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Abstract

Several recent works on non-atomic routing games suggest that the performance
degradation of selfish routing with respect to optimal routing is overall low and
far from worst-case scenarios. In this work, we study the performance degradation
induced by the lack of coordination in an atomic routing game over parallel links
in which there are two types of links. The latency function of ”cheap” links is of
the form c1ϕ(x), whereas the latency function of ”expensive” links is of the form
c2ϕ(x), where c2 > c1. We obtain an explicit characterization of the optimal and
equilibrium flow configurations, and establish sufficient conditions on the latency
function ϕ(x) under which the worst traffic conditions occur when all users have
the same traffic demand and the total traffic demand is such that ”expensive”
link are marginally used by selfish routing. We also obtain some partial results
on the worst network configuration for the inefficiency of selfish routing. All in
all, our results suggest that the worst-case scenario for the inefficiency of selfish
routing corresponds to very specific traffic conditions and to highly asymmetric
network configurations, and thus that the Price of Anarchy is probably an overly
pessimistic performance measure for non-cooperative routing games, as advocated
in the above-mentioned works.
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1 Introduction

1.1 Motivation

In networks based on a centralized routing scheme, a central node computes the least-
cost path between source and destination nodes by using some global knowledge of
the network and then distributes the resulting routes to other nodes so that they can
forward user traffic. The main advantage of such an approach is that it can enforce
an optimal routing policy minimizing the overall cost (e.g., the overall mean packet-
delay) of all users. However, it is broadly admitted that a centralized routing scheme
cannot be used in large networks due to scalability, robustness and complexity reasons.
An alternative approach is to let each network user selfishly decide on which path
to route its traffic demand according to its own interest. Although more robust and
scalable, this decentralized scheme may lead to a loss in performance as the individual
optimizations performed by many interacting self-interested users does not necessarily
converge to an optimal routing policy.

Noncooperative routing games provide the natural framework to study the per-
formance degradation in the above decentralized routing scheme. These games are
mathematical models of strategic interactions between selfish, uncoordinated network
users. One usually distinguishes two types of such games. Atomic routing games refer
to games in which there are finitely many users. For such games, a Nash equilib-
rium Nash (1951) is defined as a set of routing strategies employed by network users
such that no user can decrease its own routing cost by deviating from its strategy
unilaterally. In contrast, non-atomic routing games refer to games in which there is a
continuum of users, each one controlling a negligible amount of traffic, and an equi-
librium state (which is known as a Wardrop equilibrium Wardrop (1952)) is defined
as a set of routing strategies such that the traffic demand of each user is forwarded
along a minimum-cost path. For both types of games, the equilibrium flow configura-
tion does not always correspond to that of a globally optimal routing policy. In game
theory terminology, such an optimal policy is usually referred to as a social optimum
because it minimizes the social cost, that is the sum of all user costs.

A vast body of literature has been devoted to the study of the inefficiency of selfish
routing under a variety of traffic models. The most popular measure of the inefficiency
of equilibria is the Price of Anarchy (PoA) which was introduced by Koutsoupias and
Papadimitriou Koutsoupias and Papadimitriou (1999) and is defined as the perfor-
mance ratio between the overall cost of an optimal routing policy and that of the worst
Nash/Wardrop equilibrium (that is, an equilibrium with the largest social cost). As
discussed in Section 1.3, it has been shown that the PoA of some selfish routing games
can be arbitrarily large. Several recent works aiming at understanding when is selfish
routing bad suggest however that the PoA is an overly pessimistic measure and that
non-cooperative routing achieves near-optimal performance in most realistic settings.
Nevertheless, most of these works have been carried out for non-atomic routing games,
which are usually much simpler to analyze thanks to the assumption of a continuum
of players.

In contrast to the above mentioned works, the present paper studies the efficiency
of selfish routing in atomic routing games. Owing to the complexity of the analysis,
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we restrict ourselves to a topology of parallel links, as introduced in the seminal paper
of Orda, Rom and Shimkin Orda et al. (1993). Given a strictly increasing and convex
function ϕ(x) and two cost parameters c1 and c2 such that c1 < c2, we further assume
that there are two types of links: ”cheap” links whose cost is a function of the flow on
the link of the form c1ϕ(x), and ”expensive” links whose cost function is of the form
c2ϕ(x). We also assume a finite number of users, each one splitting its traffic demand
over the parallel links so as to minimize its own routing cost, which is the sum of
the costs incurred over all the links it uses. As the cost of a link is a non-decreasing
function of the traffic flow on that link, the optimal strategy of a user depends on how
the other users split their traffic demands. In this context, a Nash equilibrium is a flow
configuration on the links in which no user can benefit from a unilateral deviation of
its own routing strategy.

For the above atomic routing game, we assume that the number of links of each
type as well as their cost parameters are fixed, and study the efficiency of selfish
routing as a function of the traffic demands of users. Our goal is to understand under
which traffic conditions the worst inefficiency of selfish routing is obtained for a fixed
network configuration. As a measure of efficiency, we adopt the ratio of the social
costs obtained at the Nash equilibrium and under a socially optimal solution. This
ratio is at least one, when selfish routing is optimal, and is upper bounded by the
PoA of the game. The worst value of this ratio (over all possible vectors of traffic
demands) corresponds to the Inefficiency of the routing game, a concept introduced in
Doncel et al. (2014) for load-balancing games. As opposed to the PoA, the Inefficiency
depends on the network configuration. By calculating the worst possible value of the
Inefficiency over all network configurations, one retrieves the PoA.

1.2 Contributions

The main contributions in this work are the following:

• For an arbitrary network configuration, we characterize the traffic conditions associ-
ated with the Inefficiency, i.e., the traffic conditions under which the ratio of social
costs is maximum. Specifically, we establish sufficient conditions on the latency func-
tion ϕ(x) under which the worst traffic conditions occur when all users have the same
traffic demand and when the total traffic in the network is such that ”expensive”
links are marginally used at Nash equilibrium.

• We show that these sufficient conditions are in particular satisfied by ϕ(x) = (1+x)m

for m ≥ 2 and ϕ(x) = eνx for ν > 0. These latency functions are used throughout
the paper for illustration purposes. The former belongs to the class of polynomial
latency functions commonly used in transportation research to model travel times in
road networks US Bureau of Public Roads (1964). The latter is reminiscent of expo-
nential growth models used to model many physical phenomena and corresponds to
situations in which the rate at which the delay over a link increases is proportional
to its value, that is, ϕ′(x) = ν ϕ(x).

• We provide an explicit characterization of the optimal and equilibrium flow config-
urations on the links. In particular, we show that under the worst traffic conditions
the ratio of the flows obtained under the decentralized and centralized schemes is
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maximum for the ”cheap” links, whereas it is minimum for the ”expensive” links.
The latter result holds true under weaker conditions on the latency function ϕ(x),
which are satisfied in particular by ϕ(x) = 1+xm and ϕ(x) = 1/(1−x)m for m ≥ 2.

• We show that the Inefficiency depends only on the ratio of the number of links of
each type and on the ratio c1

c2
of their costs (but not directly on the total number

of links nor on their costs). We prove that it implies that the worst value of the
Inefficiency is obtained when there is only one ”cheap” link and the rest of the links
are ”expensive”.

• For ϕ(x) = eνx, we provide a lower-bound on the PoA. Besides, we conjecture from
numerical experiments that the PoA is obtained when the cost parameter of the
”expensive” links c2 is infinitely larger than that of ”cheap” links c1. Assuming that
this conjecture holds, we obtain an upper-bound on the PoA. This is in contrast to
the situation for ϕ(x) = (1 + x)m for which we observe that the Inefficiency is not
monotone as a function of the ratio c1

c2
.

Due to the lack of space, all proofs are omitted, except that of our main result,
Proposition 5, which can be found in Appendix A. Nevertheless, detailed proofs of our
results can be found in a companion technical report Brun and Doncel (2023).

1.3 Related work

We first review relevant works on nonatomic routing games. The analysis of the effi-
ciency of Wardrop equilibria has a long history which dates back to 1920 and the
well-known Pigou’s example which shows that the outcome of a selfish routing game
can lead to a performance degradation with respect to a centrally designed outcome
Pigou (1920). It was shown in 1968 by Dietrich Braess that adding resources to a trans-
portation network can sometimes hurt performance at equilibrium, a phenomemon
now known as the famous Braess’s paradox Braess (1968). More recently, Roughgarden
and Tardos have shown that the value of the PoA of nonatomic congestion games with
affine costs is bounded above by 4/3, and that this bound is tight Roughgarden and
Tardos (2002). This shows that selfish routing is always efficient for such routing games.
However, it was shown in Roughgarden (2002) that the PoA for networks with latency
functions that are polynomials with nonnegative coefficients and degree at most d is

asymptotically Θ
(

d
log(d)

)
as d → ∞, indicating that selfish routing can be very inef-

ficient in such games. Similarly, it was shown in Haviv and Roughgarden (2007) that
the PoA of nonatomic load-balancing games over parallel servers corresponds to the
number of servers (see also Altman et al. (2011); Bell and Stidham (1983)). Other
relevant works on the PoA of nonatomic routing games are Roughgarden and Tardos
(2004); Correa et al. (2008, 2004, 2007).

On the empirical side, several recent works studied the efficiency of Wardrop equi-
libria in real networks and observed that the performance degradation with respect
to optimal routing is overall low in spite of large theoretical values of the PoA. For
instance, Monnot et al. analyze data of commuting students in Singapore and con-
clude that routing choices are near optimal Monnot et al. (2017) (see also Youn et al.
(2008) for a similar study). On a more theoretical side, the authors in Colini-Baldeschi
et al. (2016, 2019, 2020) prove that Wardrop equilibria are efficient when the network
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is lightly or highly congested. The authors in Wu et al. (2021) extend the results of
Colini-Baldeschi et al. (2020) to a more general setting and show that selfish routing
is efficient when the total traffic demand gets very large. In Cominetti et al. (2021),
Cominetti et al. study the efficiency of Wardrop equilibria as a function of the total
traffic demand in the network. As an efficiency metric, they focus as we do on the
ratio of social costs obtained under the equilibrium and optimal routing strategies.
For affine link costs, they show that this ratio has a finite number of local maxima,
which are achieved where the set of active links changes. In summary, all the above
works suggest that the PoA is an overly pessimistic measure of the inefficiency of
selfish routing and that the performance degradation is often low and far from the
worst-case scenarios.

Efficiency results for atomic routing games are much scarcer, as these games are
much harder to analyze. Most known results are only valid for topologies of parallel
links, as introduced in Orda et al. (1993), where the existence and unicity of the Nash
equilibrium are shown for a broad class of latency functions. Ayesta et al. consider in
Ayesta et al. (2011) an atomic load-balancing game in which K users selfishly route
their jobs to a system of S parallel M/G/1/PS servers and prove that in this case the
PoA is of the order

√
K, independently of the number S of servers as long as S ≥ 2.

Other results on the PoA of selfish load balancing can be found in Suri et al. (2004);
Anselmi and Gaujal (2010); Czumaj et al. (2002); Chen et al. (2009) (see also Ghosh
and Hassin (2021) for a recent survey).

A closely related work to ours is presented in Doncel et al. (2014), where the
authors consider an atomic load-balancing game with ”fast” and ”slow” servers, which
are modeled as M/G/1/PS queues. The setting they consider is thus similar to the one
considered here, but restricted to the latency function ϕ(x) = 1/(1 − x) for the par-
allel links representing the servers. They study the ratio of social costs as a function
of the total incoming traffic in the system and prove that this ratio attains its maxi-
mum when the ”slow” servers are marginally used by the decentralized load-balancing
scheme. Our work extends the results of Doncel et al. (2014). Whereas the analysis in
Doncel et al. (2014) heavily relies on the properties of the function ϕ(x) = 1/(1− x),
and in particular on the fact that ϕ′(x) = ϕ(x)2, we establish sufficient technical
conditions under which a similar result holds and show that these conditions are in
particular satisfied by the latency functions ϕ(x) = eνx and ϕ(x) = (1 + x)m. We
emphasize however that all our results hold for any other latency function ϕ satisfying
Assumptions 1-5 stated in Section 2.3. Besides, we show in Section 4.1 that the worst
traffic conditions for the ratio of social costs are precisely those that maximize the
ratio of the equilibrium and optimal flows on the ”cheap” links, a result which does
not appear in Doncel et al. (2014) and hold under weaker conditions satisfied as well
by other latency functions such as ϕ(x) = 1/(1−x)m or ϕ(x) = 1+xm. Our work also
complements the work in Cominetti et al. (2021) which also studies the ratio of social
costs as a function of the total traffic demand in general network topologies, but for
a nonatomic routing game and affine cost functions on the links, whereas we consider
an atomic routing game over parallel links and non-linear cost functions on the links.

As observed for non-atomic routing games, our work suggests that the PoA is prob-
ably an overly pessimistic performance measure for non-cooperative routing games.
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Interestingly, some works have reached similar conclusions for other types of games.
For instance, in Feldman et al. (2016) the authors focus on large auction games (that
is, auction games with many players, the influence of each one on the game outcome
being small), and show that the inefficiency in such games is much smaller than what
the worst-case bound suggests. Similarly, the authors of Hamers et al. (2015) study
the PoA of scheduling games and observe by simulations that on average the PoA is
relatively small with respect to the worst-case tight upperbound they obtain. For an
analysis of the relevance of the PoA as a performance measure in games with multiple
equilibria, see Seaton and Brown (2023) and Balcan et al. (2013).

1.4 Organization of the paper

We present the mathematical model of the atomic routing game considered in this
paper in Section 2. In Section 3, we establish some preliminary results and obtain the
characterization of the equilibrium and optimal flow configurations as solution of con-
vex optimization problems. Our results on the worst-case total traffic are established
in Section 4. In Section 5, we investigate the worst network configuration for the ineffi-
ciency of the decentralized routing scheme, that is, we study how the PoA is obtained
from the Inefficiency. In Section 6, we discuss some possible extensions of this work.
Finally, the conclusions of this work are drawn in Section 7.

2 Problem formulation

2.1 Non-cooperative routing game

As illustrated in Figure 1, we consider an atomic splittable routing game in which K
users have to send their traffic demands from a source node to a destination node. We
let C = {1, . . . ,K} be the set of users and denote by λu > 0 the traffic demand of user
u ∈ C. We also denote by λ̄ =

∑
u∈C λu the total traffic in the system. We consider a

decentralized routing scheme in which each user freely decides how to split its traffic
demand over the N parallel links joining the source node and the destination node.
We shall denote by xu,j the quantity of traffic sent by user u on link j = 1, 2, . . . , N .

ts

λ1

λu

λK

xu,j

Fig. 1: K users route their traffic demands over N parallel links.

The routing strategy of user u is represented by the vector xu = (xu,j)j=1,...,N . We
shall denote by Xu the set of feasible routing strategies for this user, that is, the set of
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vectors xu ≥ 0 such that
∑

j xu,j = λu. A strategy profile is then a vector x = (xu)u∈C
belonging to the product strategy space X =

⊗
u∈C Xu. It describes the routing strat-

egy used by each player and represents in a way the state of the game. Given a state
x ∈ X of the game, we denote by x−u the vector (x1, . . . ,xu−1,xu+1, . . . ,xK) which
describes the routing strategies of all other users than u.

We assume that the links are of two types. There are n1 ≥ 1 type-1 links and
n2 = N − n1 ≥ 1 type-2 links. In the following, we let S1 = {1, . . . , n1} be the set of
type-1 links and S2 = {n1 + 1, . . . , N} be the set of type-2 links. A crucial assumption
in our model is that the links have traffic-dependent cost functions. More precisely, it
is assumed that the cost per unit flow on link j ∈ Sk is of the form ckϕ(yj), where
yj =

∑
u∈C xu,j represents the total traffic on the link, ck is a cost parameter which

depends on the type of the link, and ϕ is a given cost function. In this work, we shall
assume that c1 < c2 and refer to type-1 links (resp. type-2 links) as ”cheap” links
(resp. ”expensive” links).

In state x ∈ X of the game, the routing cost Tu(x) of user u is defined as the sum
of the costs it incurs on all links, that is

Tu(x) =

2∑

k=1

ck
∑

j∈Sk

xu,j ϕ (yj) .

Note that the cost incurred by the routing agent u on a link j depends both on the
amount of flow xu,j that it routes to that link, but also on the total traffic

∑
i ̸=u xi,j

sent by the other users on that link.
Another key assumption is that users are self-interested agents seeking to minimize

their own routing cost. More precisely, given the strategies x−u of the other users, user
u chooses its routing strategy x∗

u so as to solve the following optimization problem

minimize
x∗
u∈Xu

Tu(x
∗
u,x−u)

and the optimal strategy x∗
u is known as the best-response of user u. The best-response

of user u depends on the routing strategies of the other users, which gives a non-
cooperative routing game between the users. We say that the game is symmetric if all
users control the same amount of traffic, that is, λu = λ̄/K for all u ∈ C. Otherwise,
the game is asymmetric.

A Nash equilibrium (NE) of the game is a stable state xne ∈ X from which no user
finds it beneficial to deviate unilaterally, that is

xne
u ∈ arg minz∈Xu

Tu

(
z,xne

−u

)
, ∀u ∈ C.

Throughout the paper, we shall only consider latency functions ϕ satisfying
Assumptions 1-5 stated in Section 2.3. These assumptions are in particular satisfied
by the functions ϕ(x) = eνx for ν > 0 and ϕ(x) = (1 + x)m for m ≥ 2, which are used
for illustration purposes in the present paper. Under Assumption 1, the existence and
uniqueness of the NE follow from Orda et al. (1993).
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2.2 Inefficiency of the decentralized routing scheme

It is well-known in game theory that the outcome of a non-cooperative game between
selfish players can lead to an overall performance degradation with respect to a cen-
trally designed outcome (see, e.g. Chapter 17 of Nisan et al. (2007)). In our setting, it
means that letting users optimize their own performances without any coordination
may lead to a performance degradation with respect to a centralized routing scheme
which would optimize the global performance of all users.

We adopt the point of view of a network operator who has a known network
configuration. For the model introduced above, a network configuration is defined as a
vector of parameters p = (n, c), where n = (n1, n2) specifies the numbers of ”cheap”
and ”expensive” links, whereas c = (c1, c2) gives the costs of the two types of links.
The network operator does not know the traffic demands λ1, . . . , λK of the users and
does not control how they route their traffic demands into the network. We assume
a decentralized scheme in which each user minimizes its own routing cost, without
coordination with the others, as explained above. The objective is to evaluate, for the
fixed network configuration p, the performance degradation resulting from the absence
of a central authority under the worst-case traffic conditions.

In order to make things more formal, we introduce below some definitions. Consider
a network configuration p and a vector λ = (λ1, . . . , λK) of traffic demands. Let xne

be the corresponding NE of the routing game and define yne = (yne1 , yne2 , . . . , yneN ),
where ynej =

∑
u∈C x

ne
u,j is the total flow on link j at the NE. The global performance

(or social cost) of the decentralized routing scheme with K players is defined as the
sum of the individual player’ costs at the NE

DK(λ,p) =
∑

u∈C

Tu(x
ne).

Introducing Fk(y) = ck y ϕ (y) for k = 1, 2, the social cost can be written as follows

DK(λ,p) = c1
∑

j∈S1

∑

u∈C

xne
u,j ϕ

(∑

u∈C

xne
u,j

)
+ c2

∑

j∈S2

∑

u∈C

xne
u,j ϕ

(∑

u∈C

xne
u,j

)

=
∑

j∈S1

F1(y
ne
j ) +

∑

j∈S2

F2(y
ne
j )

= F (yne),

where F (y) =
∑

j∈S1
F1(yj)+

∑
j∈S2

F2(yj) for all y ≥ 0. In this paper, our objective is
to compare the performance of the decentralized scheme with the optimal performance
that could be achieved

F (y∗) = min

{
F (y) : y ≥ 0,

∑

j

yj = λ̄

}
, (1)

where λ̄ =
∑

u∈C λu is the total traffic in the system. Note that F (y∗) is the perfor-
mance achieved by an optimal routing strategy minimizing the social cost, and that it
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corresponds to the cost obtained when there is a single user controlling all the traffic
in the system, i.e. such that λ1 = λ̄. The global cost of this centralized routing scheme
can be written as D1(λ̄,p), and we thus have F (y∗) = D1(λ̄,p).

In order to compare the two routing schemes, we shall use the concept of inef-
ficiency introduced in Doncel et al. (2014) in the context of server farms. The
inefficiency of the decentralized scheme is defined as the ratio between the perfor-
mance obtained by the NE and the global optimal solution under the worst possible
traffic conditions, that is

Inefficiency IK(p) = sup
λ

DK(λ,p)

D1(λ̄,p)
= sup

λ

F (yne)

F (y∗)
, (2)

where the supremum is taken over all vectors λ ≥ 0 of traffic demands that the network
may have to accommodate such that

∑K
u=1 λu = λ̄. We emphasize that the inefficiency

depends on the network configuration p but not on the traffic demands of the users.
Its values are between 1 and ∞, a higher value indicating a worse performance of
decentralized routing compared to centralized routing.

Another widely used measure of how the efficiency of a system degrades due to
selfish behavior of its users is the so-called Price of Anarchy (PoA) Koutsoupias and
Papadimitriou (1999), which, in our case, is related to the inefficiency as follows

PoA(K,N) = sup
p

IK(p), (3)

where the supremum is taken over all parameter vectors p = (n, c) such that n1+n2 =
N and 0 < c1 < c2.

2.3 Assumptions on latency functions

We regroup in this section all the technical assumptions on the latency function ϕ
that are required for our results to hold, and systematically indicate in which proof an
assumption is used. We emphasize that, with the exceptions of Lemmas 3 and 4, all
the results presented in the present paper hold for any latency function ϕ satisfying
Assumptions 1-5 below. Some of our results hold under weaker assumptions and this
will be indicated in the text.

Our basic assumption on the latency function ϕ is formally stated in Assumption
1 below.
Assumption 1. The latency function ϕ is a continuously differentiable, strictly
increasing and convex function over the interval [0,+∞) which verifies that ϕ(0) = 1
and limx→+∞ ϕ(x) = +∞. In addition, its second derivative ϕ

′′
() exists at all points

in the interval [0,+∞).
As discussed in Brun and Prabhu (2016), any latency function ϕ for which Assump-

tion 1 is satisfied is such that the conditions given in Orda et al. (1993) for the existence
of a unique NE for the routing game are satisfied. Our second assumption is as follows.
Assumption 2. The function g : [0,+∞) → [0,+∞) defined by
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g(y) =
y ϕ(y)

ϕ(y) + yϕ′(y)
(4)

is strictly increasing and strictly concave on [0,+∞).
The third assumption that we shall require is stated below.

Assumption 3. The function f : [0,+∞) → [0,+∞) defined by

f(y) =
2ϕ′(y) + yϕ′′(y)

ϕ(y) + yϕ′(y)
y (5)

is strictly increasing over [0,+∞).
We shall also need Assumption 4 below.

Assumption 4. Let

H(x, y) = xϕ′(x)− ϕ(x)

(
1 + y

ϕ′′(y)

ϕ′(y)

)
, (6)

for x, y ∈ [0,+∞). Then, it is assumed that

• the function A(x, y) = [c1H(x, y)− c2H(y, y)] /ϕ′(x) is decreasing in x over[
y, ϕ−1( c2c1ϕ(y))

)
for y fixed, and increasing in y over

[
ϕ−1( c1c2ϕ(x)), x

)
for x fixed,

and at least one of the monotonicities is strict;
• the function B(x, y) = [c1H(x, x)− c2H(y, x)] /ϕ′(y) is increasing in x over[

y, ϕ−1( c2c1ϕ(y))
)
for y fixed, and decreasing in y over

[
ϕ−1( c1c2ϕ(x)), x

)
for x fixed,

and at least one of the monotonicities is strict.

Finally, in order to prove Proposition 5, we will need one last assumption. Before
introducing this assumption, we define some additional notations. Given a fixed value
of λ̄ ≥ λ̄ne, let y∗1 (resp. y∗N ) be the flow on an arbitrary ”cheap” (resp.”expensive”)
link under the centralized routing strategy. Let us define the vector-valued function

y(∆) =
(
y∗1 +∆, y∗N − n1

n2
∆
)
for ∆ ∈

[
0, n2

n1
y∗N

]
, and

Q(y) =
n1F1(y1) + n2F2(yN )

δF ′
1(y1) + (1− δ)F ′

2(yN )
, (7)

where δ = n1
dy∗

1

dλ̄
. With a slight abuse of notation, we write Q(∆) for Q(y(∆)). Note

that y(0) = y∗ and that there exists ∆ne ∈
(
0, n2

n1
y∗N

)
such that y(∆ne) = yne. Our

last assumption is then as follows.
Assumption 5. The latency function ϕ is such that Q(∆) > Q(0) for all ∆ ∈(
0, n2

n1
y∗N

]
.

Table 1 summarizes which assumption is required for which proof and shows
whether or not an assumption is satisfied by one of the latency functions considered in
the present paper. Note that all assumptions hold in particular for the latency func-
tions ϕ(x) = eνx and ϕ(x) = (1+x)m (for proofs, see Appendix A of Brun and Doncel
(2023)), which are used for illustration purposes in the present paper.
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Assumption Required for ϕ(x)

eνx (1 + x)m (1− x)−m 1 + xm

Existence of
Assumption 1 a unique NE ✓ ✓ ✓ ✓

and Theorem 1
Assumption 2 Assertion (b)

of Proposition 5 ✓ ✓ ✓ ✗
Assumption 3 Proposition 4 ✓ ✓ ✓ ✓
Assumption 4 Proposition 3 ✓ ✓ ✓ ✓
Assumption 5 Proposition 5 ✓ ✓ ✗ ✓

Table 1: This table shows which assumptions are satisfied or not
by some classic latency functions and indicates where they are used.

3 Preliminary results

We first recall in Section 3.1 some results regarding the worst-case traffic conditions
for the performance of the decentralized routing scheme. We then provide simple
relations for the characterization of the centralized and decentralized routing solutions
in Sections 3.2 and 3.3, respectively.

3.1 Worst traffic conditions for a fixed total traffic

If the total incoming traffic λ̄ is fixed, it is proven in Brun and Prabhu (2016) that
the global cost DK(λ,p) achieves its maximum for the symmetric game, that is

sup
λ

DK (λ,p) = DK

(
λ̄

K
1,p

)
, (8)

where 1 = (1, 1, . . . , 1), implying that

IK(p) = sup
λ̄>0

DK

(
λ̄
K 1,p

)

D1(λ̄,p)
. (9)

As a consequence, for the calculation of the inefficiency, we can restrict ourselves to
the symmetric game. This, coupled with the fact that in our setting the symmetric
game is also a potential game, makes it more tractable for the analytic computation of
the NE routing solution. More precisely, it is shown in Brun and Prabhu (2016) (see
also Theorem 4.1 in Cominetti et al. (2009)) that the decentralized routing solution
is the solution of a convex optimization problem, as stated in Theorem 1 below.
Theorem 1. Let the vector y be the global optimum of the following convex
optimization problem

minimize
y

2∑

k=1

∑

j∈Sk

Fk(yj) + (K − 1)

∫ yj

0

ck ϕ(z)dz

s.t. ∑N
j=1 yj = λ̄,

yj ≥ 0, j = 1, . . . , N.

(P)
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The strategy profile x such that xu,j =
yj

K for all u ∈ C and j = 1, . . . , N is the NE of
the symmetric game.

In words, Theorem 1 states that in a symmetric game, although each user u updates
selfishly its routing strategy xu according to its own objective function Tu(xu,x−u),
users collectively solve the convex optimization problem (P). The objective function
of this problem is a potential function for the symmetric game, so that each best-
response of a player implies a decrease in the objective function value of problem (P).
The equilibrium flows on the links at the NE correspond to the optimal solution y of
this problem. As all players control the same amount of traffic in a symmetric game,
the NE routing strategies are such that xu,j = yj/K for all u ∈ C and j = 1, . . . , N .

3.2 Characterization of the centralized routing strategy

Under the centralized routing strategy, the vector y∗ of link flows is defined as the
optimal solution of problem (1). For a type-k link j ∈ Sk, the KKT conditions then
imply that y∗j > 0 if and only if the marginal cost

F ′
k(y

∗
j ) = ck

[
ϕ
(
y∗j
)
+ y∗j ϕ

′ (y∗j
)]

, (10)

is minimal. Defining λ̄∗ as the unique solution of F ′
1(

λ̄∗

n1
) = F ′

2(0), that is,

c1

[
ϕ

(
λ̄∗

n1

)
+

λ̄∗

n1
ϕ′
(
λ̄∗

n1

)]
= c2, (11)

it follows from the assumption c1 < c2 that

• for λ̄ ≤ λ̄∗, the centralized routing strategy forwards all the traffic to the cheap
links and they all receive the same amount of traffic, that is, y∗k = λ̄

n1
for all k ∈ S1

and y∗j = 0 for all j ∈ S2,
• for λ̄ > λ̄∗, the centralized routing strategy is such that all links receive a positive
amount of traffic (that is, y∗l > 0 for all l = 1, . . . , N), and

c1 [ϕ (y∗k) + y∗k ϕ
′ (y∗k)] = c2

[
ϕ
(
y∗j
)
+ y∗j ϕ

′ (y∗j
)]

,∀k ∈ S1, ∀j ∈ S2. (12)

Note that in both cases two links of the same type receive exactly the same amount
of traffic, that is, y∗l = y∗m if l,m ∈ Sk for k = 1, 2. This implies that for λ̄ ≤ λ̄∗

the optimal social cost is simply F (y∗) = n1F1

(
λ̄
n1

)
, whereas for λ̄ > λ̄∗, it can be

written as F (y∗) = n1F1 (y
∗
1) + n2F2 (y

∗
N ).

3.3 Characterization of the decentralized routing strategy

Under the decentralized routing strategy, the vector yne of link flows is the optimal
solution of the optimization problem stated in Theorem 1. Defining λ̄ne as the unique
solution of

c1

[
Kϕ

(
λ̄ne

n1

)
+

λ̄ne

n1
ϕ′
(
λ̄ne

n1

)]
= c2K, (13)

it follows from the KKT conditions and the assumption c1 < c2 that
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• for λ̄ ≤ λ̄ne, the decentralized routing strategy forwards all the traffic to the cheap
links only and they all receive the same amount of traffic, that is, ynek = λ̄

n1
for all

k ∈ S1 and ynej = 0 for all j ∈ S2,
• for λ̄ > λ̄ne, in the decentralized routing strategy all links receive a positive amount
of traffic (that is ynel > 0 for all l), and

c1 [Kϕ (ynek ) + ynek ϕ′ (ynek )] = c2
[
Kϕ

(
ynej

)
+ ynej ϕ′ (ynej

)]
,∀k ∈ S1, ∀j ∈ S2. (14)

Note that, as in the centralized setting, links of the same type always receive the
same amount of traffic. As a direct consequence, the social cost at the NE is F (yne) =

n1F1

(
λ̄
n1

)
for λ̄ ≤ λ̄ne, whereas it can be written as F (yne) = n1F1 (y

ne
1 )+n2F2 (y

ne
N )

for λ̄ > λ̄ne.
It directly follows from (11) and (13) that λ̄∗ < λ̄ne for K > 1. It means that

when there are more than one user, the decentralized routing strategy uses only the
”cheap” links longer than what would be optimal. Of course, when there is only one
user, that is for K = 1, we have λ̄ne = λ̄∗ and conditions (14) and (12) are equivalent
in this case. In other words, the centralized routing strategy and the decentralized one
coincide when there is only one user.

4 Worst-case total traffic

As discussed in Section 3.1, for a fixed total traffic λ̄ > 0, the worst inefficiency
is obtained when all users control the same amount of traffic λ̄

K , that is, for the
symmetric game. We now study the worst-case total traffic λ̄ for the ratio of social

costs DK

(
λ̄
K 1,p

)
/D1(λ̄,p). As DK

(
λ̄
K 1,p

)
= F (yne) and D1(λ̄,p) = F (y∗), we

first establish some results pertaining to the comparison of equilibrium and optimal
flow configurations in Section 4.1. In particular, we show that for any ”cheap” link k
the ratio ynek /y∗k reaches its maximum for λ̄ = λ̄ne. We then study in Section 4.2 the
ratio of social costs as a function of λ̄ and prove that it also achieves its maximum for
λ̄ = λ̄ne.

4.1 Link flows under the centralized and decentralized routing
strategies

Note that for λ̄ > λ̄∗ (resp. λ̄ > λ̄ne) the link flows y∗l (resp. ynel ) obtained under
the centralized (resp. decentralized) routing scheme are implicitly defined by equation
(12) (resp. (14)). We first prove in Lemma 1 below that under both routing schemes
these link flows are continuous functions of λ̄.
Lemma 1. The vectors y∗ and yne are continuous in λ̄ over [0,∞).

Proposition 2 below proves some inequalities satisfied by the flows on cheap and
expensive links, which are valid under both strategies. It is worthwhile noticing that
the proof of this proposition exploits only the strict monotonicity and the convexity
of the latency function ϕ.

Proposition 2. For K ≥ 1, it holds that
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(a) The flow on the expensive links is strictly lower than that on the cheap links, that
is, ynej < ynek for all j ∈ S2 and k ∈ S1,

(b) For any cheap link k ∈ S1 and any expensive link j ∈ S2, it holds that c1ϕ (ynek ) <
c2ϕ

(
ynej

)
and c1y

ne
k ϕ′ (ynek ) > c2y

ne
j ϕ′ (ynej

)
.

(c) For λ̄ ≥ λ̄ne, the marginal cost of the cheap links is greater than or equal to that of
the expensive ones, that is

F ′
1(y

ne
k ) ≥ F ′

2(y
ne
j ), for all k ∈ S1 and j ∈ S2, (15)

and the inequality is strict for K > 1.

We emphasize that the properties stated in Proposition 2 also hold for K = 1, that
is, for the centralized routing strategy. Hence, the centralized routing strategy forwards
more traffic on the cheap links than on the expensive links, exactly as does the decen-
tralized one. However, for λ̄ ≥ λ̄ne, the marginal costs of cheap and expensive links
are always equal under the centralized routing strategy, whereas the marginal costs of
cheap links are strictly greater than those of expensive links under the decentralized
routing strategy.

We now turn our attention to the comparison of the link flows obtained under
both routing strategies when λ̄ varies. When λ̄ is in the interval (0, λ̄∗], both strategies
coincide: they both forward all the traffic only on the cheap links. In the interval
(λ̄∗, λ̄ne], the centralized strategy deviates a fraction of the traffic onto the expensive
links, whereas the decentralized one keeps using only the cheap links. Finally, in the
interval (λ̄ne,∞), both the centralized and decentralized strategies use both type of
links. Proposition 3 below states our main result regarding the comparison of the
equilibrium and optimal link flows when λ̄ is in the latter interval. Interestingly, we
note that Proposition 3 as well as all other results in the present section are valid
for any latency function satisfying Assumptions 1, 3 and 4 in Section 2.3, including
of course ϕ(x) = eνx and ϕ(x) = (1 + x)m, but also other functions such as ϕ(x) =
1/(1− x)m and ϕ(x) = 1 + xm (see Table 1).
Proposition 3. For λ̄ > λ̄ne, it holds that

(a) The decentralized routing strategy forwards more (resp. less) traffic on cheap (resp.
expensive) links than the centralized one does, that is

ynek > y∗k for all k ∈ S1 and ynej < y∗j for all j ∈ S2. (16)

(b) For any cheap link k ∈ S1, the difference ynek − y∗k between the amount of flow
forwarded on this link by the decentralized routing strategy and the centralized one
decreases as λ̄ increases, that is,

dynek

dλ̄
<

dy∗k
dλ̄

. (17)

(c) For any expensive link j ∈ S2, the difference ynej − y∗j between the amount of flow
forwarded on this link by the decentralized routing strategy and the centralized one
increases as λ̄ increases, that is,

dynej

dλ̄
>

dy∗j
dλ̄

. (18)
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Fig. 2: Evolution of the link flow ratios yne1 /y∗1 (for the cheap link) and yne2 /y∗2 (for
the expensive links) as a function of λ̄ for the latency function ϕ(x) = ex. In this
example, there are K = 5 users, one cheap link with c1 = 1 and nine expensive links
with c2 = 10.

Using Proposition 2 and Proposition 3, Proposition 4 below characterizes the
behaviour of the ratios ynel /y∗l of link flows obtained under both settings when the
total traffic λ̄ varies.
Proposition 4. Let k ∈ S1 be an arbitrary cheap link and j ∈ S2 be an arbitrary
expensive link and consider the ratios ynek /y∗k and ynej /y∗j as functions of the total

traffic λ̄. It holds that

• the ratio ynek /y∗k is strictly increasing in λ̄ over the interval
(
λ̄∗, λ̄ne

]
, and strictly

decreasing over the interval
(
λ̄ne,∞

)
,

• The ratio ynej /y∗j is 0 over the interval
(
λ̄∗, λ̄ne

]
, and strictly increasing in λ̄ over

the interval
(
λ̄ne,∞

)
.

It directly follows from Proposition 4 and Lemma 1 that for any cheap link k the
maximum value of the ratio ynek /y∗k is obtained when λ̄ = λ̄ne, as formally stated in
Corollary 1.
Corollary 1. For all cheap links k ∈ S1, the ratio ynek /y∗k achieves its maximum for
λ̄ = λ̄ne. At this point, the ratio ynej /y∗j is minimum for all expensive links j ∈ S2.

To summarize, in the interval (0, λ̄∗], the ratio ynek /y∗k is constant and equal to 1
for any cheap link k. In the interval (λ̄∗, λ̄ne], the ratio ynek /y∗k increases as λ̄ increases
and it reaches its maximum for λ̄ = λ̄ne. From this point onwards, the ratio ynek /y∗k
decreases with λ̄ . Similarly, for any expensive link j, the ratio ynej /y∗j is 0 over the
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interval (λ̄∗, λ̄ne] (it is undefined for λ̄ ≤ λ̄∗) and it increases with λ̄ over (λ̄ne,∞).
Figure 2 illustrates this behaviour of the link flow ratios ynek /y∗k and ynej /y∗j for ϕ(x) =
ex, K = 5 users and N = 10 parallel links. In this example, there is only one cheap
link of cost c1 = 1 and there are nine expensive links of cost c2 = 10.

4.2 Worst-case total traffic for the ratio of social costs

We now study the ratio of social costs. It directly follows from Lemma 1 that this
ratio is continuous in λ̄.
Lemma 2. As a function of λ̄, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is continuous over

(0,∞).
Proposition 5 below characterizes the behaviour of the ratio of social costs as λ̄

varies over (0,∞).

Proposition 5. For K > 1, as a function of λ̄, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) of

the social costs obtained under the decentralized routing strategy and the centralized
one is

(a) constant and equal to 1 in the interval (0, λ̄∗],
(b) strictly increasing with λ̄ in the interval

(
λ̄∗, λ̄ne

]
, and,

(c) strictly decreasing with λ̄ in the interval
(
λ̄ne,∞

)
.

Proof. See Appendix A.

We have shown in Section 4.1 that for any cheap link k ∈ S1, the ratio ynek /y∗k
of the flows on this link obtained under the decentralized routing strategy and the
optimal one achieves its maximum for λ̄ = λ̄ne. As stated in Corollary 2, the same is
true for the ratio of social costs.
Corollary 2. The ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) achieves its maximum when λ̄ = λ̄ne,

implying that

IK(p) =
n1F1

(
λ̄ne

n1

)

n1F1 (y∗1) + n2F2 (y∗N )
, (19)

where y∗1 and y∗N are the links flows over cheap and expensive links, respectively,
obtained under the centralized routing strategy for λ̄ = λ̄ne.

Proof. The proof directly follows from Lemma 2 and Proposition 5.

Figure 3 illustrates the evolution of the ratio of social costs as the total traffic λ̄
in the system varies for the latency functions ϕ(x) = ex, ϕ(x) = (1 + x)3 and ϕ(x) =
(1 + x)4. The setting is the same as in Figure 2, that is, there are K = 5 users, one
cheap link with c1 = 1 and nine expensive links with c2 = 10. For ϕ(x) = ex, the ratio
is constant before λ̄∗ = 1.42, it increases from λ̄∗ up to λ̄ne = 1.97 where it reaches a
maximum value of 1.21, and then decreases with λ̄. Similarly, for ϕ(x) = (1+ x)4, the
ratio of social costs is constant before λ̄∗ = 0.45. From this point onwards it increases
up to λ̄ne = 0.66 where it reaches a maximum value of 1.18, and then decreases with λ̄.
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Fig. 3: Evolution of the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) as λ̄ increases for the latency

functions ϕ(x) = ex, ϕ(x) = (1 + x)3 and ϕ(x) = (1 + x)4. The setting is the same as
in Figure 2.

In summary, we have shown that, given a fixed network configuration p, the worst
inefficiency of the decentralized routing scheme is obtained when all users control the
same amount of traffic and when the total traffic in the system is λ̄ = λ̄ne. This
corresponds to the value of the total traffic for which the decentralized routing scheme
starts using the expensive links. When K > 1, this value is strictly greater than λ̄∗,
which means that selfish users send all their traffic demands on the cheap links longer
than what would be globally optimal. Although this result is proven here only for
latency functions satisfying Assumptions 1-5, we note that a similar result was proven
in Doncel et al. (2014) for the M/M/1 latency function, that is, for ϕ(x) = 1/(1− x).
As discussed in Section 6, numerical experiments suggest that Corollary 2 seems to
hold for a much broader class of latency functions.

We would like to remark that the result of Corollary 2 is consistent with the work
of Cominetti et al. (2021), in which the authors show that, for nonatomic routing
games and affine costs, the local maxima of the ratio of social costs are obtained when
the total traffic is such that a new set of links is used. Another direct consequence of
Corollary 2 is that, given a fixed network configuration, the worst inefficiency of the
decentralized routing scheme is obtained neither for λ̄ → 0 nor for λ̄ → ∞, as could
be expected. Interestingly, this result is consistent with the work of Colini-Baldeschi
et al. (2020) where the authors show that the PoA of nonatomic routing games is not
achieved when the traffic is very small or very large. Nevertheless, for ϕ(x) = (1+x)m,
the value of λ̄ne can be made arbitrarily small, as shown in Lemma 3 below.
Lemma 3. For ϕ(x) = (1 + x)m, λ

ne
decreases with m and λ̄ne → 0 as m → ∞.
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ϕ(x) = (1 + x)3.

5 From Inefficiency to Price of Anarchy

In Section 4, we have characterized the worst traffic conditions for the inefficiency
IK(p) of the decentralized routing scheme, assuming a fixed network configuration p.
In this section, we assume that the worst traffic conditions are met and investigate the
worst network configuration for the inefficiency of the decentralized routing scheme. In
other words, we study the PoA for the routing game over parallel links, where in (3),
the PoA was defined as the supremum over all the network configurations p of IK(p).
We first show that the Inefficiency depends only on the ratios n1/n2 and c1/c2.
Proposition 6. The Inefficiency IK(p) depends on the parameters p = (n, c) only
through the ratios α = n1

n2
and γ = c1

c2
.

Note in particular that the Inefficiency depends on the total number of links only
through the values that the ratio α = n1

n2
can take. As a consequence of Proposition 6,

we shall write IK(α, γ) instead of IK(n, c) to denote the Inefficiency in the following.
We study below how the Inefficiency varies with α and γ.

We first study how IK(α, γ) varies with α for a fixed value of γ. Assuming that
K = 5 andN = 100, Figure 4 shows IK(α, γ) as a function of n1/N for γ = 0.5, γ = 0.2
and γ = 0.1 when ϕ(x) = (1+x)3. We observe that the inefficiency of the decentralized
routing scheme seems to decrease as the proportion of cheap links increases. A similar
behavior was observed for ϕ(x) = ex. As n1/N = α/(1 + α) is an increasing function
of α, this suggests that the inefficiency decreases with the ratio α of the numbers of
cheap and expensive links. This is formally proven in Proposition 7 below.
Proposition 7. The Inefficiency IK(α, γ) is strictly decreasing with α.
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Fig. 5: Inefficiency IK( 1
N−1 , γ) as a function of γ for different values of K and for (a)

ϕ(x) = ex and (b) ϕ(x) = (1 + x)2.

An immediate consequence is the following corollary.
Corollary 3. The PoA is obtained when there is only one “cheap” link and N − 1 “
expensive” links, that is,

PoA(K,N) = sup
α,γ

IK(α, γ) = sup
γ

IK

(
1

N − 1
, γ

)
. (20)

In the following, we shall therefore assume that α = 1/(N − 1) and study how the
Inefficiency varies as a function of γ. Assuming that ϕ(x) = ex, Figure 5a shows the

values obtained for IK

(
1

N−1 , γ
)
as γ varies from 0 to 1 in scenarios withK = 2,K = 3

and K = 5 users and N = 10 parallel links. We observe that for all values of K the
Inefficiency is strictly decreasing with γ, which, according to (20), implies that the
PoA is obtained when γ tends to zero. As a result, we conjecture that for ϕ(x) = eνx,

PoA(K,N) = lim
γ→0

IK

(
1

N − 1
, γ

)
.

Besides, we get the following bounds on the performance degradation for ϕ(x) =
eνx.
Lemma 4. For ϕ(x) = eνx and N ≥ 2, it holds that

K
N−1−ν
N−1

N − 1

N(1 + logK)− 1
≤ lim

γ→0
IK

(
1

N − 1
, γ

)
≤ K,

from which it follows that K/(1 + log(K)) ≤ limN→∞ PoA(K,N).
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In words, we conjecture that for ϕ(x) = eνx the worst inefficiency is achieved when
the cost of the ”expensive” links is infinitely larger than the cost of the ”cheap” link. If
this conjecture holds, this implies that the PoA is upper bounded by K. Furthermore,
regardless this conjecture is true or not, the above result implies that the PoA for

ϕ(x) = eνx is, at least, K
N−1−ν
N−1 (N − 1)/[N(1 + logK) − 1]. For ν = 1, N = 10

and K = 5, it yields 1.499, which is to be compared to the value 1.7 obtained in
Figure 5a. Moreover, we can conclude that the PoA for ϕ(x) = eνx is unbounded in
nonatomic routing games as K/(1 + log(K)) tends to ∞ when K → ∞. Surprisingly,
the monotonicity property shown in Figure 5a for ϕ(x) = eνx does not seem to hold
for ϕ(x) = (1 + x)m. As illustrated for ϕ(x) = (1 + x)2 in Figure 5b, in which we
also assume that N = 10, the inefficiency IK( 1

N−1 , γ) obtained for different values of
K is not monotone as a function of γ. A similar behaviour was observed for other
values of m. Unfortunately, we were not able to characterize the value of γ yielding
the worst inefficiency. Therefore, the precise value of γ for which the PoA is achieved
when ϕ(x) = (1 + x)m remains an open question.

6 Extensions of this work

Our main result is that the worst inefficiency of the decentralized routing scheme
is obtained when the traffic demands of all users are λ̄ne/K. The key ingredient to
prove this result is Proposition 5, which characterizes how the ratio of equilibrium
and optimal social costs varies with the total traffic demand λ̄. Proposition 5 has been
established under sufficient conditions on the latency function ϕ(x), assuming that
there are only two types of links with the same latency function ϕ(x). We discuss
below several interesting extensions of this work.

6.1 Generalization to other latency functions

As already mentioned, it was proven in Doncel et al. (2014) that for ϕ(x) = 1/(1− x)
the ratio of social costs varies with λ̄ exactly as stated in Proposition 5 for latency
functions satisfying Assumptions 1-5 such as ϕ(x) = eνx and ϕ(x) = (1 + x)m . Our
numeric experiments suggest however that Proposition 5 holds for a much broader
class of latency functions.

For instance, in Figure 6 we plot the evolution of the ratio of social costs as λ̄
increases when ϕ(x) = 1+xm for different values of m. A similar behavior of the ratio
of social costs is obtained for ϕ(x) = 1/(1− x)m. For both types of latency function,
we observe that the ratio of social costs varies with λ̄ as stated in Proposition 5, and
that the worst inefficiency is obtained when λ̄ = λ̄ne.

Unfortunately, the arguments used to prove Proposition 5 do not readily apply to
these latency functions, as we now briefly explain:

• For ϕ(x) = 1 + xm, with m ≥ 1, it is straightforward to show that Assumption 5
holds, and thus that the ratio of social costs is strictly decreasing with λ̄ over the
interval

(
λ̄ne,+∞

)
. However, the argument used to prove that this ratio is strictly

increasing with λ̄ over
(
λ̄∗, λ̄ne

)
does not apply because the latency function ϕ(x) =
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Fig. 6: Evolution of the ratio of social costs as λ̄ increases for the latency function
ϕ(x) = 1 + xm. In this example, there are K = 5 users, one cheap link with c1 = 1
and nine expensive links with c2 = 10.

1+xm does not satisfy Assumption 2 in Section 2.3. Therefore, a different argument
should be used to prove that the ratio of social costs increases over

(
λ̄∗, λ̄ne

)
.

• For ϕ = 1
(1−x)m with m ≥ 2, the same approach as for ϕ(x) = eνx and ϕ(x) =

(1+x)m can be used to show that the ratio of social costs is strictly increasing with λ̄
over

(
λ̄∗, λ̄ne

)
. Unfortunately, our numerical experiments suggest that Assumption

5 in Section 2.3 is not met by ϕ(x) = 1/(1−x)m, implying that a different approach
should be used to prove that the ratio of social costs is strictly decreasing with λ̄
for λ̄ > λ̄ne.

6.2 Extension to more than two types of links

Our results on the inefficiency of selfish routing have been established assuming that
there are only two types of links which differ by their cost parameters c1 and c2 > c1.
Numeric experiments suggest however that similar results hold for more than two
types of links.

In Figure 7 we plot the ratio of social costs obtained in the symmetric game for
ϕ(x) = ex and ϕ(x) = (1 + x)2 as a function of the total traffic demand λ̄ when there
are 4 links, each of a different type. It can be observed that as λ̄ increases the ratio
goes through peaks and valleys, and finally converges towards 1 as λ̄ → ∞. The peaks
correspond to values of the total traffic demand λ̄ at which the decentralized routing
scheme starts using one new link (these values are shown with dotted vertical lines in
Figure 7). A similar behavior of the ratio of social costs was observed in Doncel et al.

21



0 1 2 3 4 5

λ

1.00

1.01

1.02

1.03

1.04

1.05

D
K

(
λ K

1
,p
) /D

1
(λ
,p

)

φ(x) = ex

φ(x) = (1 + x)2

Fig. 7: Evolution of the ratio of social costs as a function of the total traffic demand
for ϕ(x) = ex and ϕ(x) = (1 + x)2 when there are K = 5 users and N = 4 links, each
of a different type. The cost parameters of the links are as follows: c1 = 1, c2 = 2,
c3 = 4 and c4 = 8.

(2014) for the latency function ϕ(x) = 1/(1 − x), and in nonatomic routing games
with affine costs Cominetti et al. (2021).

The analysis is nevertheless much more complex for more than two types of links
as one needs to compare multiple local maxima to determine the Inefficiency. The
extension of our results to more than two types of links is therefore left for future work.

6.3 Extension to heterogeneous latency functions

It was assumed throughout this paper that the two types of links share the same
latency function ϕ(x) and differ only through their cost parameters c1 and c2. A nat-
ural extension of this work would be to investigate the inefficiency of selfish routing
for heterogeneous latency functions, that is, when the cost function of type-i links is
ci ϕi(x) (e.g., c1e

x for type-1 links and c2(1 + x)m for type-2 links). It is known that
even in this case the Nash Equilibrium exists and is unique under mild assumptions
on the latency functions ϕi(x) Orda et al. (1993). It is not clear however whether the

global cost DK(λ,p) achieves its maximum for the symmetric game λ =
(

λ̄
K , . . . , λ̄

K

)

in this case. The proof of this result in Brun and Prabhu (2016) relies on a monotonic
property regarding the order of preference of links as seen by each user (see Proposition
2 and Lemma 1 in Brun and Prabhu (2016)). Proving that this monotonic property
is still valid in the case of heterogeneous latency functions is highly non-trivial. As a
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consequence, it is not clear whether the worst inefficiency of the decentralized rout-
ing scheme is obtained for a symmetric game, which is crucial to characterize the
decentralized routing strategy as the solution of a convex optimization problem (see
Theorem 1). This extension is therefore also left for future work.

7 Conclusions

For the specific atomic routing game considered in this paper, it was shown that
the worst traffic conditions occur when all users have the same traffic demand and
the total traffic demand is such that ”expensive links” are marginally used by selfish
routing. Moreover, if these worst traffic conditions are met, the worst inefficiency of the
selfish routing scheme is obtained when the number of ”expensive” links is infinitely
larger than the number of ”cheap” links and under a very specific condition on the
ratio c1/c2 (which we conjecture to be c1/c2 → 0 for ϕ(x) = eνx). The worst-case
scenarios for the inefficiency of selfish routing therefore corresponds to very specific
traffic conditions and to highly asymmetric network configurations, which explain why
the PoA is probably an overly pessimistic performance measure, as advocated in many
recent works on non-atomic routing games.
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Appendix A Proof of Proposition 5

In this appendix, we prove Proposition 5.

Proof of Proposition 5. We first prove assertion (a). It readily follows from λ̄∗ < λ̄ne

that for λ̄ ≤ λ̄∗

DK

(
λ̄
K 1,p

)

D1(λ̄,p)
=

F (yne)

F (y∗)
=

n1F1(
λ̄
n1

)

n1F1(
λ̄
n1

)
= 1.

We now consider assertion (b) and assume that λ̄ ∈
(
λ̄∗, λ̄ne

]
. Since for λ̄ ≤

λ̄ne we have yne =
(

λ̄
n1

, . . . , λ̄
n1

, 0, . . . , 0
)
, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly

increasing in λ̄ if and only if

F ′
1

(
λ̄

n1

)
F (y∗) >

(
n1F

′
1(y

∗
1)

dy∗1
dλ̄

+ n2F
′
2(y

∗
N )

dy∗N
dλ̄

)
n1F1(

λ̄

n1
). (A1)

The constraint n1y
∗
1 + n2y

∗
N = λ̄ implies that n1

dy∗
1

dλ̄
+ n2

dy∗
N

dλ̄
= 1. Moreover,

λ̄ > λ̄∗ implies that F ′
1(y

∗
1) = F ′

2(y
∗
N ). It yields n1F

′
1(y

∗
1)

dy∗
1

dλ̄
+n2F

′
2(y

∗
N )

dy∗
N

dλ̄
= F ′

1(y
∗
1).

Therefore, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly increasing in λ̄ if and only if

F ′
1

(
λ̄

n1

)
[n1F1(y

∗
1) + n2F2(y

∗
N )] > n1 F

′
1(y

∗
1)F1

(
λ̄

n1

)
,

which can equivalently be written as
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n1
F1(y

∗
1)

F ′
1(y

∗
1)

+ n2
F2(y

∗
N )

F ′
2(y

∗
N )

> n1

F1(
λ̄
n1

)

F ′
1(

λ̄
n1

)
,

where we have used the equality F ′
1(y

∗
1) = F ′

2(y
∗
N ). Observing that

F1(y
∗
1 )

F ′
1(y

∗
1 )

= g (y∗1) and
F2(y

∗
N )

F ′
2(y

∗
N ) = g (y∗N ), where the function g() is defined by (4) in Section 2.3, it is therefore

enough to show that

n1g (y
∗
1) + n2g (y

∗
N ) > n1g

(
λ̄

n1

)
. (A2)

To this end, let us consider the function h(t) = n1g
(

tλ̄
n1

)
+n2g

(
(1−t)λ̄

n2

)
. We have

h′(t) = λ̄×
(
g′
(
tλ̄
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)
− g′

(
(1− t)λ̄

n2

))
,

which implies that h′(t) < 0 for t ∈
[

n1

n1+n2
, 1
]
because g is strictly concave (see

Assumption 2 in Section 2.3). We know from Proposition 2 that y∗1 > y∗N . Together

with n1y
∗
1 + n2y

∗
N = λ̄, it implies that

y∗
1

λ̄
> 1

n1+n2
. Taking t =

n1y
∗
1

λ̄
< 1, we

hence obtain that h(1) < h(t), which proves (A2). We thus conclude that the ratio

DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly increasing in λ̄ over the interval

(
λ̄∗, λ̄ne

]
.

Finally, we focus on assertion (c) assuming that λ̄ > λ̄ne. The ratio
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From Proposition 3, we know that
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N ) which is proven in Proposition

2. As a consequence, a sufficient condition for (A3) to hold is that

(δF ′
1(y

ne
1 ) + (1− δ)F ′

2(y
ne
N )) F (y∗) < (δF ′

1(y
∗
1) + (1− δ)F ′

2(y
∗
N )) F (yne), (A4)

27



which can equivalently be written as follows

F (y∗)

δF ′
1(y

∗
1) + (1− δ)F ′

2(y
∗
N )

<
F (yne)

δF ′
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ne
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, (A5)

that is Q(0) < Q(∆ne). Assumption 5 completes the proof.
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