only for models with low lag-orders.
This points to large errors occurring with a frequency comparable to that of other models, so adjustments should be
considered if the objective is to detect uncommon events.

(iii) The prediction error of the proposed model is much smaller than the VAR(q) models, resulting in narrower confidence
intervals, which also leads to a drop in coverage compared to the VAR(q) models. This suggests that the model underesti-
mates the uncertainty in its predictions, which, linking with the previous point, can lead to large errors when unexpected
deviations occur.

As can be observed, the coverage of the proposed model does not reach the nominal value of 95%, suggesting that it may be
underestimating the variance of the prediction error. However, the extent of this underestimation is unclear. While coverage
deviates from 95%, the comparable RMSE also indicates that extreme errors are not necessarily more frequent, which would be
expected if uncertainty were severely underestimated. This phenomenon may be caused by several factors, such as limitations in
the variance estimation method, a discrepancy between the assumed and actual error distributions, or an insufficient sample size
for a reliable estimation. For example, some combinations of work shifts and hidden states may have too few cases to achieve a
robust estimation of the variance of the prediction error.
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T A B L E 5.1 Responses sample mean and quantiles in the 4 weeks data set.

variable min Q1 median mean Q3 max

OpT 0 6.77 9.35 8.50 10.10 19.20
NOpT 0 6.77 9.35 8.44 10.08 19.02

Figure 5.2 presents a comparison between the multivariate model and its respective univariate counterparts. Despite the high
correlation between response variables (0.83), which suggests that a multivariate approach should be beneficial, the results do not
show a clear advantage of the multivariate model over the univariate ones. One possible explanation lies in the model’s ability to
properly estimate uncertainty. As previously discussed, the proposed model exhibits lower coverage than expected, indicating
that it may be underestimating the variance of the prediction error. In contrast, univariate models, which estimate each response
separately, may be less affected by variance underestimation and thus achieve comparable or even better performance in terms of
predictive reliability. Another factor to consider is how well the multivariate structure captures cross-variable dependencies.
While a high correlation suggests a strong relationship, it does not necessarily imply that a multivariate model will yield better
predictions unless the dependencies are properly exploited. If the model’s formulation does not fully capture the joint dynamics
of the responses or the added complexity introduces estimation errors, the expected benefits of the multivariate approach may not
materialize. Additionally, limited sample size or misspecification in the variance structure could further hinder its performance.

In summary, while the results of the proposed model applied to the case study seem promising, some areas for improvement
have been recognized. Notably, the most critical issues appear to be addressing the underestimation of prediction error variance
and improving the exploitation of dependencies between responses.

pr.err_NOpT mae_NOpT rmse_NOpT coverage_NOpT

pr.err_OpT mae_OpT rmse_OpT coverage_OpT

1.6 2.0 2.4 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 4.0 4.5 80 85 90 95 100

1.6 2.0 2.4 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 4.0 4.5 80 85 90 95 100

persistence
no lags

1 lag
2 lags
3 lags
4 lags
5 lags

VARX(0)
VARX(1)
VARX(2)
VARX(3)
VARX(4)
VARX(5)

persistence
no lags

1 lag
2 lags
3 lags
4 lags
5 lags

VARX(0)
VARX(1)
VARX(2)
VARX(3)
VARX(4)
VARX(5)

F I G U R E 5.1 Boxplot of average prediction error, MAE, RMSE and coverage (by columns) across shifts for each output variable OpT and NOpT (by rows). The persistence
model, no-lags model and VARX(q) models perform worse than the proposed model in terms of MAE, but VARX(q) models obtain comparable RMSE and better coverage due to the
larger prediction error.
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pr.err_NOpT mae_NOpT rmse_NOpT coverage_NOpT

pr.err_OpT mae_OpT rmse_OpT coverage_OpT

1.4 1.6 1.8 2.0 1.25 1.50 1.75 2.00 2.00 2.25 2.50 2.75 3.00 77.5 80.0 82.5 85.0 87.5 90.0

1.25 1.50 1.75 2.00 1.25 1.50 1.75 2.00 2.00 2.25 2.50 2.75 3.00 77.5 80.0 82.5 85.0 87.5 90.0

no lags

1 lag

2 lags

3 lags

4 lags

5 lags

no lags

1 lag

2 lags

3 lags

4 lags

5 lags

multiv univ

F I G U R E 5.2 Comparison between multivariate and univariate models. Despite the high sample correlation between responses, there is no significant improvement in the
performance of the multivariate model.

6 CONCLUSIONS

This study introduces an adaptive learning approach for multivariate time forecasting in industrial processes using an Input-
Output Hidden Markov Model (IO-HMM). By enabling probabilistic forecasting of operational times, the model provides a
valuable tool for identifying inefficiencies and optimizing production workflows. The results demonstrate that the proposed
method can be a helpful alternative against benchmark models, including univariate approaches and Vector AutoRegressive
(VARX) models, by leveraging the multivariate nature of the data to capture dependencies between variables more effectively.
The integration of an adaptive learning mechanism enables the model to dynamically adjust to new information, ensuring
robust performance in non-stationary industrial environments. Through a Bayesian-inspired recursive update process, parameter
estimates evolve continuously, making the approach particularly suited for real-time applications.

Beyond its predictive accuracy, the model effectively handles process variability by incorporating exogenous covariates
such as production shifts, historical operational data, and other process-specific features. This adaptability, combined with a
classification mechanism that automatically determines the number of hidden states, reduces the need for manual adjustments and
enhances its applicability across different industrial settings. Designed to be highly scalable, the framework can be implemented
in various production environments regardless of differences in equipment or manufacturing processes. Its flexibility allows
seamless integration into digital industrial platforms, ensuring long-term usability even as process conditions evolve.

However, despite the theoretical advantages of a multivariate approach, the results indicate that univariate models can be
equally competitive or, in some cases, even superior in predictive performance. Several factors could explain this outcome. First,
estimating a multivariate model requires learning not only the relationship between each response variable and its covariates but
also the dependencies between the responses. If these dependencies are unstable or vary significantly over time, a multivariate
approach may not improve prediction accuracy. Moreover, the complexity of estimating a covariance structure can lead to
overfitting, particularly when the sample size is not large enough to provide robust parameter estimates. In cases where the
correlation between response variables does not provide substantial additional predictive power, a univariate model can achieve
similar or better results with fewer parameters and less risk of overfitting. Another potential limitation arises from the way
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prediction uncertainty is handled: while the multivariate model improves error estimates, it does not always achieve the expected
coverage probability. This suggests that its variance structure might not be optimally calibrated, leading to an underestimation of
the variance of prediction errors and narrow prediction intervals. Additionally, if the selected covariates already capture most of
the information needed for prediction, the added complexity of modelling interdependencies may not translate into meaningful
improvements.

The potential applications of this methodology extend beyond the specific case study, offering valuable insights for predictive
maintenance by identifying early signs of equipment failure, enabling proactive strategies that minimize unplanned downtime.
In production optimization, the model provides accurate forecasts that support real-time decision-making, helping to reduce
bottlenecks and improve resource allocation. Its adaptability to real-time industrial monitoring makes it a reliable tool for
continuous performance tracking and anomaly detection, further enhancing quality control by identifying patterns linked to
production inefficiencies and allowing for early interventions to reduce waste. The approach can also be leveraged for energy
and resource management, optimizing power consumption and scheduling by anticipating fluctuations in production efficiency.

This research highlights the value of combining IO-HMMs with adaptive learning techniques to develop a flexible and effective
forecasting tool for complex industrial environments. By continuously updating its parameters and integrating multivariate
dependencies, the model offers a powerful solution for improving decision-making in industrial processes. Future research could
explore extensions to multi-step forecasting, integration with deep learning techniques, and broader scalability improvements
to enhance its applicability across diverse sectors, including supply chain optimization and smart manufacturing systems.
Additionally, further investigation into the conditions under which multivariate models provide a significant advantage over
univariate approaches would help refine their practical use in industrial settings.
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APPENDIX

Proof of equations [3.3a]-[3.3d]

a) Following the directions of Rossi et al.? , pp. 31–34, suppose a m-multivariate regression model with p predictor variables
Y1 = Xβ1 + ε1

Y2 = Xβ2 + ε2

· · ·
Ym = Xβm + εm

with errors correlated across equations. For the n-th observation in a random sample of size N,yn1
...

ynm

 =

β
T
1
...
βT

m


xn1

...
xnp

 +

εn1
...

εnm


Yn
↑

m×1

= BT

↑
m×p

Xn
↑

p×1

+ εn
↑

m×1

with εn
iid∼ Nm(0,Λ), n = 1, 2, . . . , N

https://github.com/spatialstatisticsupna/MTF-industrial-process
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and gathering all YT
1
...

YT
N

 =

x11 · · · x1p
... · · ·

...
xN1 · · · xNp

 [
β1 · · · βm

]
+

ε
T
1
...
εT

N


Y
↑

N×m

= X
↑

N×p

B
↑

p×m

+ E
↑

N×m

For some Λ0 ∈ Mm×m, N0 ∈ N, β0 ∈ Mmp×1, V0 ∈ Mp×p, the natural conjugate priors for the parameters in the
multivariate regression model can be taken as

P [Λ, B] = P [B|Λ]P [Λ]

Λ ∼ W–1(N0Λ0, m, N0 + m + 1)

β|Λ ∼ Nmp
(
β0,Λ⊗ V–1

0

)
whereW–1 denotes a inverted Wishart distribution, ⊗ is the Kronecker product and β = vec (B) (vectorization). The prior
means are E [B|Λ] = B0 and E [Λ] = Λ0.

Given these priors and the random sample, the posterior joint density for the parameters can be decomposed into the
product of the following densities

Λ|Y , X ∼ W–1 (N0Λ0 + NS̃, m, N0 + N + m + 1
)

β|Λ, Y , X ∼ Nmp

(
β̃,Λ⊗

(
XTX + V0

)–1
)

where

β̃ = vec
(
B̃
)

, B̃ = B0 +
(
XTX + V0

)–1
XT (Y – XB0)

NS̃ =
(
Y – XB̃

)T (
Y – XB̃

)
+
(
B̃ – B0

)T
V0

(
B̃ – B0

)
. [1a]

Hence, the posterior means are

E [B|Λ] = B̃ = B0 +
(
XTX + V0

)–1
XT (Y – XB0) [2a]

E [Λ|Y] = (N0 Λ0
↑

prior mean

+ NS̃)/(N0 + N)

= Λ0 –
N
(
Λ0 – S̃

)
N0 + N

. [2b]

b) To make the above results fit in with our case let us define

Y = yn (new responses, row vector 1× m)

X = un (new predictors, row vector 1× p)

B̃ = Hn (posterior mean, p× m)

B0 = Hn–1 (prior mean, p× m)

V0 = λP–1
n–1 (prior state matrix, p× p)

(XTX + V0)–1 = Pn (posterior state matrix, p× p)

γn = 1 + λ + · · ·λn–1 (scalar)

Equation [3.3a] is obvious given that γn = 1 + λ
(
1 + λ + · · ·λn–2

)
= 1 + λγn–1. From the above definition of the posterior

state matrix Pn and using the Sherman-Morrison formula

Pn =
(
XTX + V0

)–1

=
(
uT

nun + λP–1
n–1

)–1
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=
(
λP–1

n–1

)–1
–

(
λP–1

n–1

)–1
uT

nun
(
λP–1

n–1

)–1

1 + un
(
λP–1

n–1

)–1
uT

n

=
1
λ

(
Pn–1 –

Pn–1u
T
nunPn–1

λ + unPn–1uT
n

)
we obtain equation [3.3d]. For the posterior mean B̃ = Hn, using expression [2a] we have

Hn = B̃ = B0 +
(
XTX + V0

)–1
XT (Y – XB0)

= Hn–1 + Pnu
T
n (yn – unHn–1)

= Hn–1 +
1
λ

(
Pn–1 –

Pn–1u
T
nunPn–1

λ + unPn–1uT
n

)
uT

n (yn – unHn–1)

= Hn–1 +
1
λ

Pn–1u
T
n

(
λ + unPn–1u

T
n

)
– Pn–1u

T
nunPn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1)

= Hn–1 +
Pn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1) ,

yielding equation [3.3b]. On the other hand, from the definition [1a] we get

NS̃ =
(
Y – XB̃

)T (
Y – XB̃

)
+
(
B̃ – B0

)T
V0

(
B̃ – B0

)
= (yn – unHn)T (yn – unHn) + (Hn – Hn–1)T (λP–1

n–1

)
(Hn – Hn–1)

=
[
yn – un

(
Hn–1 +

Pn–1u
T
n

λ + unPn–1uT
n

(yn – unHn–1)
)]T [

yn – un

(
Hn–1 +

Pn–1u
T
n

λ + unPn–1uT
n

(yn – unHn–1)
)]

+[
Pn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1)
]T (

λP–1
n–1

) [ Pn–1u
T
n

λ + unPn–1uT
n

(yn – unHn–1)
]

=
[

(yn – unHn–1) –
unPn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1)
]T [

(yn – unHn–1) –
unPn–1u

T
n

λ + unPn–1uT
n

(yn – unHn–1)
]

+

λ
unPn–1u

T
n(

λ + unPn–1uT
n

)2 (yn – unHn–1)T (yn – unHn–1)

=
[
λ (yn – unHn–1)
λ + unPn–1uT

n

]T [
λ (yn – unHn–1)
λ + unPn–1uT

n

]
+ λ

unPn–1u
T
n(

λ + unPn–1uT
n

)2 (yn – unHn–1)T (yn – unHn–1)

=
λ (yn – unHn–1)T (yn – unHn–1)

λ + unPn–1uT
n

.

Now, by choosing N0 = λγn–1, N = 1 and

Λ0 = Σn–1 (prior mean variance, m× m)

E [Λ|Y] = Σn (posterior mean variance, m× m)

and using expression [2b]

Σn = E [Λ|Y] = Λ0 –
N
(
Λ0 – S̃

)
N0 + N

= Σn–1 –
1

1 + λγn–1

[
Σn–1 –

λ (yn – unHn–1)T (yn – unHn–1)
λ + unPn–1uT

n

]
= Σn–1 –

1
γn

[
Σn–1 –

λ (yn – unHn–1)T (yn – unHn–1)
λ + unPn–1uT

n

]
follows equation [3.3c].
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