Balanced Splitting: A Framework for Achieving Zero-wait in the Multiserver-job Model

Josu Doncel University of the Basque Country, UPV/EHU.

Joint work with J. Anselmi (Inria Grenoble)

INFORMS Applied Probability Society Conference. Atlanta, USA. June 30, 2025

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Example with FCFS:

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Example with FCFS:

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Example with FCFS:

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

Each job can occupy **simultaneously** multiple servers during the execution of the job (server need)

The importance of the multiserver-job model

Analysis of the traces of Google's Borg Scheduler¹

Tasks require a specific number of server, which can vary by five orders of magnitude across jobs

Josu Doncel (UPV/EHU) Balanced Splitting 3/22

¹M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, and J. Wilkes, "Borg: the next generation," Proceedings of the fifteenth European conference on computer systems, 2020.

The importance of the multiserver-job model

Analysis of the traces of Google's Borg Scheduler¹

Tasks require a specific number of server, which can vary by five orders of magnitude across jobs

Many works study the MSJ model since then:

- M. Harchol-Balter, "The multiserver job queueing model," Queueing Syst. Theory Appl.
- I. Grosof, Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, "Optimal scheduling in the multiserver-job model under heavy traffic," Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3, dec 2022
- W. Wang, Q. Xie, and M. Harchol-Balter, "Zero queueing for multiserver jobs," Proc. ACM Meas. Anal. Comput. Syst., vol. 5, no. 1, feb 2021.
- Z. Chen, I. Grosof, and B. Berg, "Analyzing Practical Policies for Multiresource Job Scheduling" Accepted to ACM SIGMETRICS, June 2025.
- I. Grosof, Y. Hong, and M. Harchol-Balter, "The RESET and MARC Techniques, with Application to Multiserver-Job Analysis" IFIP Performance, November 2023.

¹M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, and J. Wilkes, "Borg: the next generation," Proceedings of the fifteenth European conference on computer systems, 2020.

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Optimality results with some limitations:

- (L1) server needs and number of servers: powers of 2
- (L2) preemptive scheduling policies

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Optimality results with some limitations:

- (L1) server needs and number of servers: powers of 2
- (L2) preemptive scheduling policies

Our Approach: BalancedSplitting- π

We prove that, without (L1) and (L2), it verifies (I1), (I2) and (I3) asymptotically

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Optimality results with some limitations:

- (L1) server needs and number of servers: powers of 2
- (L2) preemptive scheduling policies

Our Approach: BalancedSplitting- π

We prove that, without (L1) and (L2), it verifies (I1), (I2) and (I3) asymptotically Numerical analysis for (I4)

Outline

- lacktriangledown BalancedSplitting- π
- Main Results
- Numerical Analysis
- Conclusions and Future Work

Outline

- lacktriangledown BalancedSplitting- π
- Main Results
- Numerical Analysis
- Conclusions and Future Work

k servers and arrival rate λ

k servers and arrival rate λ

C classes of jobs

- α_i : prob that a job is of class i
- d_i: mean service time of class-i jobs
- n_i: server need of class-i jobs

k servers and arrival rate λ

C classes of jobs

- α_i : prob that a job is of class i
- d_i: mean service time of class-i jobs
- n_i: server need of class-i jobs

BalancedSplitting- π

The set of servers is partitioned in C + 1 sets:

- A_i : set of servers dedicated to class-i jobs
- \mathcal{H} : helper set (all types of classes)

k servers and arrival rate λ

C classes of jobs

- α_i : prob that a job is of class i
- d_i: mean service time of class-i jobs
- n_i: server need of class-i jobs

BalancedSplitting- π

The set of servers is partitioned in C + 1 sets:

- A_i : set of servers dedicated to class-i jobs
- \mathcal{H} : helper set (all types of classes)

Observation: $|A_i| = c_i \ n_i$, for $c_i \in \mathbb{N}$, and $|\mathcal{H}| \ge \max_i n_i$

k servers and arrival rate λ

C classes of jobs

- α_i : prob that a job is of class i
- d_i: mean service time of class-i jobs
- n_i: server need of class-i jobs

BalancedSplitting- π

The set of servers is partitioned in C + 1 sets:

- A_i : set of servers dedicated to class-i jobs
- \mathcal{H} : helper set (all types of classes)

Observation: $|A_i| = c_i \ n_i$, for $c_i \in \mathbb{N}$, and $|\mathcal{H}| \ge \max_i n_i$

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How does BalancedSplitting work?

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How does BalancedSplitting work?

- Incoming class-i jobs are sent to A_i if there are enough idle servers; otherwise to $\mathcal H$

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How does BalancedSplitting work?

- Incoming class- *i* jobs are sent to A_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π

BalancedSplitting- π

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How does BalancedSplitting work?

- Incoming class-i jobs are sent to A_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π
- When a class-i job ends service in A_i , the oldest class-i job waiting in \mathcal{H} starts being served in A_i

BalancedSplitting- π

How to partition the set of servers?

Balanced manner according to $\alpha_i n_i d_i$.

$$|\mathcal{A}_i| = n_i \left[\psi \frac{k}{n_i} \frac{\alpha_i n_i d_i}{\sum_i \alpha_i n_i d_i} \right], \qquad |\mathcal{H}| = k - \sum_i |\mathcal{A}_i|$$

where ψ gets the maximum value between 0 and 1 such that $|\mathcal{H}| \geq \max_i n_i$

How does BalancedSplitting work?

- Incoming class-i jobs are sent to A_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π
- When a class-i job ends service in A_i , the oldest class-i job waiting in \mathcal{H} starts being served in A_i

Observation: If the probability of sending jobs to $\mathcal H$ is zero, zero-wait property

◆□ > ◆□ > ◆■ > ◆■ > ■ めるの

Outline

- \bigcirc BalancedSplitting- π
- Main Results
- Numerical Analysis
- Conclusions and Future Work

BalancedSplitting- π

Waste of capacity occurs ⇒ Not throughput optimal in general!

Interesting property

Under BalancedSplitting- π , the set of servers dedicated to class-i jobs are $M/G/|\mathcal{A}_i|/|\mathcal{A}_i|$ queues

 $\Rightarrow \text{Erlang's loss formula!}$

Interesting property

Under BalancedSplitting- π , the set of servers dedicated to class-i jobs are $M/G/|\mathcal{A}_i|/|\mathcal{A}_i|$ queues

⇒ Erlang's loss formula!

We only need to study \mathcal{H} .

We only need to study \mathcal{H} .

Let $E_{|A_i|}(\lambda \alpha_i d_i)$ be the probability that a class-i job is sent to \mathcal{H}

Sufficient condition for stability

We only need to study \mathcal{H} .

Let $E_{|A_i|}(\lambda \alpha_i d_i)$ be the probability that a class-i job is sent to \mathcal{H}

Sufficient condition for stability

$$\frac{\lambda}{|\mathcal{H}|} \sum_{i=1}^{C} \alpha_i n_i d_i E_{|\mathcal{A}_i|}(\lambda \alpha_i d_i) < 1$$
 (STAB-COND)

Sketch of the proof

(1) We study a modified version of BalancedSplitting- π (MBS- π) scheduling. The load of $\mathcal H$ under MBS- π is larger than the load of $\mathcal H$ under BalancedSplitting- π

We only need to study \mathcal{H} .

Let $E_{|A_i|}(\lambda \alpha_i d_i)$ be the probability that a class-i job is sent to \mathcal{H}

Sufficient condition for stability

$$\frac{\lambda}{|\mathcal{H}|} \sum_{i=1}^{C} \alpha_i n_i d_i E_{|\mathcal{A}_i|}(\lambda \alpha_i d_i) < 1$$
 (STAB-COND)

Sketch of the proof

- (1) We study a modified version of BalancedSplitting- π (MBS- π) scheduling. The load of $\mathcal H$ under MBS- π is larger than the load of $\mathcal H$ under BalancedSplitting- π
- (2) We show that, under MBS- π , \mathcal{H} is stable iff (STAB-COND) holds.

Regime 1: Arrival rate and n. of servers tend to ∞ , but the load is constant. Regime 2: Arrival rate and the servers grow to infinity and the load tends to one (Halfin-Whitt)

Regime 1: Arrival rate and n. of servers tend to ∞ , but the load is constant. Regime 2: Arrival rate and the servers grow to infinity and the load tends to one (Halfin-Whitt)

Theorem

Under Regime 1 or Regime 2, the probability that a job is sent to $\ensuremath{\mathcal{H}}$ tends to 0

Consequences

Regime 1: Arrival rate and n. of servers tend to ∞ , but the load is constant. Regime 2: Arrival rate and the servers grow to infinity and the load tends to one (Halfin-Whitt)

Theorem

Under Regime 1 or Regime 2, the probability that a job is sent to $\ensuremath{\mathcal{H}}$ tends to 0

Consequences

- Mean response time tends to $\sum_i \alpha_i d_i$
- BalancedSplitting is throughput optimal and has the zero-wait property (in both regimes)

Regime 1: Arrival rate and n. of servers tend to ∞ , but the load is constant. Regime 2: Arrival rate and the servers grow to infinity and the load tends to one (Halfin-Whitt)

Theorem

Under Regime 1 or Regime 2, the probability that a job is sent to $\ensuremath{\mathcal{H}}$ tends to 0

Consequences

- Mean response time tends to $\sum_i \alpha_i d_i$
- BalancedSplitting is throughput optimal and has the zero-wait property (in both regimes)

Sketch of the proof

(1) We study a modified version of BalancedSplitting- π (MBS- π) scheduling. The probability that a job is sent to $\mathcal H$ is larger under MBS- π than under BalancedSplitting- π .

Regime 1: Arrival rate and n. of servers tend to ∞ , but the load is constant. Regime 2: Arrival rate and the servers grow to infinity and the load tends to one (Halfin-Whitt)

Theorem

Under Regime 1 or Regime 2, the probability that a job is sent to $\ensuremath{\mathcal{H}}$ tends to 0

Consequences

- Mean response time tends to $\sum_i \alpha_i d_i$
- BalancedSplitting is throughput optimal and has the zero-wait property (in both regimes)

Sketch of the proof

- (1) We study a modified version of BalancedSplitting- π (MBS- π) scheduling. The probability that a job is sent to $\mathcal H$ is larger under MBS- π than under BalancedSplitting- π .
- (2) We prove that, in both asymptotic regimes, the blocking probability of A_i tends to zero under MBS- π .

What is MBS- π ?

What is MBS- π ?

BalancedSplitting-π

- Incoming class-i jobs are sent to \mathcal{A}_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π
- When a class-i job ends service, the oldest class-i job waiting in $\mathcal H$ starts being served in $\mathcal A_i$

14/22

What is MBS- π ?

BalancedSplitting- π

- Incoming class-i jobs are sent to A_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π
- When a class-i job ends service, the oldest class-i job waiting in $\mathcal H$ starts being served in $\mathcal A_i$

$MBS-\pi$

- Incoming class-i jobs are sent to A_i if there are enough idle servers; otherwise to \mathcal{H}
- ${\cal H}$ processes jobs according to a non-preemptive scheduling π
- A job that is sent to ${\mathcal H}$ is executed in ${\mathcal H}$

Outline

- \bigcirc BalancedSplitting- π
- Main Results
- Numerical Analysis
- Conclusions and Future Work

We consider traces from HPC systems ²

²http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

We consider traces from HPC systems ²

We extracted the parameters of SDSC and of Karlsruhe Institute of Technology (KIT) System and simulated mean response times of different scheduling policies

²http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

We consider traces from HPC systems 2

We extracted the parameters of SDSC and of Karlsruhe Institute of Technology (KIT) System and simulated mean response times of different scheduling policies

Restricted to Powers of two

The scheduling policy that minimizes mean response times is ServerFilling-SRPT

 \Rightarrow Is BalancedSplitting- π close to be optimal?

16/22

We consider traces from HPC systems 2

We extracted the parameters of SDSC and of Karlsruhe Institute of Technology (KIT) System and simulated mean response times of different scheduling policies

Restricted to Powers of two

The scheduling policy that minimizes mean response times is ServerFilling-SRPT

 \Rightarrow Is BalancedSplitting- π close to be optimal?

We consider as π the FCFS scheduling

²http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Real Data from SDSC

Real Data from SDSC

BalacedSplitting outperforms ServerFilling (preemptive)!

Josu Doncel (UPV/EHU) Balanced Splitting 17/22

Real Data from KIT

(b) Dataset KIT FH2 - k=1024

Real Data from KIT

BalacedSplitting is close to optimal!

Josu Doncel (UPV/EHU) Balanced Splitting 18/22

Outline

- \bigcirc BalancedSplitting- π
- Main Results
- Numerical Analysis
- Conclusions and Future Work

Conclusions and Future Work

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Optimality results with some limitations:

- (L1) server needs and number of servers: powers of 2
- (L2) preemptive scheduling policies

Our Approach: Balanced Splitting- π

We prove that, without (L1) and (L2), it verifies (I1), (I2) and (I3) asymptotically Numerical analysis for (I4)

Conclusions and Future Work

Investigate scheduling policies

- (I1) throughput optimal
- (I2) zero-wait property
- (I3) characterize mean response time of jobs
- (I4) minimize mean response time of jobs

Optimality results with some limitations:

- (L1) server needs and number of servers: powers of 2
- (L2) preemptive scheduling policies

Our Approach: BalancedSplitting- π

We prove that, without (L1) and (L2), it verifies (I1), (I2) and (I3) asymptotically Numerical analysis for (I4)

Future Work

- Balanced Size-Aware Dispatching: job size knowledge is required
- Parallel Servers Systems

Thank you very much

Thanks for your attention. Questions?

J. Anselmi, J. Doncel. "Balanced Splitting: A Framework for Achieving Zero-wait in the Multiserver-job Model" IEEE Transactions on Parallel and Distributed Systems, Vol 36, Issue 1, 2025

Details of Both Asymptotic Regimes

Let $f_k = o(k), f_k \in \mathbb{N}$

Regime 1: $k \to \infty$

$$\lambda^{(k)} = \lambda \frac{k}{f_k}$$

$$n_i^{(k)} = n_i f_k$$

$$\alpha_i^{(k)} = \alpha_i$$

$$d_i^{(k)} = d_i$$

$$\alpha_i^{(k)} = \alpha_i$$

$$d_i^{(\kappa)}=d_i$$

Details of Both Asymptotic Regimes

Let $f_k = o(k), f_k \in \mathbb{N}$

Regime 1: $k \to \infty$

$$\lambda^{(k)} = \lambda \frac{k}{f_k}$$

$$n_i^{(k)} = n_i f_k$$
$$\alpha_i^{(k)} = \alpha_i$$

$$\alpha_i^{(K)} = \alpha_i$$

$$d_i^{(k)} = d_i$$

Regime 2:

$$\lambda^{(k)} \to \infty$$
 $(1 - \rho^{(k)}) \sqrt{\frac{k}{f_k}} \to \theta$, with $\theta > 0$

$$n_i^{(k)} = n_i f_k$$

$$\alpha_i^{(k)} = \alpha_i$$

$$d_i^{(k)} = d_i$$

Details of Both Asymptotic Regimes

Let $f_k = o(k), f_k \in \mathbb{N}$

Regime 1: $k \to \infty$

$$\lambda^{(k)} = \lambda \frac{k}{f_k}$$

$$n_i^{(k)} = n_i f_k$$
$$\alpha_i^{(k)} = \alpha_i$$

$$\alpha_i^{(K)} = \alpha_i$$

$$d_i^{(k)} = d_i$$

Regime 2:

$$\lambda^{(k)} \to \infty$$
 $(1 - \rho^{(k)}) \sqrt{\frac{k}{f_k}} \to \theta$, with $\theta > 0$

$$n_i^{(k)} = n_i f_k$$

$$\alpha_i^{(k)} = \alpha_i$$

$$d_i^{(k)} = d_i$$