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Abstract. We extend the general matching graph model to deal with
matching graph where every node has a self loop. Thus the states on the
Markov chain are associated with the independent sets of the matching
graph. We prove that under i.i.d. arrivals assumptions the steady-state
distribution of the Markov chain has a product form solution.

1 Introduction

Intuitively, a Matching model describes the waiting times suffered by items before
they match and disappear immediately once they are matched. It is an easy
representation of multiple types Rendez-Vous between items. Following [1] a
Matching model is a triple (G,Φ, µ) formed by

1. a matching graph G = (V, E) which is an undirected graph whose vertices
in V are classes of items and whose edges in E models the allowed matching
of items. G is called the compatibility graph or the Matching graph.

2. Φ is a matching policy. It states the couple of items which is chosen upon
arrival when an arriving item matches one or more types of item already
waiting.

3. a distribution of probability µ to model the arrivals of items. Alternatively
one can consider a collection of Poisson processes for a continuous-time
model.

The Matching graph represents the classes of items and the compatibility among
classes of items. Upon arrival, an item is queued if there are not compatible items
present in the system. A matching occurs when two (or more) compatible items
are present and it is performed according to the matching discipline. Typical
matching disciplines are First Come First Match (an analog of First Come First
Served in this approach) or Match the Longest Queue. Once they are matched,
both items leave the system immediately (no need for service). Note that even
if a Matching model has a queueing theory flavor, the items play the roles of



both customers and servers. In some sense it has also some links with two well
known stochastic models: networks with positive and negative customers and
stochastic Petri nets. In a network with positive and negative customer proposed
by Gelenbe in [2] a negative customer can provoke the instantaneous deletion
of a positive customer but it is never queued in the network. In [3] the deletion
depends on the type as in a matching. In a stochastic Petri net, tokens wait until
they match but the places where the tokens match are usually associated with
non negative delays [4]. Under some structural conditions, stochastic Petri nets
may have a product form steady-state solution (see for instance [5, 6]). Even if it
possible to associate a Petri net with a matching graph model, our results differ
from [5, 6].

Despite its simple formulation, Matching models were not so simple to ana-
lyze. Assuming independent Poisson arrivals of items, and FCFM discipline the
model is associated with an infinite Markov chain. Under these assumptions, a
necessary condition of stability and a product form solution were proved in [7]
and [1]. Moreover we recently established that there exists some performance
paradox for FCFM matching models [8]. When one add new edges in the com-
patibility graph, one may expect that the expectation of the total number of
customers decreases. In [8] we have given some examples which show that it is
not always the case and we prove a sufficient condition for such a performance
paradox to exist. Thus adding flexibility on the matching does not always result
in a performance improvement.

The general matching model proposed in [7] and [1] was considering a general
undirected matching graph G and it is assumed that the arrivals of items occur
one at a time. It is important to avoid the confusion with Bipartite Matching
Model (see for instance [9] and references therein) where the matching graph
is bipartite and two items of distinct classes arrive at the same time. Bipartite
Matching Models were motivated by analysis of the public housing [10]. In this
model, households which apply for public housing and housings which become
available both arrive over time. Once the matching is done, the housing is oc-
cupied for a long time period. Thus it is more convenient to represent them as
an arrival streams of items rather than traditional servers in a queue. Another
application studied in the literature was the kidney exchanges [11, 12]. The kid-
ney exchange arises when a healthy person who wishes to donate a kidney is
not compatible (blood types or tissue types) with the receiver. Two incompati-
ble pairs (or maybe more) can form a cyclic exchange, so that each patient can
receive a kidney from a compatible donor (see [13] and reference therein for a
presentation of the problem and the modeling and algorithmic issues).

Here, we further extend the type of graph to represent the general matching.
We assume that all the nodes in the matching graph have a self loop (see Fig. 1
for an example of such a graph) and this was clearly forbidden by the previous
assumptions in [1]. Note that the results obtained in [7] and [1] are not valid
anymore because of some technical details in the proofs of product form. It is
required in these papers that the matching graph does not contain self loops.



Without self loops the Markov chain is infinite and the system stability has to
be studied taking into account the matching discipline.

For our new model, the stability problem is not an issue. As all the nodes
in the compatibility graph have a self loop, the system can contain at most one
item of each type. Therefore the Markov chain associated with the population
is finite. If the chain is irreducible, it is therefore ergodic (see more details in
section 2). Such a model may represent how we can organize fair competition
between players with roughly the same ranking (for instance ELO points for
chess). Such an application was not possible for the model described in [1].

A more general result for matching with multigraph has recently been pre-
sented in [14]. In that paper a multigraph is defined as a graph where the self
loops are allowed. Therefore the proof they proposed is more general than our
result because the self loops are not mandatory leading to potential infinite
Markov chains. However our proof is based on simpler arguments (balance equa-
tions rather than reversibility of an extended process followed by an aggregation)
and we hope it has its own value.

The technical part of the paper is as follows. We begin in the next section
with the notations. Section 3 is devoted to a simple example built for a matching
graph with 4 nodes. We obtained the steady-state distribution and checked that
a multiplicative solution holds. In Section 4, we prove that this product form
solution holds for every matching graph with self loops for all the nodes.

2 Notation and Assumptions

Let G = (V,F) be the matching graph. Nodes in V are also denoted as letters.
An ordered list of letters is called a word. Assume that x is a letter from V,
Γ (x) is the set of neighbors of x in G. As all nodes in V carry a loop, we have
x ∈ Γ (x) for all node x.

Let m be an arbitrary word.

– (m|x) is the word obtained by appending letter x at the end of word m while
(m+x) represents the set of words obtained by adding an x anywhere inside
word m (even before word m).

– |m| will denote the size of word m (i.e. the number of letters).
– m(ψ) will be the letter of m at position ψ.
– Γ (m) = ∪x∈mΓ (x).
– Pre(m,ψ) is the prefix of m with size ψ. The prefix of size 0 is the empty

word denoted as E or ∅.
– Similarly Suf(m,ψ) is the suffix of m with size ψ.
– Finally, In(m,x, ψ) is the word of size |m|+1 built from m after the insertion

of x at position ψ.

We consider a discrete time model. We assume i.i.d. arrivals of a letter at
every time slot. We consider the First Come First Match policy or FCFM (some-
times denoted as the First Come First Served discipline in the literature). An
arriving letter will be added at the end of the word if it does not match any



letter in the current word. If the arriving letter matches one or several letters of
the current word, both the oldest matching letter and the arriving letter vanish
immediately.

αi will denote the probability of arrival of letter i while α0 is the probability
that there is no arrival. The state of the system at time t is a word. Under these
assumptions, the process {mt}, with t ∈ N is a Discrete Time Markov chain.
If α0 > 0, this Markov chain is aperiodic. Furthermore it is clear that all the
states of the Markov chain are independent sets of the matching graph. Indeed,
if two letters are neighbors in the matching graph, they cannot be in a state of
the Markov chain. Furthermore, as all the nodes of the matching graph have a
self loop, it is not possible to have several occurrences of the same letter in a
node of the chain. This last property does not hold for matching models without
loops (see for instance [7]). Therefore the Markov chain is finite (again this is
not true in the model studied in [7] and [1]). Clearly if αi > 0 for all i, the chain
is irreducible. Therefore we do not have to study the stability problem as in [1].
The chain is always ergodic.

For all subset S of nodes of G, αS will denote the probability of arrival of
letters in S:

αS =
∑
x∈S

αx

To simplify the formulation of the steady-state distribution, we make the follow-
ing remark:

Remark 1 Let m be an arbitrary state and x be an arbitrary letter, such that
(m|x) is a valid state of the chain, we have Γ (m + x) = Γ (m|x) = Γ (x|m).
Remember that Γ (x) is the set of neighbors of state x.

3 Path of length 4

We begin with a simple example. We consider as a matching graph, a path of
length 4 (usually denoted as P4) with loops on every node (see Fig. 1).

Fig. 1. Matching graph: P4.

We first build the Markov chain associated with this matching graph. The
states are based on the independent sets of this graph. The states take into
account the order of arrivals (remember that we consider FCFM discipline).



These states (and sets) contain up to two letters. A state is labelled by the
letters which are included while E will denote the empty state. (x|y) represents
the state containing letter x followed by letter y. The associated independent set
is {x, y}. Therefore set {x, y} is associated with states (x|y) and (y|x).

This Markov chain has 11 states: E, 1, 2, 3, 4, (1|4), (4|1), (1|3), (3|1),
(2|4), (4|2). The graph of the Markov chain obtained by the XBorne [15] tool is
depicted in Fig. 2. We do not add the transition probabilities to make the figure
more understandable. For the same reason, we do not draw either the loop on
every state associated with the null arrival event (with probability α0).

Fig. 2. Graph of the Markov chain associated with Matching graph P4.

We will write the global balance equations for an arbitrary node of the
Markov chain, taking into account the graph properties of the nodes. We consider
the following partition of the states of the chain based on their properties.

1. State E.
2. States associated with maximal independent sets. For this matching graph,

a maximal independent set contains two letters and they are denoted (x|y).
3. States which are neither the empty state nor a state associated with a max-

imal independent set. Here, these states are words with a single letter.

A similar partition will be used in the next section to make the proof in the
general case.



To write the transition probability matrix, we consider that the states are in
the following order E, 1, 2, 3, 4, (1|4), (4|1), (1|3), (3|1), (2|4), (4|2). The partition
is added into the matrix presentation to make the block structure more visible.

P =



α0 α1 α2 α3 α4 0 0 0 0 0 0
α1 + α2 α0 0 0 0 α4 0 α3 0 0 0

α1 + α2 + α3 0 α0 0 0 0 0 0 0 α4 0
α2 + α3 + α4 0 0 α0 0 0 0 0 α1 0 0
α3 + α4 0 0 0 α0 0 α1 0 0 0 α2

0 α3 + α4 0 0 α1 + α2 α0 0 0 0 0 0
0 α3 + α4 0 0 α1 + α2 0 α0 0 0 0 0
0 α3 + α4 0 α1 + α2 0 0 0 α0 0 0 0
0 α2 + α3 + α4 0 α1 0 0 0 0 α0 0 0
0 0 α4 0 α1 + α2 + α3 0 0 0 0 α0 0
0 0 α3 + α4 0 α1 + α2 0 0 0 0 0 α0


Consider now the global balance equations. Let us begin with a maximal inde-
pendent set. Writing a balance equation for a state (x|y) we get:

π(x|y) = π(x|y)α0 + π(x)αy,

from which we easily obtain for state (x|y):

π(x|y) = π(x)
αy

1− α0
.

Now consider a state with one letter (x) . For instance consider State (3).

π(3)(1− α0) = π(1|3)(α1 + α2) + π(E)α3 + π(3|1)α1

Using the relations we already obtained, we substitute π(1|3) and π(3|1):

π(3)(1− α0) = π(1)(α1 + α2)
α3

1− α0
+ π(E)α3 + π(3)α1

α1

1− α0

One can check with some simple algebraic manipulations of these equations, that
the solution we propose in Eq. 1 is the solution of the balance equations.

π(x|y) = π(x)αy/(1− α0)
π(1) = π(E)α1/(α1 + α2)
π(2) = π(E)α2/(α1 + α2 + α3)
π(3) = π(E)α3/(α2 + α3 + α4)
π(4) = π(E)α4/(α3 + α4)

(1)

and π(E) is obtained by normalization.
Note that this solution is the solution proved by Moyal et al. in [7] for a

general matching model without loops on the matching graph:

π(w1|..|wk) = C

k∏
i=1

α(w(i))

α(Γ (w(1), ..., w(i)))
(2)

Thus one may expect that the multiplicative solution for the steady-state still
holds under our assumptions.



4 Steady-State distribution

We now prove that the Markov chain associated with any matching graph which
has a loop on all nodes has a steady state distribution which has a multiplicative
form. To prove the theorem, we use the following characterization of the steady-
state distribution.

Property 1 Consider a Markov chain with state space E and transition matrix
P . Let π be a finite measure (i.e. ||π|| <∞). If matrix Q defined by for all i and
j in E

π(i)P [i, j] = π(j)Q[j, i]

is a stochastic matrix, then the steady state distribution of the Markov chain
associated with P is obtained through normalization of π (i.e. π/||π||).

Remark 2 If P = Q, the chain is reversible.

Assuming that the multiplicative solution already known for matching graphs
without loop still holds, one can formally obtain matrix Q and check if this
matrix is stochastic. This is the key idea for the proof.

Remark 3 As for all x we have P [x, x] = α0, then, by construction, Q[x, x] =
α0.

4.1 P4 revisited

Consider again the example of the Markov chain associated with a P4 matching
graph. We compute Qt (instead of Q to simplify the presentation) by computing
the product with the probabilities π() given in Eq. 1. For instance Q[i, i] = α0

for all i, and:

Q[(1|4), (1)] =
π((1))

π((1|4))
P [(1), (1|4)] =

1− α0

α4
α4 = 1− α0

We denote β0 = 1− α0 to simplify the matrix formulation.

Qt =



α0 α1 + α2 α1 + α2 + α3 α2 + α3 + α4 α3 + α4 0 0 0 0 0 0
α1 α0 0 0 0 β0 0 β0 0 0 0
α2 0 α0 0 0 0 0 0 0 β0 0
α3 0 0 α0 0 0 0 0 β0 0 0
α4 0 0 0 α0 0 β0 0 0 0 β0

0 α3(α3+α4)
β0

0 0 α1(α3+α4)
β0

α0 0 0 0 0 0

0 α4(α1+α2)
β0

0 0 α1(α1+α2)
β0

0 α0 0 0 0 0

0 α3(α3+α4)
β0

0 α1(α2+α3+α4)
β0

0 0 0 α0 0 0 0

0 α3(α1+α2)
β0

0
α2

1

β0
0 0 0 0 α0 0 0

0 0
α2

4

β0
0 α2(α3+α4)

β0
0 0 0 0 α0 0

0 0 α4(α1+α2+α3)
β0

0 α2(α1+α2)
β0

0 0 0 0 0 α0


Clearly Qt is column stochastic, thus Q is a stochastic matrix. And the result

(i.e. Eq. 1) holds.



4.2 Main result

Let us now proceed with our main result on the steady-state distribution of
the Markov chain associated with the matching graph. We first state the result.
Before proceeding with the proof, we give some technical lemmas for the 3 types
of nodes, as mentioned during the analysis of the P4 example.

Theorem 1 Let G be a graph with a loop on each vertex. Let n be the number of
nodes of G. Let α0, α1, ..., αn be a proper distribution of probability. The steady-
state distribution of the Markov chain associated with matching graph G has a
multiplicative form:

π(m) = C

∏n
ψ=1 αm(ψ)∏n

ψ=1 α(Γ (Pre(m,ψ)))
.

where C is a normalization constant equal to π(E).

Corollary 1 Assume that state (m|x) exists, then we have:

π(m|x) = π(m)
αx

α(Γ (Pre(m|x)))
.

The proof of the theorem is based on the analysis of matrix Q for the three
types of node. First we need to study the graph properties of the Markov chain.
We begin with the description of the edges.

Lemma 1. A state m of the Markov chain a positive number of letters (i.e.
|m| > 0) only has transitions to itself (because of null arrival event) and to
states with size |m|+ 1, or |m| − 1.

Proof: It is a clear consequence of the description of the effect of an arrival.

Lemma 2. A state m of the Markov chain with a positive number of letters
(i.e. |m| > 0) has only one transition to a state with size |m| − 1 and the loop
transition with probability α0. The other transitions lead to states with size |m|+1
Furthermore, if m is not a maximal independent set, for all the letters x such
that (m|x) exists, we have P (m,m|x) = αx.

Proof: First, let m be a state with a positive number of letter. We can write
m = (j|x), where j is a word (one can have j = E)). There exists a unique
transition from j to (j|x) with rate αx due to the arrival of a letter x and the
FCFM matching discipline. Indeed, the only possibility to increase the size of
the state is the arrival of a letter which must be the last one due to the FCFM
discipline.

Finally according to the previous lemma, all the remaining transitions leads
to states with one more letter. And if (m|x) exists, the only transition from m
to (m|x) is the arrival of letter x and it has probability αx.



Lemma 3. [Global balance equation for a maximal independent set] Assume
that the size of the maximal independent sets is at least 2. A state is a maximal
independent set if it is a word (m|x) where m is also an independent set which
does not contain an x. The only transition (except the loop) entering such a state
comes from state m and has probability αx. There exist at least two outgoing
transitions: the loop with rate α0 and all the transitions provoked by arrivals
which delete one letter in (m|x). Thus the global balance equation for such a
state is:

(1− α0)π(m|x) = π(m)αx

Proof: Clearly, it exits a transition with probability αx going from m to (m|x)
if x does not match with a letter of m. According to Lemma 1, the states which
precede (m|x) have size |m|, |m| + 1 (due to the loop) or |m| + 2. Clearly, the
only transition entering (m|x) from a state with a smaller number of letters is
the transition going from m due to the FCFM discipline.

Let us prove now by contradiction that there does not exist any transition
from a state (m′|x) to a state (m|x) with |m′| = |m| + 2. Assume that it is
possible, then state (m′|x) has a size larger than the size of (m|x) and as an
arrival provokes a transition from (m′|x) to (m|x), all the letters of (m|x) are
also in (m′|x). Thus (m|x) cannot be a maximal independent set as it is contained
in a larger independent set.

Finally, state (m|x) has an output degree which is at least 3. Indeed there
exists a transition from (m|x) tom since the arrival of x deletes the last letter x in
the word (this is the effect of the loop on x in the matching graph). Furthermore,
the arrivals of all the letters in m delete a letter of m and to not delete x.
Therefore they provoke the transition to (m′|x) with |m′| = |m| − 1. Finally we
add the loop and the output degree is at least 3. The global balance equation is
now trivial.

Property 2 Let m be a state of the chain and x an arbitrary letter which is in
V \ Γ (m). We define the following subset of states:

Γ−x(m) = {p
∣∣ |p| = 1 + |m|, and p = m+ x}

Intuitively, the arrival of letter x in state p provokes a transition from p to m
because letter x is deleted. Such a subset is only defined when x is in V \ Γ (m).
Indeed, if the word has size |m|+ 1, it means that letter x does not interact with
word m. Furthermore the cardinal of Γ−x(m) is |m| + 1. Indeed, one can add
letter x anywhere inside word m.

Lemma 4. Let j be a state (i.e. a word) of size n. For all letter x in V \ Γ (j),
we have: ∑

l∈Γ−x(j)

Q(j, l) = αx.

As the proof of this lemma is technical, it is postponed after the proof of the
main theorem.



Proof of the Theorem Let us now proceed with the proof the main theorem.
Remember we partition the states of the Markov chain into three subsets:

1. Empty state E

2. Maximal Independent states

3. Other states

We make the proof for the three types of states:

– Empty State E: for all letter x we have by construction:

Q(E, x) = P (x,E)
π(x)

π(E)

From the definition of π in Theorem 1, π(x) = π(E)αx
α(Γ (x)) and P (x,E) =

α(Γ (x)). After simplification,

Q(E, x) = αx

Thus
∑
x∈V Q(E, x) =

∑
x∈V αx = 1 − α0 and Q(j, j) = α0. Therefore the

row sum is equal to 1 for state E.

– Maximal Independent set: Let p be a maximal independent set. According
to Lemma 3, there exists now only one entry in the column associated with
p in P . Thus there exists only one entry in the row associated with p in Q.
Let m be this predecessor of p and let x the letter appended to m to obtain
p (i.e. p = (m|x)). By construction:

Q(p,m) = P (m, p)π(m)/π(p).

From Lemma 3, P (m, p) = αx, and (1−α0)π(p) = αxπ(m). Thus, Q(p,m) =
1−α0. Furthermore Q(p, p) = α0. And all other entries of matrix Q for row
p are 0. Therefore the row sum is equal to 1 for a state which is a maximal
Independent set.

– Other states: we know due to Lemma 2 that, if it is not a maximal inde-
pendent set, a state j of size n has one predecessor with size n − 1,several
predecessors of size n + 1 and itself (with probability α0). We will consider
these three sets of predecessors in a separate way.

• Let m the predecessor of size n − 1. Let x the letter which has been
appended (i.e. j = m|x). From Lemma 2 we have: P (m, j) = αx. From
Corollary 1, we have

π(j) = π(m|x) =
π(m)αx
α(Γ (m|x))

Thus

Q(j,m) = α(Γ (m|x)) = α(Γ (j))



• We now consider the predecessors of j which have size n + 1. Let H(j)
be this set. We will partition this set of states according to the letter x
which provokes the transition. Thus,

H(j) = ∪x∈V \Γ (j)Γ
−x(j).

As subsets Γ−x(j) do not intersect, this is a true partition. Thus,∑
l ∈H(j)

Q(j, l) =
∑

x∈V \Γ (j)

∑
l∈Γ−x(j)

Q(j, l)

Technical Lemma 4 states that:
∑
l∈Γ−x(j)Q(j, l) = αx. Thus,∑

l ∈H(j)

Q(j, l) =
∑

x∈V \Γ (j)

αx.

Combining both results, we get:∑
l

Q(j, l) = α0+α(Γ (j))+
∑
l∈H(j)

Q(j, l) = α0+α(Γ (j))+
∑

x∈V \Γ (j)

αx =
∑
x∈V

αx = 1

And the proof is complete.

4.3 Proof of the technical lemma

We want to prove that for an arbitrary word j of size n and for all letter x in
V \ Γ (j), we have: ∑

l∈Γ−x(j)

Q(j, l) = αx.

Let us first explain the terms involved in the summation and the way we
combine them. By definition we have:

Q(j, l) = P (l, j)π(l)/π(j).

and by assumptions, the solution is:

π(l) = π(E)

∏n+1
ψ=1 αl(ψ)∏n+1

ψ=1 α(Γ (Pre(l, ψ)))
.

As l ∈ Γ−x(j), one can write l = j + x and

n+1∏
ψ=1

αl(ψ) = αx

n∏
ψ=1

αj(ψ)

Let us now study the denominator. Consider an arbitrary word (j + x). There
exists an index ψ (which can be 0) such that this word is (Pre(j, ψ)|x|Suf(j, n−



ψ)). This formulation allows to obtain the transition probability and the steady-
state distribution for all the values of ψ and obtain an induction on partial sums
on ψ

Let us begin the induction with ψ = 0 associated with Q(j, (x|j)). Clearly,

P ((x|j), j) = α(Γ (x)).

Now the denominator of π(x|j) is according to the assumptions equal to∏n+1
ψ=1 α(Γ (Pre((x|j), ψ))). It is easy to remark that:

n+1∏
ψ=1

α(Γ (Pre((x|j), ψ))) =

n∏
ψ=0

α(Γ (x|Pre(j, ψ)))

This remark is used to simplify the factorization.

π(x|j) = π(E)αx

∏n
ψ=1 αj(ψ)∏n

ψ=0 α(Γ ((x|Pre(j, ψ))))

and,

π(j) = π(E)

∏n
ψ=1 αj(ψ)∏n

ψ=1 α(Γ (Pre(j, ψ)))

and finally after cancellation of terms:

Q(j, (x|j)) = αxα(Γ (x))

∏n
ψ=1 α(Γ (Pre(j, ψ)))∏n

ψ=0 α(Γ ((x|Pre(j, ψ))))

We now have to compute the term associated with ψ = 1 (remember that we
want to make an induction on partial sums). The state of the chain is
(Pre(j, 1)|x|Suf(j, n − 1)). The transition from this state to j is provoked by
the arrival of letters which match with x but which are not matched with the
first letter of this word due to the FCFM matching discipline. More formally:

P ((Pre(j, 1)|x|Suf(j, n− 1)), j) = α(Γ (x) \ Γ (Pre(j, 1))),

and

π((Pre(j, 1)|x|Suf(j, n−1))) = π(E)αx

∏n
ψ=1 αj(ψ)

α(Γ (Pre(j, 1)))
∏n
ψ=1 α(Γ ((x|Pre(j, ψ))))

,

and finally after substation and cancellation, we get:

Q(j, (Pre(j, 1)|x| Suf(j, n− 1))) =

αxα(Γ (x) \ Γ (Pre(j, 1)))
∏n
ψ=1 α(Γ (Pre(j,ψ)))

α(Γ (Pre(j,1)))
∏n
ψ=1 α(Γ ((x|Pre(j,ψ)))) .

We now compute the sum of these first two elements. After factorization:

Q(j, (x|j)) +Q(j, ( Pre(j, 1)|x|Suf(j, n− 1))) =

αx

∏n
ψ=1 α(Γ (Pre(l,ψ)))∏n

ψ=1 α(Γ ((x|Pre(j,ψ)))

[
α(Γ (x))

α(Γ ((x|Pre(j,0)))) + α(Γ (x)\Γ (Pre(j,1)))
α(Γ (Pre(j,1)))

]
.



As (Pre(j, 0)) is the empty word, we have Γ ((x|Pre(j, 0)))) = Γ (x), and the
first part of the summation simplifies.

Q(j, (x|j)) +Q(j, (Pre(j, 1)|x| Suf(j, n− 1))) =

αx

∏n
ψ=1 α(Γ (Pre(j,ψ)))∏n

ψ=1 α(Γ ((x|Pre(j,ψ)))

[
1 + α(Γ (x)\Γ (Pre(j,1)))

α(Γ (Pre(j,1)))

]
.

Thus:

Q(j, (x|j)) +Q(j, (Pre(j, 1)|x| Suf(j, n− 1))) =

αx

∏n
ψ=1 α(Γ (Pre(l,ψ)))∏n

ψ=1 α(Γ ((x|Pre(j,ψ)))
α(Γ (Pre(j,1)))+α(Γ (x)\Γ (Pre(j,1)))

α(Γ (Pre(j,1))) .

For all words a and b, we have:

α(Γ (a) \ Γ (b)) + α(Γ (b)) = α(Γ (a|b)).

Using a = x and b = Pre(j, 1), after substitution we get:

Q(j, (x|j)) +Q(j, (Pre(j, 1)|x| Suf(j, n− 1))) =

αx

∏n
ψ=1 α(Γ (Pre(j,ψ)))∏n

ψ=1 α(Γ ((x|Pre(j,ψ)))
α(Γ ((x|Pre(j,1))))
α(Γ (Pre(j,1))) .

α(Γ ((x|Pr(j, 1)))) is in the numerator and the denominator. We cancel this term
and we get:

Q(j, (x|j)) +Q(j, (Pre(j, 1)|x| Suf(j, n− 1))) =

αx

∏n
ψ=1 α(Γ (Pre(j,ψ)))

α(Γ (Pre(j,1)))
∏n
ψ=2 α(Γ ((x|Pre(j,ψ))) .

Let us now consider the induction on the number of terms we add. Assume that
we consider them and accumulate them according to the index of x in the word.
Assume that we have proved that for all ψ between 0 and ν − 1, we have stated
that the summation of the first ν terms is equal to:

αx
∏n
ψ=1 α(Γ (Pre(j, ψ)))∏ν−1

ψ=1 α(Γ (Pre(j, ψ)))
∏n
ψ=ν α(Γ ((x|Pre(j, ψ)))

.

We now consider term with index ν. We have to computeQ(j, (Pre(j, ν)|x|Suf(j, n−
ν))) and add it to the previous partial sum. As usual due to the FCFM matching
discipline

P ((Pre(j, ν)|x|Suf(j, n− ν)), j) = α(Γ (x) \ Γ (Pre(j, ν))),

By assumption on the multiplicative solution for the steady-state:

π((Pre(j, ν)|x| Suf(j, n− ν))) =

π(E)
αx

∏n
ψ=1 αj(ψ)∏ν

ψ=1 α(Γ (Pre(j,ψ)))
∏n
ψ=ν α(Γ ((x|Pre(j,ψ)))) .



Thus,

Q(j, (Pre(j, ν)|x| Suf(j, n− ν))) =

α(Γ (x) \ Γ (Pr(j, ν)))
αx

∏n
ψ=1 α(Γ (Pre(j,ψ)))∏ν

ψ=1 α(Γ (Pre(j,ψ)))
∏n
ψ=ν α(Γ ((x|Pre(j,ψ)))) .

After summation with the previous partial sum (given by the induction assump-
tion) and factorization, we get that the new partial summation is equal to:

αx
∏n
ψ=1 α(Γ (P (j, ψ)))∏ν−1

ψ=1 α(Γ (Pre(j, ψ)))
∏n
ψ=ν α(Γ ((x|Pre(j, ψ)))

[
1 +

α(Γ (x) \ Γ (Pre(j, ν)))

α(Γ (Pre(j, ν)))

]
.

We use a similar argument to simplify:

1 +
α(Γ (x)− Γ (Pre(j, ν)))

α(Γ (Pre(j, ν)))
=
α(Γ ((x|Pre(j, ν))))

α(Γ (Pre(j, ν)))
.

After substitution the sum is equal to:

αx
∏n
ψ=1 α(Γ (Pre(j,ψ)))∏ν−1

ψ=1 α(Γ (Pre(j,ψ)))
∏n
ψ=ν α(Γ ((x|Pre(j,ψ))))

α(Γ ((x|Pre(j,ν))))
α(Γ (Pre(j,ν))) =

αx
∏n
ψ=1 α(Γ (Pre(j,ψ)))∏ν

ψ=1 α(Γ (Pre(j,ψ)))
∏n
ψ=ν+1 α(Γ ((x|Pre(j,ψ)))) .

Thus the induction holds. Now let us compute the sum of all the elements for ψ
between 0 and n. According to the induction assumptions which is now proved,
this sum is equal to

αx

∏n
ψ=1 α(Γ (Pre(j, ψ)))∏n
ψ=1 α(Γ (Pre(j, ψ)))

= αx,

and the proof of the Lemma is complete.

5 Conclusions and Remarks

This paper is a sequel of [8] where we proved that adding a new edge in a match-
ing graph without loops may lead to a performance paradox: the expectation of
the total number of customers increase after the addition of the edge. See also
[16] for an extended version of this paper.

Our aim was to prove or disprove the existence of the same paradox for
matching graph with loops. The first step was to prove that the steady state
solution has a multiplicative form. However even with this result, the existence
of a paradox similar to the one shown in [8] is still an open problem as all the
examples studied so far do not exhibit the same paradox we found in [8]. Note
however that the chains we obtain with this new model are all finite while the
chains studied in [16] are infinite.
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A brief introduction. In T. Czachórski, E. Gelenbe, K. Grochla, and R. Lent, edi-
tors, Computer and Information Sciences - 31st International Symposium, ISCIS
Kraków, Poland,, volume 659 of Communications in Computer and Information
Science, pages 134–141. Springer, 2016.

16. Arnaud Cadas, Josu Doncel, Jean-Michel Fourneau, and Ana Busic. Flexibility
can hurt dynamic matching system performance, extended version on arxiv, 2020.


