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Abstract. We consider a non-cooperative game in the SIR model with
confinements. Each member of the population is a player whose strategy
is her probability of being protected from the epidemic. We assume that
for each player, there is a cost of infection per unit time and a cost
of being confined, which is linear and decreasing on her confinement
strategy. The total cost is defined as the sum of her confinement and
infection costs. We present a method for computing a symmetric Nash
equilibrium for this game and study its efficiency. We conclude that the
Nash equilibrium we obtain leads to fewer confinements than the strategy
that minimizes the cost of the entire population.
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1 Introduction

The recent epidemic caused by COVID19 disease shows the great importance
of mathematical models applied in this field. Indeed, these models can be used
to analyze how a population will behave in an epidemic as well as the effect of
several factors on the evolution of the spread of the disease.

Non-cooperative game-theory studies the behavior of self-interested agents
(or players) that are in interaction [11]. A crucial concept in this field is the
Nash equilibrium which is defined as the set of strategies such that none of the
players gets benefit from a unilateral deviation. The Nash equilibrium appears
in a variate of applications such as complex stochastic networks [1]. The SIR
model is a stochastic network in which each member of the population under
consideration belongs to one of the following states: susceptible (S), infected (I)
or recovered (R). It was introduced in [9] and it has been considered in a large
number of works since then (see the monographs [5, 2]).

We consider the SIR model with confinements. This means that the suscep-
tible population can be protected from getting the disease. We consider that the
size of the population is N . We formulate a non-cooperative game in which each
member of the population is a player. The strategy that each player selects is her
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confinement strategy, which consists of the probability of being protected from
the epidemic. When this probability is equal to zero, we say that the player is
fully exposed to the epidemic, whereas when it is equal to one, it is completely
confined. Associated to each infected member of the population, there is a cost
per unit time. We consider that there is also a cost of confinement associated to
the susceptible population, which is linear and decreasing with the confinement
strategy. The cost of each player is thus the sum of her infection and confinement
costs. We consider a problem with an infinite time horizon and discounted cost.

We are interested in calculating the symmetric Nash equilibrium of this game.
First, we formulate a Markov Decision Process to calculate the best response
strategy of a player to the set of strategies of the rest of the players. Using value
iteration and a simple fixed-point algorithm, we present how to compute a pure
Nash equilibrium.

We also formulate a global optimization problem whose goal is to find the
optimal confinement strategy, i.e., the confinement strategy to be applied to the
entire susceptible population in order to minimize the total cost of the popula-
tion. We also formulate this problem as a Markov Decision Process. Finally, we
compare the optimal confinement strategy with the Nash equilibrium strategy.
Our first conclusion is that both strategies are very similar. However, in the Nash
equilibrium strategy achieves complete confinement (i.e. the situation where a
player is completely protected from the epidemic) more often than the global
minimum strategy. Moreover, the Nash equilibrium switches from full exposure
to full protection in a line which does not depend on the proportion of suscep-
tible population. This situation is not achieved in the global minimum strategy,
where this change is given in a switching curve.

Several game-theory based models have been studied considering vaccinations
in the SIR models, for instance [8, 6, 10, 3]. However, confinements have been
only studied using mean-field games in [4, 13] and considering that the entire
population can control the contact rate. Our work is different as we consider
game with N players and only susceptible population can control her interaction
with the others.

2 Model Description

We analyze the SIR model in which a population of N people evolve over time.
We consider that time is discrete. In the SIR model, each of the people belonging
to the population under study is in one of the following three states: susceptible
(S), infected (I) or recovered (R). We denote by mS(t), mI(t) and mR(t) the
proportion of the population that is in each state.

We now describe the dynamics of this population. An individual encounters
other individual in a time slot with probability γ. If an individual that is sus-
ceptible encounters an infected individual, then it becomes infected. Moreover,
an infected individual becomes recovered in the next time slot (i.e., it gets re-
covered in a time slot) with probability ρ. We consider that R is an absorbing
state, which means that the recovered population does not change her state.
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We consider that the susceptible population can avoid to get the infection
by choosing her confining strategy π. More precisely, a strategy π is a function
that represents the exposure probability of the susceptible population to the
infection, i.e. it is the probability that a susceptible individual is exposed to the
infection at time slot t. For instance, if π(t) = 0, the susceptible population gets
confined at time t, which means that they cannot get the infection at time slot t;
whereas if π(t) = 1, the susceptible population is fully exposed to the infection.
Thus, we have that π : N → [0, 1].

In Figure 1, we represent the Markov chain describing the dynamics of an
individual in this model.

S I R
γmI(t)π(t) ρ

Fig. 1. The dynamics of an individual in the epidemic model under consideration. Each
individual has three possible states: S (susceptible), I (infected) and R (recovered).

We focus on the evolution over time of the proportion of people in each state,
which is described by the following equation:

mS(t+ 1) = mS(t)− γmS(t)mI(t)π(t)

mI(t+ 1) = mI(t) + γmS(t)mI(t)π(t)− ρmI(t)

mR(t+ 1) = mR(t) + ρmI(t).

(1)

From this expression we derive several properties. For instance, we see that
the proportion of people in state R is non-decreasing and also that, when π(t) =
0, the proportion of people in state S is constant and the proportion of people in
state I is decreasing. Throughout this paper, we assume that (mS(0),mI(0),mR(0))
is fixed. We also note that

(mS(t),mI(t),mR(t)) =

{(
i

N
,
j

N
,
N − i− j

N

)
: i+ j ≤ N

}
.

In the next section, we present a non-cooperative game for this model and
in the following one, we analyze the efficiency of the Nash equilibrium.

3 Formulation of the Non-Cooperative Game

3.1 Game Description

We consider a non-cooperative game in the SIR model with confinements that
we presented above. In this game, each individual of the population is a player
that can choose her confinement strategy, that is, each player can select, in each
time slot, her probability of being protected from the infection (or confinement
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probability). We denote by πi(t) the confinement probability of Player i and by
π−i(t) the confinement probability of the entire population except for Player i,
with i = 1, . . . , N . We denote by πi the vector of the confinement probability
chosen by Player i in each time slot and by π−i the vector of the confinement
probability chosen by the rest of the players.

We consider that an infected player incurs a cost of cI > 0 per unit of time.
Moreover, we assume that there is also a confinement cost for each player that
depends linearly on her strategy. More precisely, when at time slot t the Player
i selects the confinement strategy πi(t), there is a confinement cost which equals
cL − πi(t), where cL ≥ 1. As a result, the cost of Player i at time slot t is the
sum of her confinement cost and her infection cost. We denote by x

πi,π−i
s (t)

the probability that Player i is in state s at time slot t, where s ∈ {S, I,R}.
Therefore, if we denote by Ci(πi, π−i) the total cost of Player i is given by

Ci(πi, π−i) =

∞∑
t=0

δt((cL − πi(t))x
πi,π−i

S (t) + cIx
πi,π−i

I (t)), (COST-GAME)

where δ ∈ (0, 1).

Remark 1. We would like to remark that [12] analyzed this model but consid-
ering the finite horizon case and they formulate a mean-field game (i.e., they
consider that the number of players tends towards infinity). Our model differs
significantly because we are considering a discounted cost infinite horizon case
and, moreover, the number of players is finite and equal to N .

The best response of the Player i to π−i is the confinement strategy that
minimizes the above expression. That is,

BRi(π−i) = argmin
πi

Ci(πi, π−i) (BR-i)

A symmetric Nash equilibrium is a strategy such that none of the players
gets benefit from unilateral deviation. This means that π is a symmetric Nash
equilibrium if, for all i = 1, . . . , N

π = BRi(π), (NASH-EQ)

or alternatively, if for all i = 1, . . . , N and any other confinement strategy π̃,

Ci(π, π) ≤ Ci(π̃, π).

The existence of a Nash equilibrium of this game follows from [7]. The com-
putation of a Nash equilibrium is carried out using the set of instructions pre-
sented in Algorithm 1. Indeed, when the algorithm converges, we conclude that
(NASH-EQ) is satisfied by π because all the players are symmetric (and there-
fore BRi(π) = BRj(π) for i ̸= j and for every π). Therefore, in that case we can
conclude that a pure Nash equilibrium has been found.
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Algorithm 1 Fixed-point algorithm to compute a Nash equilibrium
Require: π−i

repeat
π̃ ← π−i

π ← BRi(π−i)
until π = π̃

3.2 Markov Decision Process Formulation

To obtain the best response of Player i to π−i, we formulate a Markov Decision
Process. To simplify the presentation, we consider that the size of the rest of
the population is N (i.e., we consider a population of size N + 1). The state
of the Markov Decision Process is given by (x, i

N , j
N ), where x ∈ {S, I,R} and

i+ j ̸= N , i.e., the first component represents the state of Player i and the rest
of the components the possible values of the proportion of the susceptible and
infected population. For a fixed strategy π, the strategy that minimizes (BR-i)
(i.e., which is the best response of Player i to π) satisfies the following Bellman
equations:

V ∗
k+1

(
S,

i

N
, 0

)
=min

πi

[cL − πi], i = 0, 1, . . . , N,

V ∗
k+1

(
S, 0,

i

N

)
=min

πi

[
cL − πi + δ

(
γ
j

N
πiV

∗
k

(
I, 0,

i

N

)
+ρ

j

N
V ∗
k

(
S, 0,

j − 1

N

))]
, i = 1, . . . , N,

V ∗
k+1

(
S,

i

N
,
j

N

)
=min

πi

[
cL − πi + δ

(
γ
j

N
πiV

∗
k

(
I,

i

N
,
j

N

)
+γ

j

N
π

(
i

N
,
j

N

)
V ∗
k

(
I,

i− 1

N
,
j + 1

N

)
+ρ

j

N
V ∗
k

(
S,

i

N
,
j − 1

N

))]
, i, j = 1, . . . , N,

V ∗
k+1

(
I,

i

N
, 0

)
=cI , i = 0, 1, . . . , N,

V ∗
k+1

(
I, 0,

i

N

)
=cI + δρ

i

N
V ∗
k

(
I, 0,

i− 1

N

)
, i = 1, . . . , N

V ∗
k+1

(
I,

i

N
,
j

N

)
=cI + δ

(
γ
j

N
π

(
i

N
,
j

N

)
V ∗
k

(
I,

i− 1

N
,
j + 1

N

)
+ ρ

j

N
V ∗
k

(
I,

i

N
,
j − 1

N

))
, i, j = 1, . . . , N.

From the first expression, we conclude that when none of the people of the rest
of the population are infected (i.e., when mI = 0), the best response of Player i
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to π is argminπi
[ci − πi], which gives one, i.e., Player i is never confined when

there are no infected people. Moreover, from the second expression, we conclude
that when none of the people of the rest of the population is susceptible, the
best response is the value of πi that minimizes

cL − πi + δ

(
γ
j

N
πiV

∗
k

(
I, 0,

i

N

)
+ ρ

j

N
V ∗
k

(
S, 0,

j − 1

N

))
.

Finally, from the third expression, we conclude that, when there are susceptible
and infected people in the rest of the population, the best response of Player i
to π is the value of πi that minimizes

cL − πi + δ(γ
j

N
πiV

∗
k

(
I,

i

N
,
j

N

)
+ γ

j

N
π(

i

N
,
j

N
)V ∗

k

(
I,

i− 1

N
,
j + 1

N

)
+ ρ

j

N
V ∗
k

(
S,

i

N
,
j − 1

N

)
).

It is also remarkable that, in all the cases, the expression to be minimized
so as to obtain the best response of Player i to π is linear in πi. This implies
that the best response, which can be in the interval [0, 1], will be one of the two
following values: zero or one.

4 Efficiency of Nash equilibria

4.1 Global Optimum Confinement Strategy

We now focus on the global optimum confinement strategy, which is the value
of π such that the cost of the population is minimized, i.e.,

argmin
π

∞∑
t=0

δt (cImI(t) + (cL − π)mS(t)) . (GLOBAL-OPT)

We know that the global optimum confinement strategy satisfies the following
Bellman equations:

V ∗
k+1(0, 0) =0

V ∗
k+1

(
i

N
, 0

)
=min

π
[
i

N
(cL − π)], i = 1, . . . , N

V ∗
k+1

(
0,

i

N

)
=cI

i

N
+ δ

(
ρV ∗

k

(
0,

i− 1

N

))
, i = 1, . . . , N

V ∗
k+1(

i

N
,
j

N
) =min

π
[cI

j

N
+ (cL − π)

i

N
+ δ(ρV ∗

k

(
i

N
,
j − 1

N

)
+ γ

j

N
πV ∗

k

(
i− 1

N
,
j + 1

N

)
)], i, j = 1, . . . , N.
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Fig. 2. Nash equilibrium strategy (left) and global optimum strategy (right) with N=15
and cI = 6. The green dots represent that the probability of being protected from the
epidemic is one, whereas blue squares that this probability is zero.

4.2 Efficiency Analysis

We now study the efficiency of the Nash equilibria of the formulated game, i.e., we
compare the confinement strategy of (NASH-EQ) with that of (GLOBAL-OPT).
We have performed extensive numerical experiments and here we present an ex-
ample to illustrate the observed properties of all our experiments1. We consider
N = 15, cI = 6, cL = 2, δ = 0.99, γ = 0.6 and ρ = 0.4. The left plot of
Figure 2 shows the confinement strategy of the Nash equilibrium we obtained
with Algorithm 1. We observe that the Nash equilibrium consists of being com-
pletely exposed to the epidemic (which is represented as MAX EXPOSITION
in the plot) when the proportion of infected population is smaller or equal to
0.25 and being completely protected from the epidemic (which is represented as
CONFINEMENT in the plot) otherwise. However, in the right plot of Figure 2,
we observe that the switching curve in which the optimal policy changes from
being completely exposed to the epidemic to being completely confined is not
a straight line (as in the Nash equilibrium case). Another interesting property
of this experiment is that although both strategies are very similar, the Nash
equilibrium strategy leads to less confinement (i.e., green dots are fewer in the
left plot than in the right plot).

5 Future Work

This work is the first step of the research we plan to carry out in the future.
Indeed, we would like to provide an analytical efficiency study of this model.
Furthermore, we plan to study the conditions under which Algorithm 1 converges
to a Nash equilibrium. Finally, we are interested in extending this model by
considering that a recovered individual can become susceptible.
1 The code to reproduce the experiments of this section is available at

https://github.com/josudoncel/StudentsCode/tree/main/MaiderSanchezJimenez
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